工业水处理, 2021, 41(2): 20-25 doi: 10.11894/iwt.2020-0230

专论与综述

金属催化剂在宽泛pH进行Fenton反应的进展

李孟宣,, 盛光遥, 何岸飞

Progress of metal catalysts for Fenton reaction at a wide range of pH

Li Mengxuan,, Sheng Guangyao, He Anfei

收稿日期: 2020-07-31  

Received: 2020-07-31  

作者简介 About authors

李孟宣(1995-),硕士研究生E-mail:morty-lee@foxmail.com , E-mail:morty-lee@foxmail.com

Abstract

Fenton reaction is widely used in organic wastewater treatment. The traditional Fenton reaction can only be carried out in a acidic environment with lower pH. Variety of methods have been improved to overcome the limitations of the low pH in the classic Fenton reaction. Among of them, the use of metal catalysts in the Fenton reaction can effectively broaden the reaction pH range, reduce the formation of iron slag, and accelerate the decomposition of H2O2. This article reviews the basic principles and latest research progress of metal catalysts for Fenton reaction degradation of organic pollutants in a wide pH range.

Keywords: Fenton reaction ; metal catalyst ; pH

PDF (0KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李孟宣, 盛光遥, 何岸飞. 金属催化剂在宽泛pH进行Fenton反应的进展. 工业水处理[J], 2021, 41(2): 20-25 doi:10.11894/iwt.2020-0230

Li Mengxuan. Progress of metal catalysts for Fenton reaction at a wide range of pH. Industrial Water Treatment[J], 2021, 41(2): 20-25 doi:10.11894/iwt.2020-0230

Fenton法作为一种高级氧化工艺(AOP)因具有操作模式简单、适用范围广泛以及氧化能力强等特点,广泛应用于污水处理中1。传统的Fenton反应主要是用亚铁离子(Fe2+)催化分解过氧化氢(H2O2)产生的羟基自由基(·OH)降解有机物。·OH是氧化能力仅次于氟的氧化剂,氧化电位为2.8 eV,具有高反应性和非选择性,几乎可以将任何有机物氧化为无机离子和CO22。Fenton反应主要方程式如下3

(1)

(2)

传统的Fenton反应只能在pH较低的酸性环境下进行,pH约为3.0~4.04,pH > 4.0会显著降低污染物的去除率5。当pH > 4.0时,Fe3+将以不溶性络合物的形式存在,会极大地影响式(2)中Fe3+的还原,使得Fenton反应无法进行。因此,采用Fenton法对污水进行处理,往往需要增加酸化预处理,这不但增加了处理成本,而且在含有硫化物或氰化物的污水中,酸化会导致某些有毒有害气体释放到环境中6。对传统的Fenton法进行改良,使其能够在宽泛的pH下进行,将会极大提升Fenton氧化技术在废水处理中的应用前景。

1 铁基金属催化剂

1.1 矿物金属催化剂

矿物金属催化剂是最常见的能拓宽Fenton反应适用范围的催化剂,其在宽泛的pH下能展示出高效的催化活性7。矿物金属催化剂中用作Fenton反应的催化剂以铁基催化剂为主,包括针铁矿8、磁铁矿9、菱铁矿10、黄铁矿11等。在铁基催化剂参与的Fenton体系中,H2O2首先将氧化铁表面的Fe(Ⅲ)还原成Fe(Ⅱ),溶液中的Fe(Ⅱ)再催化H2O2生成·OH,从而有效降解有机污染物12

Fuwei Sun等10选择天然菱铁矿作为Fenton催化剂催化降解水中的抗生素磺胺嘧啶钠,该研究将6 g/L菱铁矿和100 mmol/L H2O2加入到10 mg/L的磺胺嘧啶钠溶液中。结果表明,在溶液pH为3~9的范围内,均显示出优异的降解效果,3 h内降解率达到98%。Zhirong Lin等13研究了不同pH条件下以针铁矿作为催化剂的类Fenton体系降解水中2,4,4’-三氯联苯(PCB28)的效率。其在1 mg/L的PCB28溶液中,加入1 g/L的针铁矿和3.4 g/L的H2O2。结果表明,当pH为3时,反应48 h后PCB28降解率达到99%;pH为7时,PCB28的降解率仍能达到52%。可以通过提高针铁矿的量来增加针铁矿表面上的活性位点,从而提升降解率。

矿物金属催化剂的使用能够解决Fenton反应pH范围狭窄的缺陷,但催化剂的催化活性仍然有待提高。引入螯合剂能有效地提高催化剂的催化活性。常见的螯合剂有乙二胺四乙酸(EDTA)14、乙二胺二琥珀酸三钠(EDDS)15、次氮基三乙酸(NTA)16、柠檬酸盐17、酒石酸18等。Shengpeng Sun等19在Fe3O4催化降解卡马西平(CBZ)的Fenton反应体系中引入了NTA。结果表明,在6.35×10-2 mmol/L的CBZ溶液中,加入1.0 g/L的Fe3O4,100 mmol/L的H2O2和0.5 mmol/L的NTA,反应120 min后,CBZ去除率为99.6%;而未添加NTA的对照组,仅有6%的CBZ被去除。Hongwei Sun等20建立了具有抗坏血酸(AA)、磁铁矿(Fe3O4)和H2O2的Fenton反应体系,并用其降解水中甲草胺。结果表明,在一定的试验条件下,20 min内甲草胺去除率就可以达到69.5%;而不含AA的Fenton体系,1 h内对甲草胺的去除率不足10%。这证明了AA能够促进Fenton反应降解甲草胺。

矿物铁基催化剂成本较低,制备相对简单,但直接投用受环境影响很大,H2O2利用效率不高。通过添加螯合剂,能进一步提升高pH下该类催化剂的催化活性。在Fenton反应中引入某些螯合剂,能从2个方面提高铁基催化剂的催化活性:(1)能够加快铁的浸出21,并在高pH下与Fe(Ⅲ)/ Fe(Ⅱ)形成络合物,使其保持可溶状态,使溶液中的均相Fenton反应得以继续;(2)能够提高矿物催化剂表面Fe(Ⅲ)/ Fe(Ⅱ)的循环,加快表面非均相Fenton反应。催化剂的活性主要与这些螯合物的稳定性、官能团种类、自由基清除能力有关22

1.2 负载铁基催化剂

催化剂的负载材料分为2类:(1)碳基材料。主要有石墨碳、石墨碳氮化物、石墨烯、生物炭、活性炭等材料。对于非均相Fenton反应而言,这些材料具有高稳定性,结构可调,并具有一定的化学惰性和良好的电性能23,是改善金属催化剂活性的关键,已经成为目前主流的负载材料;(2)非碳基材料。主要有硅藻土24、黏土25、凝胶等材料。这些材料能增加反应位点,减少催化剂浸出量,且材料本身对环境十分友好,不会给环境带来新的污染。

铁基催化剂不仅可以直接投入使用,更多的是将其改良成负载型催化剂,以避免在与目标物接触之前发生聚合作用,导致催化活性下降7。改良后的催化剂活性更强,能多次重复利用,可更广泛更高效地氧化降解污染物。常见的用于Fenton反应的负载型铁基催化剂如表 1所示。

表1   常见的负载铁基催化剂在Fenton反应中的应用效果

催化剂催化剂支撑材料降解目标物最优结果催化剂稳定性适用pH范围参考文献
α-Fe2O3硅藻土亚甲基蓝(MB)120 min后去除率达到98%重复使用5次,稳定性良好在pH为2.0~8.0范围内去除效果良好26
α-Fe2O3石墨相碳氮化物(g-C3N4)四环素(TC)60 min后去除率为95%重复使用5次,稳定性良好在pH为2.01~9.09范围内去除效果良好27
γ-Fe2O3石墨烯亚甲基蓝(MB)100 min后去除率为99%重复使用8次,稳定性良好在pH为2.0~10.2范围内去除效果良好28
Fe3O4石墨烯苯酚、2-NP、2-CP120 min后苯酚去除率为92.43%,2-NP去除率为98.87%,2-CP去除率为97.15%重复使用10次,稳定性良好在pH为3.0~11.0范围内去除效果良好29
Fe3O4生物炭乙苯40 min后去除率为99.33%在pH为3~10范围内去除效果良好30
纳米零价铁(NZVI)树胶黄花胶(GT)阿西莫拉(CIP)60 min后去除率为85%在pH为3.5~9.5范围内去除效果良好31
FeOOH活性炭活性艳橙(X-GN)240 min后去除率达到98%重复使用4次,稳定性良好在pH为2~9范围内去除效果良好32

新窗口打开| 下载CSV


表 1可知,铁基催化剂中除了矿物催化剂外,合成纳米零价铁也能作为Fenton反应的催化剂。将催化剂负载在支撑材料上后,其能表现出较高的催化活性,短时间内目标污染物去除率都能达到90%以上,且多数负载铁催化剂的稳定性良好,重复使用5~10次活性没有明显下降。更重要的是,与传统催化剂相比,其适用的pH范围有了极大拓展,从酸性到弱碱性条件下均可以保持原有活性。负载的铁基催化剂通常以Fe2O3、Fe3O4和NZVI为主,其负载到负载材料上后能有效减少铁的浸出和聚集。

综上,负载铁基催化剂以其可重复使用、绿色环保且pH适应范围宽泛的特点,成为铁基催化剂主要研究方向。但是,负载铁基催化剂仍存在许多缺点,限制了其应用。尽管采用负载材料可减少金属催化剂中金属的浸出,但重复使用多次后,溶液中的金属离子仍然会不可避免地增加。此外,常用的碳基负载材料物理强度不高,多次使用极易受到损坏。

2 其他金属催化剂

2.1 非铁基金属催化剂

具有多个氧化还原态的金属元素可以替代铁基催化剂参与Fenton反应,它们在较高的pH范围内也能有效降解有机污染物。这些金属能象铁一样作为催化剂催化H2O2产生具有高氧化性的自由基。类似Fenton反应中的铁基催化剂,M. P. Pachamuthu等33将氧化铜催化剂分散在三维介孔TUD-1二氧化硅上,制得Cu / TUD-1。使用该材料作为Fenton反应催化剂降解水中双酚A(BPA),结果表明,在一定的试验条件下,在180 min内BPA去除率达到90.4%;采用DMPO(5,5-二甲基-1-吡咯啉-N-氧化物)作为自由基猝灭剂进行了额外的电子顺磁共振(EPR)实验,确定了羟基自由基的形成。Peng Zhou等34使用纳米级零价钨(NZVW)作为类Fenton催化剂,成功去除了溶液中的罗丹明B(RhB),并且在溶液中同样测出了羟基自由基。Chengjie Zang等35使用二氧化铈作为催化剂,建立了CeO2-H2O2类Fenton体系。该体系可有效降解溶液中的水杨酸(SA),在一定试验条件下,当pH=4.0时,SA降解率达到80%,pH=7.0时,也有50%的SA降解率。有些金属催化剂甚至能表现出比铁基催化剂更好的性能。Yunjin Yao等36分别将铁、钴、镍包裹在掺氮碳纳米管(NC)中,制得新型Fenton催化剂,并以酸性橙Ⅱ为处理对象,比较了各金属催化剂的催化活性。结果表明:相比于其他2种金属催化剂,Co@NC催化剂能提供更多的反应位点,拥有最高活性,对酸性橙Ⅱ的去除效果最好。催化剂的活性不仅与其表面积有关,而且和催化剂的结晶度也有关。E. J. Kim等37通过水热法制备了4种不同的棒状MnO2多晶型物:α-MnO2β-MnO2γ-MnO2(成隧道状)和δ-MnO2(成层),并测试了它们作为Fenton催化剂降解MB的性能。结果表明,γ-MnO2显示出最高的催化活性,在pH为4.5~10.0的范围内,20 min内能完全去除MB。

非铁基金属催化剂的应用是Fenton体系的一个崭新方向,其有效地补充了Fenton体系在高pH环境下的的应用范围。部分非铁基金属催化剂能在较宽泛的pH范围内进行Fenton反应,且催化活性高于铁基金属催化剂,这可能与催化剂的表面积、结晶度、晶面等结构因素有关37。但非铁基金属催化剂也存在一定缺陷:在pH < 4.0的酸性环境中,非铁基金属催化剂活性不高;部分金属毒性较高,在反应中浸出到环境后会带来巨大隐患;成本也远远大于铁基金属催化剂,不宜大量使用。

2.2 多金属催化剂

单金属催化剂所主导的Fenton体系已不能满足日益复杂的污染环境,将2种或2种以上的金属构成的多金属催化剂应用于Fenton体系受到广泛关注。常见的能构筑多金属氧化物的金属有钴38、锰39、铈40、铜41等。这些金属作为催化剂促进Fenton反应的原理有所不同。如:氧化锰中掺杂铈能显著改善催化剂的表面性能,扩大比表面积,赋予更多的反应位点42;钒掺杂钙钛矿催化剂能促进具有电子富集特性的氧空位的形成,从而加速电子传输过程和·OH的生成43。双金属催化剂优于单金属催化剂的主要原因在于双金属催化剂中各金属之间的协同作用有利于·OH的生成。Min Cheng等38合成了一种新型的Fe/Co复合材料,将其作为类Fenton反应的催化剂催化降解磺胺二甲嘧啶(SMZ)。结果表明,在pH为5~9的条件下,Fe/Co复合材料能够加快Fenton反应,对SMZ的降解非常有效。钴离子能与铁离子产生协同作用,加快铁离子之间的循环,使得·OH能更高效生成。X. Zhang等44用水热法制备了CuFeO2微粒,并将其作为Fenton反应的催化剂催化降解双酚A。结果表明,在一定试验条件下,在120 min内双酚A几乎能得到完全去除。通过使用X射线光电子能谱(XPS)检测Fenton反应前后催化剂上铁和铜的化学状态,证明了催化过程中铁和铜之间的相互作用〔见式(3)〕导致了Fe3+的快速还原。

(3)

常见的双金属催化剂在Fenton反应中的应用效果如表 2所示。

表2   常见的双金属催化剂在Fenton反应中的应用效果

催化剂降解目标物反应条件结果催化剂稳定性适用pH范围参考文献
FeCeOx
复合材料
罗丹明B(RhB)催化剂1.5 g/L,[H2O2]=80 mmol/L,pH=5.0,温度35 ℃150 min后去除率达到98%重复使用3次,去除率下降至70%;可以通过简单的热处理(500 ℃,2 h)使催化剂重新活化在pH为3.0~9.0范围内去除效果良好45
LFO-15Cu
复合材料
甲基橙(MO)催化剂0.8 g/L,H2O2 0.3 g/L,pH=5.0,温度25 ℃,可见光60 min后去除率达到92.9%重复使用4次,去除率下降至88.5%在pH为4.0~8.0范围内去除效果良好46
CuFeO2
微粒
双酚A(BPA)催化剂1 g/L,[H2O2]=20 mmol/L,pH=5.0120 min后去除率为99.7%重复使用6次,去除率没有明显变化在pH为4.0~8.0范围内去除效果良好44
CuVOx
复合材料
氟康唑(FLC)催化剂1 g/L,[H2O2]=50 mmol/L,pH=3.090 min后去除率为100%重复使用5次,去除率下降至81%在pH为3.0~9.0范围内去除效果良好47
Fe0.75Cu0.25
(BDC)
磺胺甲恶唑(SMX)催化剂0.5 g/L,[H2O2]=6 mmol/L,pH=5.6,温度25 ℃120 min后去除率为100%重复使用3次,去除率没有明显变化在pH为4.0~8.6范围内去除效果良好48

新窗口打开| 下载CSV


双金属催化剂种类繁多,常见的双金属催化剂可分为2类:(1)铁基双金属催化剂。其以铁为基础掺杂其他金属作为催化剂,掺杂金属可加速Fe(Ⅲ)与Fe(Ⅱ)之间的转换,从而提高反应速率。(2)铜基双金属催化剂。铜离子在Fenton反应中体现出耐盐性49,并有高溶解度50特性,使得铜在高pH、高盐条件下表现出比铁更高的活性。铜离子参与的Fenton反应与Fe2+/H2O2和Fe3+/H2O2体系的Fenton反应相似〔见式(4)和式(5)〕,并且Cu(Ⅱ)/Cu(Ⅰ)的标准还原电位低于Fe(Ⅲ)/ Fe(Ⅱ)的还原电位,铜基催化剂更容易促进羟基自由基的产生,在热力学上更有利于Fenton系统降解污染物51。近年来,为了适应复杂的污染环境,铜基双金属催化剂已经逐渐替代铁基双金属催化剂成为研究的重点。

(4)

(5)

3 结语

传统的Fenton反应中采用铁离子作为催化剂,H2O2利用效率不高,且反应过程会产生大量铁渣,最重要的是反应条件苛刻,适用pH范围狭窄。改良金属催化剂可以克服传统Fenton反应要求低pH的缺点,常用的方法有添加螯合剂、制备负载催化剂、制备非铁基催化剂以及制备多金属催化剂。

添加螯合物能有效增加铁离子的浸出,使得铁离子即使在高pH环境下也能保持游离态;负载型催化剂能有效减少金属催化剂的聚集作用,同时易于回收,对环境友好;非铁基金属催化剂在高pH的环境中能表现出比铁基催化剂更好的活性,并且发生与铁基催化剂类似的Fenton反应;多金属催化剂不仅可以以铁基催化剂为主,而且能以铜基催化剂为主,由于铜基催化剂具有极强的环境适应性,组成双金属催化剂后反应活性更佳。

改良后的金属催化剂均比传统催化剂显示出更佳的催化活性和更低的环境要求,但将改良金属催化剂应用于Fenton反应仍然存在一些缺陷,在未来的研究中需要进一步解决。主要有以下几个方面:(1)需进一步提升pH适用范围。虽然改良金属催化剂在宽泛的pH范围内都可以使用,但是其最佳适用pH仍然不高。可以通过电-Fenton、光-Fenton等方式加强其在碱性条件下的催化剂活性。(2)环境因素对多金属催化剂具有一定影响,其反应原理相对复杂,后续研究需要充分理解多金属催化剂的反应机理,并依据原理寻找最佳的金属组合,以适应不同的反应环境。(3)负载金属催化剂是金属催化剂最常用的改良方式,因此,对负载材料的选取意义重大,未来应开发机械强度大、稳定性强、对环境友好的材料作为负载材料。

参考文献

Wang Nannan , Zheng Tong , Zhang Guangshan , et al.

A review on Fenton-like processes for organic wastewater treatment

[J]. Journal of Environmental Chemical Engineering, 2016, 4 (1): 762- 787.

DOI:10.1016/j.jece.2015.12.016      [本文引用: 1]

Klamerth N , Malato S , Aguera A , et al.

Treatment of municipal wastewater treatment plant effluents with modified photo-Fenton as a tertiary treatment for the degradation of micro pollutants and disinfection

[J]. Environmental Science & Technology, 2012, 46 (5): 2885- 2892.

URL     [本文引用: 1]

Wang Zhaohui , Bush R T , Liu Jianshe .

Arsenic (Ⅲ) and iron(Ⅱ) co-oxidation by oxygen and hydrogen peroxide: Divergent reactions in the presence of organic ligands

[J]. Chemosphere, 2013, 93 (9): 1936- 1941.

DOI:10.1016/j.chemosphere.2013.06.076      [本文引用: 1]

Bokare A D , Choi W .

Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes

[J]. Journal of Hazardous Materials, 2014, 275, 121- 135.

DOI:10.1016/j.jhazmat.2014.04.054      [本文引用: 1]

Venny G S , Ng H K .

Inorganic chelated modified-Fenton treatment of polycyclic aromatic hydrocarbon(PAH)-contaminated soils

[J]. Chemical Engineering Journal, 2012, 180, 1- 8.

DOI:10.1016/j.cej.2011.10.082      [本文引用: 1]

Lipczynska-Kochany E , Kochany J .

Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH

[J]. Chemosphere, 2008, 73 (5): 745- 750.

DOI:10.1016/j.chemosphere.2008.06.028      [本文引用: 1]

Munoz M , De Pedro Z M , Casas J A , et al.

Preparation of magnetitebased catalysts and their application in heterogeneous Fenton oxidation: A review

[J]. Applied Catalysis B: Environmental, 2015, 176/177, 249- 265.

DOI:10.1016/j.apcatb.2015.04.003      [本文引用: 2]

Lin Zhirong , Zhao Ling , Dong Yuanhua .

Effects of low molecular weight organic acids and fulvic acid on 2, 4, 4'-trichlorobiphenyl degradation and hydroxyl radical formation in a goethite-catalyzed Fentonlike reaction

[J]. Chemical Engineering Journal, 2017, 326, 201- 209.

DOI:10.1016/j.cej.2017.05.112      [本文引用: 1]

Zhong Yuanhong , Liang Xiaoliang , Zhong Yin , et al.

Heterogeneous UV/Fenton degradation of TBBPA catalyzed by titanomagnetite: Catalyst characterization, performance and degradation products

[J]. Water Research, 2012, 46 (15): 4633- 4644.

DOI:10.1016/j.watres.2012.06.025      [本文引用: 1]

Sun Fuwei , Liu Haibo , Wang Hanlin , et al.

A novel discovery of a heterogeneous Fenton-like system based on natural siderite: A wide range of pH values from 3 to 9

[J]. Science of The Total Environment, 2020, 698, 134293.

DOI:10.1016/j.scitotenv.2019.134293      [本文引用: 2]

Zhao Linghui , Chen Yufan , Liu Yanxia , et al.

Enhanced degradation of chloramphenicol at alkaline conditions by S(-Ⅱ) assisted heterogeneous Fenton-like reactions using pyrite

[J]. Chemosphere, 2017, 188, 557- 566.

DOI:10.1016/j.chemosphere.2017.09.019      [本文引用: 1]

Garrido-Ramírez E G , Theng B K G , Mora M L .

Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions: A review

[J]. Applied Clay Science, 2010, 47 (3/4): 182- 192.

URL     [本文引用: 1]

Lin Zhirong , Ma Xiaohong , Zhao Ling , et al.

Kinetics and products of PCB28 degradation through a goethite-catalyzed Fenton-like reaction

[J]. Chemosphere, 2014, 101, 15- 20.

DOI:10.1016/j.chemosphere.2013.11.063      [本文引用: 1]

De Luca A , Dantas R F , Esplugas S .

Assessment of iron chelates efficiency for photo-Fenton at neutral pH

[J]. Water Research, 2014, 61, 232- 242.

DOI:10.1016/j.watres.2014.05.033      [本文引用: 1]

Miralles-Cuevas S , Oller I , Perez J A S , et al.

Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photoFenton using two different iron complexes at neutral pH

[J]. Water Research, 2014, 64, 23- 31.

DOI:10.1016/j.watres.2014.06.032      [本文引用: 1]

Zhang Yongzhi , Liu Junjie , Pei Jingjing , et al.

Performance evaluation of different air distribution systems in an aircraft cabin mockup

[J]. Aerospace Science and Technology, 2017, 70, 359- 366.

DOI:10.1016/j.ast.2017.08.009      [本文引用: 1]

Ruales-Lonfat C , Barona J F , Sienkiewicz A , et al.

Bacterial inactivation with iron citrate complex: A new source of dissolved iron in solar photo-Fenton process at near-neutral and alkaline pH

[J]. Applied Catalysis B: Environmental, 2016, 180, 379- 390.

DOI:10.1016/j.apcatb.2015.06.030      [本文引用: 1]

Villegas-Guzman P , Giannakis S , Torres-Palma R A , et al.

Remarkable enhancement of bacterial inactivation in wastewater through promotion of solar photo-Fenton at near-neutral pH by natural organic acids

[J]. Applied Catalysis B: Environmental, 2017, 205, 219- 227.

DOI:10.1016/j.apcatb.2016.12.021      [本文引用: 1]

Sun Shengpeng , Zeng Xia , Li Chun , et al.

Enhanced heterogeneous and homogeneous Fenton-like degradation of carbamazepine by nano-Fe3O4/H2O2 with nitrilotriacetic acid

[J]. Chemical Engineering Journal, 2014, 244, 44- 49.

DOI:10.1016/j.cej.2014.01.039      [本文引用: 1]

Sun Hongwei , Xie Guihong , He Di , et al.

Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling

[J]. Applied Catalysis B: Environmental, 2020, 267, 118383.

DOI:10.1016/j.apcatb.2019.118383      [本文引用: 1]

Ortiz De La Plata G B , Alfano O M , Cassano A E .

Decomposition of 2-chlorophenol employing goethite as Fenton catalyst.Ⅰ. Proposal of a feasible, combined reaction scheme of heterogeneous and homogeneous reactions

[J]. Applied Catalysis B: Environmental, 2010, 95 (1/2): 1- 13.

URL     [本文引用: 1]

Clarizia L , Russo D , Di Somma I , et al.

Homogeneous photo-Fenton processes at near neutral pH: A review

[J]. Applied Catalysis B: Environmental, 2017, 209, 358- 371.

DOI:10.1016/j.apcatb.2017.03.011      [本文引用: 1]

Khalid N R , Majid A , Tahir M B , et al.

Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review

[J]. Ceramics International, 2017, 43 (17): 14552- 14571.

DOI:10.1016/j.ceramint.2017.08.143      [本文引用: 1]

Semiāo M A , Haminiuk C W I , Maciel G M .

Residual diatomaceous earth as a potential and cost effective biosorbent of the azo textile dye Reactive Blue 160

[J]. Journal of Environmental Chemical Engineering, 2020, 8 (1): 103617.

DOI:10.1016/j.jece.2019.103617      [本文引用: 1]

Tireli A A , Guimaraes I R , Terra J C S , et al.

Fenton-like processes and adsorption using iron oxide-pillared clay with magnetic properties for organic compound mitigation

[J]. Environ. Sci. Pollut. Res. Int., 2015, 22 (2): 870- 881.

DOI:10.1007/s11356-014-2973-x      [本文引用: 1]

He Yi , Jiang Debin , Jiang Deyi , et al.

Evaluation of MnO2-templated iron oxide-coated diatomites for their catalytic performance in heterogeneous photo Fenton-like system

[J]. J. Hazard. Mater., 2018, 344, 230- 240.

DOI:10.1016/j.jhazmat.2017.10.018      [本文引用: 1]

Guo Ting , Wang Kai , Zhang Gaoke , et al.

A novel α-Fe2O3@g-C3N4 catalyst: Synthesis derived from Fe-based MOF and its superior photo-Fenton performance

[J]. Applied Surface Science, 2019, 469, 331- 339.

DOI:10.1016/j.apsusc.2018.10.183      [本文引用: 1]

Wang Feifei , Yu Xiaolin , Ge Maofa , et al.

Facile self-assembly synthesis of γ-Fe2O3/graphene oxide for enhanced photo-Fenton reaction

[J]. Environmental Pollution, 2019, 248, 229- 237.

DOI:10.1016/j.envpol.2019.01.018      [本文引用: 1]

Boruah P K , Sharma B , Karbhal I , et al.

Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation

[J]. J. Hazard. Mater., 2017, 325, 90- 100.

DOI:10.1016/j.jhazmat.2016.11.023      [本文引用: 1]

Yan Jingchun , Yang Lei , Qian Linbo , et al.

Nano-magnetite supported by biochar pyrolyzed at different temperatures as hydrogen peroxide activator: Synthesis mechanism and the effects on ethylbenzene removal

[J]. Environmental Pollution, 2020, 261, 114020.

DOI:10.1016/j.envpol.2020.114020      [本文引用: 1]

Pirsahe M , Moradi S , Shahlaei M , et al.

A new composite of nano zero-valent iron encapsulated in carbon dots for oxidative removal of bio-refractory antibiotics from water

[J]. Journal of Cleaner Production, 2019, 209, 1523- 1532.

DOI:10.1016/j.jclepro.2018.11.175      [本文引用: 1]

Wu Jinhua , Lin Guanghui , Li Ping , et al.

Heterogeneous Fenton-like degradation of an azo dye reactive brilliant orange by the combination of activated carbon-FeOOH catalyst and H2O2

[J]. Water Sci. Technol., 2013, 67 (3): 572- 578.

DOI:10.2166/wst.2012.596      [本文引用: 1]

Pachamuthu M P , Karthikeyan S , Maheswari R , et al.

Fenton-like degradation of Bisphenol A catalyzed by mesoporous Cu/TUD-1

[J]. Applied Surface Science, 2017, 393, 67- 73.

DOI:10.1016/j.apsusc.2016.09.162      [本文引用: 1]

Zhou Peng , Li Wenshu , Zhang Jing , et al.

Removal of Rhodamine B during the corrosion of zero valent tungsten via a tungsten speciescatalyzed Fenton-like system

[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100, 202- 209.

DOI:10.1016/j.jtice.2019.04.023      [本文引用: 1]

Zang Chengjie , Yu Kaifeng , Hu Shiyu , et al.

Adsorption-depended Fenton-like reaction kinetics in CeO2-H2O2 system for salicylic acid degradation

[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 456- 463.

DOI:10.1016/j.colsurfa.2018.05.100      [本文引用: 1]

Yao Yunjin , Chen Hao , Lian Chao , et al.

Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal

[J]. Journal of Hazardous Materials, 2016, 314, 129- 139.

DOI:10.1016/j.jhazmat.2016.03.089      [本文引用: 1]

Kim E J , Oh D , Lee C S , et al.

Manganese oxide nanorods as a robust Fenton-like catalyst at neutral pH: Crystal phase-dependent behavior

[J]. Catalysis Today, 2017, 282, 71- 76.

DOI:10.1016/j.cattod.2016.03.034      [本文引用: 2]

Cheng Min , Zeng Guangming , Huang Danlian , et al.

Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS/H2O2 Fenton-like system

[J]. Water Research, 2018, 138, 7- 18.

DOI:10.1016/j.watres.2018.03.022      [本文引用: 2]

Zhang Yuting , Liu Cao , Xu Bingbing , et al.

Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2: Combination of adsorption and catalysis oxidation

[J]. Applied Catalysis B: Environmental, 2016, 199, 447- 457.

DOI:10.1016/j.apcatb.2016.06.003      [本文引用: 1]

Gan Guoqiang , Liu Juan , Zhu Zhixi , et al.

A novel magnetic nanoscaled Fe3O4/CeO2 composite prepared by oxidation-precipitation process and its application for degradation of orange G in aqueous solution as Fenton-like heterogeneous catalyst

[J]. Chemosphere, 2017, 168, 254- 263.

DOI:10.1016/j.chemosphere.2016.10.064      [本文引用: 1]

Zheng Chunming , Yang Chuanwu , Cheng Xiangzhi , et al.

Specifically enhancement of heterogeneous Fenton-like degradation activities for ofloxacin with synergetic effects of bimetallic Fe-Cu on ordered mesoporous silicon

[J]. Separation and Purification Technology, 2017, 189, 357- 365.

DOI:10.1016/j.seppur.2017.08.015      [本文引用: 1]

Zhang L , Tu J , Lyu L , et al.

Enhanced catalytic degradation of ciprofloxacin over Ce-doped OMS-2 microspheres

[J]. Applied Catalysis B: Environmental, 2016, 181, 561- 569.

DOI:10.1016/j.apcatb.2015.08.029      [本文引用: 1]

Wang Huihui , Zhang Lili , Hu Chun , et al.

Enhanced degradation of organic pollutants over Cu-doped LaAlO3 perovskite through heterogeneous Fenton-like reactions

[J]. Chemical Engineering Journal, 2018, 332, 572- 581.

DOI:10.1016/j.cej.2017.09.058      [本文引用: 1]

Zhang X , Ding Y , Tang H , et al.

Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst: Efficiency, stability and mechanism

[J]. Chemical Engineering Journal, 2014, 236 (1): 251- 262.

URL     [本文引用: 2]

Zhang N , Tsang E P , Chen J , et al.

Critical role of oxygen vacancies in heterogeneous Fenton oxidation over ceria-based catalysts

[J]. J. Colloid Interface. Sci., 2020, 558, 163- 172.

DOI:10.1016/j.jcis.2019.09.079      [本文引用: 1]

Phan T T N , Nikoloski A N , Bahri P A , et al.

Heterogeneous photo-Fenton degradation of organics using highly efficient Cu-doped LaFeO3 under visible light

[J]. Journal of Industrial and Engineering Chemistry, 2018, 61, 53- 64.

DOI:10.1016/j.jiec.2017.11.046      [本文引用: 1]

Zhang Nuanqin , Xue Chengjie , Wang Kuang , et al.

Efficient oxidative degradation of fluconazole by a heterogeneous Fenton process with Cu-V bimetallic catalysts

[J]. Chemical Engineering Journal, 2020, 380 (2): 89- 91.

URL     [本文引用: 1]

Tang Juntao , Wang Jianliang .

Iron-copper bimetallic metal-organic frameworks for efficient Fenton-like degradation of sulfamethoxazole under mild conditions

[J]. Chemosphere, 2020, 241, 125002.

DOI:10.1016/j.chemosphere.2019.125002      [本文引用: 1]

Wang Z , Liu Q , Yang F , et al.

Accelerated oxidation of 2, 4, 6-trichlorophenol in Cu(Ⅱ)/H2O2/Cl- system: A unique "halotolerant" Fenton-like process?

[J]. Environment International, 2019, 132, 105128.

DOI:10.1016/j.envint.2019.105128      [本文引用: 1]

Lee H , Lee H J , Sedlak D L , et al.

pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide

[J]. Chemosphere, 2013, 92 (6): 652- 658.

DOI:10.1016/j.chemosphere.2013.01.073      [本文引用: 1]

Hammouda S B , Zhao F , Safaei Z , et al.

Reactivity of novel Ceria-Perovskite composites CeO2-LaMO3(MCu, Fe) in the catalytic wet peroxidative oxidation of the new emergent pollutant 'Bisphenol F': Characterization, kinetic and mechanism studies

[J]. Applied Catalysis B: Environmental, 2017, 218, 119- 136.

DOI:10.1016/j.apcatb.2017.06.047      [本文引用: 1]

/