工业水处理, 2021, 41(6): 25-34 doi: 10.11894/iwt.2021-0181

工业污水处理及回用专题

水样生物毒性评估的样品前处理方法研究进展

周嘉伟,, 何席伟,, 张徐祥, 任洪强

Advance in sample extraction methods for biological toxicity assessment of water samples

Zhou Jiawei,, He Xiwei,, Zhang Xuxiang, Ren Hongqiang

通讯作者: 何席伟, 副研究员。E-mail: hexiwei_1991@163.com

收稿日期: 2021-04-17  

基金资助: 国家自然科学基金项目.  51908276
江苏省科技计划项目.  BE2018632
江苏省科技计划项目.  BE2020686

Received: 2021-04-17  

作者简介 About authors

周嘉伟(1993-),博士E-mail:476308924@qq.com , E-mail:476308924@qq.com

Abstract

Biological toxicity testing is essential for water quality and safety assessment. Environmental water samples represent complex mixtures of known and unknown chemicals, and these chemicals often can induce a variety of biological toxicity effects only underhigh concentration. In order to accurately evaluate the biological toxicity of water and wastewater, appropriate sample extraction methods are of great importance. The principles of liquid-liquid extraction and solid phase extraction were reviewed and their applications in toxicity testing of water and wastewater were summarized. On this basis, the applicable scenarios of the two methods were compared and analyzed, so as to provide theoretical reference for selecting appropriate sample extraction methods for biological toxicity assessment of water and wastewater.

Keywords: biological toxicity ; extraction methods ; liquid-liquid extraction ; solid phase extraction

PDF (0KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

周嘉伟, 何席伟, 张徐祥, 任洪强. 水样生物毒性评估的样品前处理方法研究进展. 工业水处理[J], 2021, 41(6): 25-34 doi:10.11894/iwt.2021-0181

Zhou Jiawei. Advance in sample extraction methods for biological toxicity assessment of water samples. Industrial Water Treatment[J], 2021, 41(6): 25-34 doi:10.11894/iwt.2021-0181

随着人类社会的发展,各种天然和人工合成的化学品已大量渗入全球水循环的各个环节,并对水生态安全和人类健康产生巨大威胁1。这些物质包括各类药物、个人护理产品、激素、农药、杀虫剂等,以及其在迁移转化过程中产生的各类已知和未知化合物2-3。处于污染环境中的生物体通常暴露于复杂的化学混合物中,即使个别应激源的浓度低于最大无效应浓度(NOEC),这种暴露有时也可能引起毒性效应,这种现象被称为联合效应或鸡尾酒效应。尽管化学分析可以揭示水体中污染物的存在,但化学分析对毒性的评估通常是逐物质进行的,忽略了混合物的潜在影响,因此可能低估了环境体系中混合污染物的不利影响。此外,具有相似或不同作用模式的污染物可相互影响毒性,导致通过单纯的化学分析难以预测受污染水体的综合生物毒性及可能产生的环境影响4。因此,为了更全面地评估水质安全性,需要采用基于生物毒性效应的监测方法为化学分析提供重要的补充信息5-6

水样的生物毒性取决于其中化学物质的类型、浓度及其累积效应。在城市污水和受污染的自然水体中,各类污染物通常以纳克每升到微克每升的浓度存在,多种毒性效应只有在水样经过高倍浓缩下才能产生,如遗传毒性、急性毒性等7。为了准确评估环境水样的成组毒性,需要对水样进行适当的富集前处理,以浓缩和保存水样中的化学物质8-9

在毒性评估中,水样的浓缩前处理目标是最大程度地富集和回收目标化合物以反映最“真实”的生物毒性10。对于低浓度污水和环境样品,目前研究主要集中在其中有机化合物的毒性评估11。20世纪80年代之前,液-液萃取是液体样品前处理的首选技术,特别是在环境领域12,而当时的固相萃取技术发展缓慢。但随着技术的不断进步,此后固相萃取的滤筒有了许多改进,并且引入了许多新的吸附剂13,固相萃取和液-液萃取一样成为环境领域重要样品前处理方式14。笔者对液-液萃取和固相萃取的方法原理以及其在环境水样毒性测试中的应用进行了归纳总结,在此基础上对比分析了二者的适用场景,旨在为水样生物毒性测试选择合适的样品前处理方法提供参考。

1 液-液萃取

1.1 液-液萃取的原理与分类

液-液萃取(Liquid-liquid extraction,LLE)是利用系统中组分在溶剂中的不同溶解度来分离混合物的操作15。通过加入具有挥发性小、不与原料混合物反应,且不与之形成最低共沸物的萃取剂,使化合物从一种溶剂转移到另外一种溶剂中,经过反复多次的萃取操作,使目标物质不断提纯。具有优良萃取性能的萃取剂对萃取组分和萃余组分的溶解度相差较大,即具备较大的分配比16

液-液萃取法的优点主要表现为操作简单,成本低,对实验设备要求不高等。其次,它还具有良好的分离效果,尤其是在分离共沸体系时,往往呈现出高分配系数和高分离度的优良萃取性能。另外,其萃取过程对温度和压力的条件要求适中17,被普遍认为是一种能有效代替传统蒸馏方法分离共沸混合物的手段。目前,液-液萃取法在环境、医药等多个领域有广泛应用。

随着环境样品分析要求的不断提高,基于液-液萃取的新型分离技术也在不断发展,目前常用的技术主要包括液相微萃取、液膜萃取和逆流色谱技术18。液相微萃取最早是由M. A. Jeannot等19于1996年提出的一种环境样品前处理方法,这种方法萃取装置简单,仅用少量(μL级)的有机溶剂20-21即可实现浓缩、分离、净化同步连续完成,在土壤和水样的物质分析上有着广泛的应用,其中,液相微萃取中的分散式液-液微萃取广泛应用在环境水样生物毒性检测中;液膜萃取是将液-液萃取与膜分离技术相结合的一种环境样品前处理技术,液膜是与其两侧液体互不相溶的介质,它分割并“连通”其两侧溶液,溶质通过液膜的选择性从一侧渗透到另一侧,达到分离与净化目的,能够有效地提高萃取效率22;逆流色谱技术是一种基于液-液萃取分配机理,不用任何固态支撑体的液-液分配层析法,能够避免支撑体导致的不可逆吸附和对样品的玷染、失活、变性等影响,同时可对复杂混合物中各组分进行高纯度、高灵活性和高选择性的分离23

1.2 液-液萃取在水样毒性测试中的应用

液-液萃取作为传统水样前处理方法,不仅在样品的化学分析方面有着重要的应用,在样品生物毒性检测方面同样应用广泛。

大量有关环境水样内分泌干扰毒性的研究选择液-液萃取作为样品前处理方式。例如,S. C. Van等24通过液-液萃取的方法,以乙酸乙酯为萃取剂将样品浓缩1 000倍,并通过CALUX报告基因法测定饮用水、地表水和市政污水的雌激素活性,发现饮用水中未检测出雌激素活性,地表水的雌激素活性为0.25~0.5 ng/L E2,市政污水的雌激素活性为0.4~1.0 ng/L E2。S. S. Pochiraju等25开发了一种针对雌激素活性的低成本、简单、有效的效应导向分析(EDA)方法,分别用戊烷和二氯甲烷来萃取污水水样,得到非极性、中极性和极性三种组分,采用酵母法检测其雌激素活性,发现100倍浓缩条件下中极性组分的雌激素毒性当量为1.73 μg/L,非极性组分的雌激素当量为2.15 μg/L,在极性组分中未检出雌激素活性。

同样,在对环境水样遗传毒性的研究中液-液萃取也发挥了重要作用。A. A. Cuthbertson等26为了研究颗粒活性炭吸附对饮用水消毒副产物遗传毒性的削减,以甲基叔丁基醚(MTBE)为萃取剂,通过液-液萃取将活性炭吸附前后样品浓缩100倍,通过毒性检测发现遗传毒性降低了32%~83%。G. Gilli等27为了评估城市污水的遗传毒性,从1997年到1998年采集了污水处理厂不同工艺的10个样品,以二氯甲烷为萃取剂,使用液-液萃取分别将样品浓缩500倍和2 000倍,发现出水的遗传毒性并没有出现显著性的降低。此外,液-液萃取在地表水遗传毒性评估方面也有大量应用28-30

表 1列举了近年来液-液萃取技术在环境水样毒性评估中的应用。对于地表水、工业废水、市政污水和饮用水等环境水样,在发育毒性、急性毒性、慢性毒性、遗传毒性、致突变性、内分泌干扰毒性和细胞毒性等毒性评估中,液-液萃取方法均有所涉及。在这些样品处理过程中,常用的萃取剂包括甲基叔丁基醚、环己烷、二氯甲烷、乙醚、乙酸乙酯、正己烷、氯仿、戊烷和丙酮等,萃取后的样品多保存在二甲基亚砜(DMSO)和甲醇中。可以看出,对于特定环境水样或特定生物毒性的检测,并无某种统一的液-液萃取前处理方式。在萃取过程中有机萃取剂的选择至关重要,此外,水样pH、萃取剂与水样体积比以及水样的过滤等因素也需注意,可能会对样品的毒性测试结果产生潜在影响。

表1   液-液萃取法在水体生物毒性评估中的应用

生物毒性水样过滤水量pH萃取剂保存参考文献
发育毒性地表水0.45 μm1 L0.5MtBE冷冻干燥31
急性毒性、慢性毒性工业废水/300 mL<2环己烷/32
遗传毒性市政污水,地表水0.45 μm,0.22 μm500 mL,2 000 mL/二氯甲烷DMSO27
致突变性饮用水/4 L1~2乙醚,二氯甲烷DMSO33
内分泌干扰毒性、细胞毒性饮用水,地表水,市政污水0.45 μm1 L/乙酸乙酯,300 mLDMSO,50 μL24
发育毒性地表水0.45 μm1 L0.5MtBE,100 mL/34
遗传毒性、细胞毒性饮用水/100 mL< 2MtBE/26
遗传毒性地表水0.4 μm50 mL/二氯甲烷,20 mL甲醇,1 mL28
遗传毒性地表水/800 mL,1 800 mL/二氯甲烷DMSO,0.5 mL29
遗传毒性地表水0.45 μm1 L/正己烷,50 mL;氯仿,50 mLDMSO,1 mL30
内分泌干扰毒性市政污水0.45 μm500 mL/戊烷,50 mL;二氯甲烷,50 mL/25
急性毒性工业废水0.45 μm40 mL2二氯甲烷,40 mL/35
内分泌干扰毒性地表水,市政污水/2 L2.5~3二氯甲烷,400 mL;丙酮,2 mL;己烷,15 mL丙酮(50 μL)+BPA-d16(10 μL)+MSTFA(90 μL)36
急性毒性市政污水0.45 μm/7,2,11二氯甲烷/37

注: /表示无数据; DMSO: 二甲基亚砜; MtBE: 甲基叔丁基醚; BPA: 双酚A; MSTFA: N-甲基-N-渊三甲基硅烷冤三氟乙酰胺。

新窗口打开| 下载CSV


2 固相萃取

2.1 固相萃取的原理与分类

固相萃取(Solid phase extraction,SPE),是一种利用固体吸附剂将液体样品中的目标化合物吸附,使之与样品的基体和干扰化合物分离,然后再用洗脱溶剂洗脱或加热解吸附,达到分离和富集目标化合物的萃取技术。由于固相萃取的过程实质上是一个柱色谱分离过程,其分离富集机理、固定相和溶剂选择与高效液相色谱有许多类似之处,但固相萃取柱填料的粒径大,柱长度短,故固相萃取柱的柱效比高效液相色谱柱低得多38

在固相萃取过程中,当样品通过固相萃取柱时,目标化合物被吸附在填料上,其他组分则随样品母液通过柱子,最后用适当的溶剂将其洗脱下来;也可选择性吸附干扰杂质,而让目标化合物流出;或同时吸附杂质和目标化合物,再使用合适的溶剂选择性洗脱目标物质。其广泛应用于各类食品安全检测、农产品残留监控、医药卫生、环境保护、商品检验、自来水及化工生产实验室等。

固相萃取技术经过了二十多年的发展39,目前常用的类型主要有键合硅胶-固相萃取、聚合物吸附剂-固相萃取、免疫亲和吸附剂-固相萃取和分子嵌入聚合物-固相萃取。键合硅胶-固相萃取最常用的吸附剂是表面键合C18的多孔硅胶颗粒或其他亲水烷基,对于非极性物质的洗脱能力较强,而且能够萃取低浓度的物质,pH过高或过低会影响萃取性能,最适pH为2~7.5;聚合物吸附剂-固相萃取在一定程度上弥补了键合硅胶-固相萃取的不足,这种吸附剂能够在水中保持湿润,对极性和非极性化合物有很宽的适用范围,对物质能够有更高的回收率,适用于不同极性物质的富集;免疫亲和吸附剂-固相萃取多采用具有高选择性的吸附剂为填料,能够降低杂质的干扰,所以成本相对较高,多用于医学和生物学领域;分子嵌入聚合物-固相萃取具有很强的选择性和灵敏性,特别是识别污染物和药物残留,成本低于免疫亲和吸附剂-固相萃取,而且对pH、有机溶剂和温度有一个较宽的适应范围。

由于引起环境水样生物毒性的化合物种类繁多,极性分布较广,所以聚合物吸附剂-固相萃取在环境水样生物毒性测试的样品前处理中应用最为广泛。

2.2 固相萃取在水样毒性测试中的应用

近年来,固相萃取在环境水样毒性测试的样品前处理中应用越来越广泛。与液-液萃取相同,固相萃取在地表水、工业废水、市政污水和饮用水等环境样品的前处理中均有应用,涉及内分泌干扰毒性、细胞毒性、遗传毒性、神经毒性、致癌毒性、氧化应激毒性等多种毒性的评估。

在环境水样内分泌干扰毒性的研究中,J. M. Conley等40研究了美国24个州的35个地表水样品的内分泌干扰毒性,通过C18膜将水样浓缩后用报告基因法分别测定雌激素活性、雄激素活性和糖皮质激素受体活性,发现34个样品表现出雌激素活性,5个样品表现出雄激素活性,9个样品表现出糖皮质激素受体活性;Jie Sun等41利用HLB柱将市政污水样品浓缩1 000倍,通过酵母法比较了五种不同工艺对雌激素活性的削减,发现除了絮凝沉淀外,其余四种工艺(臭氧氧化,活性炭吸附,电吸附,树脂吸附)对水样的雌激素毒性削减率达到80%以上;F. D. L. Leusch等42通过StrataX柱将污水样品浓缩200倍,评估了六个国家市政污水、地表水和饮用水的雌激素活性、雄激素活性、糖皮质活性以及孕激素活性,发现部分市政污水和地表水的四种内分泌干扰毒性均高于效应触发值(Effect-based trigger value,EBT),存在潜在的安全风险,而饮用水样品的四种活性值均低于EBT,风险相对较低。

消毒副产物的存在往往会使水样产生遗传毒性,对人类健康和生态安全造成威胁。针对饮用水消毒风险的研究,2011年,Dongsheng Wang等43评估了中国5个流域7个典型饮用水厂原水和最终出水的遗传毒性水平,通过HLB柱将水样浓缩直至2 000倍,发现出水浓缩300倍以上时表现出遗传毒性,且出水遗传毒性显著高于进水。在对含有高浓度溴和碘的地表水的研究中,Shengkun Dong等44利用XAD-2和XAD-8萃取氯消毒、氯胺消毒和臭氧消毒工艺前后的污水样品,发现氯消毒和氯胺消毒产生的遗传毒性显著高于臭氧消毒。

在水样成组毒性检测的样品前处理中,固相萃取同样适用。例如F. D. L. Frederic等45通过HLB柱和Coconut柱串联萃取9座市政污水处理厂的水样来检测细胞毒性、遗传毒性、神经毒性和内分泌干扰毒性,发现水样的多重毒性在超滤或溶解气浮/过滤后仅有微弱削减,但在反渗透后却有明显下降。S. Steffen等46采用XAD-4和XAD-7对市政污水和造纸废水进行了富集处理,在样品中检测出了显著的细胞毒性、遗传毒性、致突变性、胚胎毒性和内分泌干扰毒性。

表 2列举了近年来固相萃取技术在环境水样毒性评估中的应用。与液-液萃取相似,对于特定环境水样或特定生物毒性的检测,并无某种统一的固相萃取前处理方式。在萃取过程中,固相萃取柱类型、水样过滤与否、水样萃取体积、pH、流速、洗脱剂的选择等是影响后续毒性评估的关键因素。

表2   不同类型水体生物毒性评价固相萃取方法

柱子类型生物毒性填料水样过滤水量pH流速洗脱溶剂保存参考文献
C18柱内分泌干扰毒性6 mL,1 g市政污水/5 L//甲醇+乙酸乙酯(1∶1)DMSO,0.5 mL47
C18柱内分泌干扰毒性/地表污水////乙醚;乙醚+己烷(1∶1);正己烷甲醇48
C18柱内分泌干扰毒性500 mg,6 mL地表水,饮用水/2 L//正己烷,10 mL;正己烷+二氯甲烷(4∶1),10 mL;二氯甲烷+甲醇(1∶1),10 mLDMSO,0.2 mL49
C18膜片内分泌干扰毒性47 mm市政污水/50 mL//甲醇,10 mL乙酸乙酯,10 mL50
C18膜片内分泌干扰毒性47 mm地表水/600 mL//丙酮+甲醇(1∶9),9 mL干燥保存40
C18膜片内分泌干扰毒性47 mm饮用水、地表水/600 mL,1.2 L//丙酮+甲醇(1∶9),9 mL干燥保存51
HLB内分泌干扰毒性500 mg,6 mL地表水2 μm1 L210 mL/min甲醇,10 mL;丙酮+正己烷(1∶1),10 mL甲醇,1 mL52
HLB+Coconut细胞毒性、遗传毒性、神经毒性、内分泌干扰毒性/市政污水////甲醇,10 mL甲醇,1 mL45
HLB内分泌干扰毒性6 mL市政污水0.7 μm500 mL//甲醇+二氯甲烷DMSO,50 μL53
HLB遗传毒性200 mg,6 mL地表水,饮用水/2 L//正己烷,6 mL;乙酸乙酯,6 mL;甲醇,6 mLDMSO,20 μL43
HLB内分泌干扰毒性500 mg,6 mL工业废水///6 mL/min正己烷+二氯甲烷(7∶3),5 mL;MtBE,5 mL;甲醇,5 mLDMSO,0.2 mL54
HLB遗传毒性500 mg,6 mL地上水,地表水1.2 μm62 L35~10 mL/min丙酮,20 mLDMSO,100 μL55
HLB内分泌干扰毒性工业废水0.7 μm1 L//正己烷;二氯甲烷;甲醇DMSO,1 mL56
HLB内分泌干扰毒性、遗传毒性、致癌毒性12 mg市政污水0.45 μm//10 mL/min丙酮+二氯甲烷,10 mLDMSO,1 mL41
HLB内分泌干扰毒性、致癌毒性200 mg,6 mL地表水/500 mL/1 mL/min二氯甲烷+正己烷(1∶1),10 mL正己烷,100 μL57
HLB遗传毒性、内分泌干扰毒性、氧化应激毒性1 g饮用水/5 L//甲醇,10 mL甲醇,1 mL58
HLB内分泌干扰毒性、致癌毒性、急性毒性200 mg工业废水,市政污水2 μm1.2 L35 mL/min甲醇,6 mL甲醇,1 mL59
StrataX内分泌干扰毒性500 mg,6 mL地表水0.8 μm1 L310 mL/min甲醇,5 mL;甲醇(0.1%氨水),5 mL5%甲醇,1 mL60
StrataX内分泌干扰毒性200 mg饮用水,地表水,市政污水/污水:200 mL,地表水:1 000 mL,饮用水:2 000 mL27~10 mL/min甲醇,3 mL;乙腈,3 mL;丙酮,3 mL甲醇,1 mL42
XAD遗传毒性XAD-4,XAD-8地表水0.45 μm15 L//丙酮,20 mLDMSO61
XAD细胞毒性、遗传毒性110 mL XAD-2,XAD-8市政污水1.6 μm13 L<2/乙酸乙酯,400 mLDMSO,130 μL44
XAD细胞毒性55 mL XAD-2市政污水,工业废水//1/乙酸乙酯DMSO62
XAD遗传毒性、细胞毒性30 mL XAD-2,XAD-8饮用水0.45 μm1 L<2乙酸乙酯,200 mLDMSO,10 μL63
XAD遗传毒性40 mL XAD-2地表水,饮用水1 μm//40 mL/min丙酮,40 mL;丙酮+正己烷(1∶3),120 mL;二氯甲烷,80 mLDMSO64
XAD细胞毒性55 mL XAD-2,XAD-8市政污水1.6 μm,0.45 μm2 L//甲醇;乙酸乙酯;甲醇DMSO65
XAD遗传毒性13 mL XAD-2,XAD-8饮用水/20 L//丙酮/66
XAD细胞毒性、遗传毒性、致突变性、胚胎毒性、内分泌干扰毒性XAD-4,XAD-7市政污水,工业废水0.45 μm20 L217 mL/min甲醇,50 mL;丙酮,50 mL乙醇+DMSO(1∶2),2 mL46

注: 表中溶剂比例均为体积之比; /表示无数据; DMSO: 二甲基亚砜; MtBE: 甲基叔丁基醚。

新窗口打开| 下载CSV


2.3 固相萃取的影响因素

2.3.1 固相萃取柱类型

目前固相萃取柱的填料主要有正、反相吸附剂,离子交换吸附剂和抗体键合吸附剂等。有研究发现在中性pH条件下,相同的市政污水样品通过C18/ENV柱(Kinesis Telos 500 mg,200 mg)萃取后的细胞毒性显著高于经HLB柱(Waters Oasis 200 mg)和ENVI-Carb+柱(Supelco 200 mg)萃取所得样品毒性67。在对瓶装矿泉水的研究中,发现与HLB柱和ENVI-Carb+柱相比,C18柱萃取的水样具有更高雌激素毒性68。M. Gros等69评估了4种固相萃取柱对29种药物的萃取效果,发现MCX柱(Waters Oasis60 mg)对酸性化合物的回收率较高,ENV+仅对几种极性高的有机化合物有较高的回收率,C18柱能够萃取大部分的药物,而HLB柱对所有目标药物的回收率都较高。相比于固相萃取柱的单一使用70,将HLB柱和MCX柱串联的系统可以更有效的萃取非极性有机物和极性阳离子。

2.3.2 洗脱溶剂

在固相萃取中,洗脱溶剂的选择与目标物性质及使用的吸附剂有关,洗脱溶剂体积应以淋洗完全为前提,体积最小的为最佳71。李洪鑫等72设置三组洗脱溶剂(二氯甲烷,甲醇,体积比1∶1的二氯甲烷与甲醇混合溶剂)对萘的回收率进行比较实验,结果发现使用二氯甲烷与甲醇混合溶剂进行洗脱能够得到较好的回收率。G. Kiss等73比较了固相萃取中甲醇、乙腈、2-丙醇、二氯甲烷和四氢呋喃五种洗脱溶剂对8种多环芳烃类物质的洗脱效果,通过回收率大小的对比,发现二氯甲烷和四氢呋喃洗脱的整体回收率能够达到90%以上,而甲醇,乙腈和2-丙醇洗脱的整体回收率低于80%。Jiaping Lai等74通过固相萃取法从中药苦参中分离测定苦参碱,比较了甲醇和二氯甲烷混合溶剂〔V(甲醇)∶V(二氯甲烷)=8∶2〕、二氯甲烷以及甲醇和冰醋酸混合溶剂〔V(甲醇)∶V(冰醋酸)=9∶1〕这三种洗脱溶剂的洗脱效果,发现使用甲醇和冰醋酸混合溶剂作为洗脱溶剂能够完全洗脱出苦参碱。

2.3.3 水样pH

样品前处理过程中,通常首先会对样品进行酸化,目的是为了稳定水样并防止微量有机污染物被微生物降解。A. Abbas等67在对地表水、地下水、医院和市政污水的内分泌干扰毒性、致突变性、遗传毒性和细胞毒性的研究中发现,与中性样品相比,样品酸化能够显著影响水样的内分泌干扰毒性和致突变性。在目标物质的回收中,有研究发现水样pH显著影响羧基布洛芬(ibu-CX)的回收率,在pH=8时,ibu-CX的回收率仅为0.04%;随pH的降低,ibu-CX的回收率会逐步增加75

2.3.4 水样过滤

水样过滤去除悬浮颗粒物76,有利于稳定化合物,避免堵塞固相萃取柱77,但同时,也会影响水样“真实”毒性的体现。这是因为悬浮颗粒物不仅本身就具有一定生物毒性,而且其还可吸附水中污染物,形成复合污染,从而影响水生生态系统。A. Abbas等67在对市政污水过滤前后内分泌干扰毒性的对比研究中发现,未过滤的样品比过滤后的样品具有更高的内分泌干扰毒性,表明悬浮颗粒具有内分泌干扰毒性。B. H. H. Shieh等50在对加拿大13座城市污水处理厂水样的雌激素活性调研中也发现了相似的研究结果。同样,S. Dagnino等78发现,市政污水中的悬浮颗粒也具有芳烃受体(AhR)活性,当量为15~700 ng/g TCDD。

2.3.5 其他因素

加样过程中的保留体积代表了进行痕量富集时能有效处理的水样体积79,根据色谱分析仪的最小检出量和水样中有机物浓度80,可以估算出欲富集的最小水样体积,其过低会导致浓度低于仪器的检测限无法检测出,过高则会导致固相萃取柱中的吸附剂无法将目标物质完全吸附,达到过饱和状态。此外,水样流速的控制对固相萃取至关重要,流速过大会引起固相萃取柱的穿漏,流速太小则处理速度太慢81。柱预处理过程中有机溶剂流速适中,保证溶液充分湿润吸附剂即可;上样和洗脱过程则要求流速尽量缓慢(约3~5 mL/min),以使分析物尽量保留在柱内或达到完全洗脱,否则会导致分析物流失,影响毒性测试结果。

3 固相萃取与液-液萃取在毒性评估样品前处理应用中的比较

针对地表水、工业废水、市政污水和饮用水等不同类型的水样,固相萃取和液-液萃取均能作为毒性评估的样品前处理方法,且处理后的样品适用于多种毒性试验。在水样浓缩程度方面,相较于液-液萃取,固相萃取法通常能实现更高倍的浓缩,浓缩系数可达几千至数万。例如,Shengkun Dong等44在研究市政污水的遗传毒性时,用55 mL的XAD-2和55 mL的XAD-8将13 L水样浓缩了105倍。而液-液萃取的溶剂与水样体积比通常为(1∶5)~(1∶3),适用于小体积水样的萃取。因此针对大体积水样的高倍浓缩,固相萃取法为首选。在实验操作性方面,固相萃取比液液萃取更加安全方便,通过固相萃取柱即可完成物质吸附,且无需使用大量玻璃仪器82

环境水样作为复杂物质的混合体,其中物质的极性分布十分广泛,在毒性评估时,最大程度地回收所有化学物质是反映水样真实毒性的重要前提。由于液-液萃取法中萃取剂对特定极性化合物的提取具有选择性,单一萃取剂通常难以对广谱化合物进行高效回收,而以高聚物为填料的固相萃取技术极性范围较广,对总体化合物具有较高的回收率。例如,Rui Qin等35评估了固相萃取(HLB柱)和液-液萃取(二氯甲烷)这两种前处理方式对溶解性有机碳(DOC)和环烷酸(NAs)的回收率,发现固相萃取法对二者的回收率分别为(95.4±0.7)%和(90.0±5.3)%,显著高于液-液萃取的(48.8±0.2)%和(81.0±2.6)%,因而最终选择了回收率较高的固相萃取作为废水急性毒性测试的样品前处理方式。针对此类问题,液-液萃取可通过采用多种萃取剂协同处理以实现对广谱化合物的萃取。值得注意的是,水样中物质的回收率越高并不一定意味着毒性越强。这是因为复杂物质之间存在的相互作用千变万化,最终表现出的综合毒性强度也随之存在不确定性。W. Slooff等83在对地表水的致突变性的研究中,同时运用了固相萃取(XAD-4和XAD-8)和液-液萃取(戊烷、二氯甲烷和乙醚)两种方式进行对比,发现XAD对物质的萃取效率相对较高,但是致突变性两者并没有显著性的差别。然而另有研究30通过Ames沙门氏菌/哺乳动物微粒体试验、缺陷突变体DNA修复和噬菌体Lambda系统评估固相萃取(XAD-4和XAD-8)和液-液萃取(正己烷和氯仿)两种方式对地表水遗传毒性的影响,发现利用XAD浓缩的水样对TA98菌株具有更大的诱变能力。因此,在研究环境水样生物毒性时,需要将化学检测和生物毒性检测相结合,以综合评估毒性测试结果的真实性和科学性。

4 总结与展望

液-液萃取和固相萃取技术以其既可用于复杂样品中微量或痕量目标化合物的提取,又可用于净化、浓缩和富集的优势,不仅在化学分析领域中担任重要角色,而且在生物毒性检测领域也成为主要的样品前处理方式。随着作为水样安全性评估重要一环的毒性检测越来越受到重视,不同类型的液-液萃取和固相萃取方式也层出不穷,然而经过这些方法处理后的样品是否能反映原水样的“真实”毒性是面临的关键问题。环境水样成分复杂,不同类型水样的物理、化学和生物毒性性质差异显著。当前大量毒性研究的样品前处理方法仍多基于化学分析的“经验性”选择,缺乏针对毒性测试的样品前处理方法优化和评估。大部分毒性试验将单一目标物的回收率作为判定前处理方法可靠性的依据是显然不够的,在研究诸如细胞毒性、基因毒性等无明确致毒物质的毒性时,应更加注重总有机物的回收率。在后续针对复杂环境水样“真实”毒性的研究过程中,需重点关注水样类型—萃取方式—化合物回收—毒性终点间的关联性,明确过程操作对最终毒性结果的影响机制,从而为实现环境水样毒性监测中样品前处理的标准化、仪器化和自动化目标打下基础。

参考文献

Malaj E , Von der Ohe P C , Grote M , et al.

Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale

[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (26): 9549- 9554.

DOI:10.1073/pnas.1321082111      [本文引用: 1]

Kummerer K .

Emerging contaminants versus micro-pollutants

[J]. Clean-Soil Air Water, 2011, 39 (10): 889- 890.

DOI:10.1002/clen.201110002      [本文引用: 1]

Prasse C , Stalter D , Schulte-Oehlmann U , et al.

Spoilt for choice: A critical review on the chemical and biological assessment of current wastewater treatment technologies

[J]. Water Research, 2015, 87, 237- 270.

DOI:10.1016/j.watres.2015.09.023      [本文引用: 1]

Nelson J , Bishay F , van Roodselaar A , et al.

The use of in vitro bioassays to quantify endocrine disrupting chemicals in municipal wastewater treatment plant effluents

[J]. Science of the Total Environment, 2007, 374 (1): 80- 90.

DOI:10.1016/j.scitotenv.2006.11.031      [本文引用: 1]

Escher B I , Allinson M , Altenburger R , et al.

Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays

[J]. Environmental Science & Technology, 2014, 48 (3): 1940- 1956.

URL     [本文引用: 1]

Brack W , Dulio V , Agerstrand M , et al.

Towards the review of the European Union water framework directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources

[J]. Science of the Total Environment, 2016, 576, 720- 737.

URL     [本文引用: 1]

Park C J , Ahn H M , Cho S C , et al.

Developmental toxicity of treated municipal wastewater effluent on bombina orientalis(amphibia: Anura) embryos

[J]. Environmental Toxicology and Chemistry, 2014, 33 (4): 954- 961.

DOI:10.1002/etc.2519      [本文引用: 1]

Feo M L , Corcellas C , Barata C , et al.

Organic carbon content effects on bioavailability of pyrethroid insecticides and validation of solid phase extraction with poly (2, 6-diphenyl-p-phenylene oxide) polymer by daphnia magna toxicity tests

[J]. Science of the Total Environment, 2013, 442, 497- 502.

DOI:10.1016/j.scitotenv.2012.10.033      [本文引用: 1]

Zhou J L , Maskaoui K , Lufadeju A .

Optimization of antibiotic analysis in water by solid-phase extraction and high performance liquid chromatography-mass spectrometry/mass spectrometry

[J]. Analytica Chimica Acta, 2012, 731, 32- 39.

DOI:10.1016/j.aca.2012.04.021      [本文引用: 1]

Chiron S , Alba A F , Barcelo D .

Comparison of on-line solid-phase disk extraction to liquid-liquid extraction for monitoring selected pesticides in environmental waters

[J]. Environmental Science & Technology, 1993, 27 (12): 2352- 2359.

URL     [本文引用: 1]

Shamsipur M , Yazdanfar N , Ghambarian M .

Combination of solidphase extraction with dispersive liquid-liquid microextraction followed by GC-MS for determination of pesticide residues from water, milk, honey and fruit juice

[J]. Food Chemistry, 2016, 204, 289- 297.

DOI:10.1016/j.foodchem.2016.02.090      [本文引用: 1]

Anthemidis A N , Giakisikli G , Xidia S , et al.

On-line sorptive preconcentration platform incorporating a readily exchangeable Oasis HLB extraction micro-cartridge for trace cadmium and lead determination by flow injection-flame atomic absorption spectrometry

[J]. Microchemical Journal, 2011, 98 (1): 66- 71.

DOI:10.1016/j.microc.2010.11.007      [本文引用: 1]

Benito-Pena E , Urraca J L , Sellergren B , et al.

Solid-phase extraction of fluoroquinolones from aqueous samples using a water-compatible stochiometrically imprinted polymer

[J]. Journal of Chromatography A, 2008, 1208 (1/2): 62- 70.

URL     [本文引用: 1]

Gilart N , Marce R M , Borrull F , et al.

New coatings for stir-bar sorptive extraction of polar emerging organic contaminants

[J]. TraceTrends in Analytical Chemistry, 2014, 54, 11- 23.

DOI:10.1016/j.trac.2013.10.010      [本文引用: 1]

Anthemidis A N , Ioannou K I G .

Recent developments in homogeneous and dispersive liquid-liquid extraction for inorganic elements determination

[J]. Talanta, 2009, 80 (2): 413- 421.

DOI:10.1016/j.talanta.2009.09.005      [本文引用: 1]

Silvestre C I C , Santos J L M , Lima J L F C , et al.

Liquid-liquid extraction in flow analysis: A critical review

[J]. Analytica Chimica Acta, 2009, 652 (1/2): 54- 65.

URL     [本文引用: 1]

Tavakoli L , Yamini Y , Ebrahimzadeh H , et al.

Homogeneous liquidliquid extraction for preconcentration of polycyclic aromatic hydrocarbons using a water/methanol/chloroform ternary component system

[J]. Journal of Chromatography A, 2008, 1196, 133- 138.

URL     [本文引用: 1]

Cai Yaqi , Cai Yu'e , Shi Yali , et al.

A liquid-liquid extraction technique for phthalate esters with water-soluble organic solvents by adding inorganic salts

[J]. Microchimica Acta, 2007, 157 (1/2): 73- 79.

DOI:10.1007/s00604-006-0625-7      [本文引用: 1]

Jeannot M A , Cantwell F F .

Solvent microextraction into a single drop

[J]. Analytical Chemistry, 1996, 68 (13): 2236- 2240.

DOI:10.1021/ac960042z      [本文引用: 1]

Pedersen-Bjergaard S , Rasmussen K E .

Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis

[J]. Analytical Chemistry, 1999, 71 (14): 2650- 2656.

URL     [本文引用: 1]

Psillakis E , Kalogerakis N .

Developments in liquid-phase microextraction

[J]. Trends in Analytical Chemistry, 2003, 22 (10): 565- 574.

URL     [本文引用: 1]

Swain B .

Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: A review

[J]. Journal of Chemical Technology & Biotechnology, 2016, 91 (10): 2549- 2562.

URL     [本文引用: 1]

Ito Y , Bowman R L .

Countercurrent chromatography: Liquid-liquid partition chromatography without solid support

[J]. Science, 1970, 167 (3916): 281- 283.

DOI:10.1126/science.167.3916.281      [本文引用: 1]

Van der Linden S C , Heringa M B , Man H Y , et al.

Detection of mutiple hormonal activities in wastewater effluents and surface water, using a panel of steroid receptor CALUX bioassays

[J]. Environmental Science & Technology, 2008, 42 (15): 5814- 5820.

URL     [本文引用: 2]

Pochiraju S S , Linden K , Gu A Z , et al.

Development of a separation framework for effects-based targeted and non-targeted toxicological screening of water and wastewater

[J]. Water Research, 2019, 170, 115289.

URL     [本文引用: 2]

Cuthbertson A A , Kimura S Y , Liberatore H K , et al.

Does granular activated carbon with chlorination produce safer drinking water from disinfection byproducts and total organic halogen to calculated toxicity

[J]. Environmental Science & Technology, 2019, 53 (10): 5987- 5999.

URL     [本文引用: 2]

Gilli G , Meineri V . Assessment of the toxicity and genotoxicity of wastewaters treated in a municipal plant[M]. US: Springer, 2000: 327- 338.

[本文引用: 2]

Folkerts E J , Blewett T A , Delompre P , et al.

Toxicity in aquatic model species exposed to a temporal series of three different flowback and produced water samples collected from a horizontal hydraulically fractured well

[J]. Ecotoxicology and Environmental Safety, 2019, 180, 600- 609.

DOI:10.1016/j.ecoenv.2019.05.054      [本文引用: 2]

Vargas V M F , Guidobono R R , Jordao C , et al.

Use of two short-term tests to evaluate the genotoxicity of river water treated with different concentration/extraction procedures

[J]. Mutation Research, 1995, 343 (1): 31- 52.

DOI:10.1016/0165-1218(95)90060-8      [本文引用: 1]

Aleem A , Malik A .

Genotoxicity of water extracts from the River Yamuna at Mathura, India

[J]. Environmental Toxicology, 2010, 18 (2): 69- 77.

URL     [本文引用: 3]

Han Jiarui , Zhang Xiangru .

Evaluating the comparative toxicity of DBP mixtures from different disinfection scenarios: A new approach by combining freeze-drying or rotoevaporation with a marine polychaete bioassay

[J]. Environmental Science & Technology, 2018, 52 (18): 10552- 10561.

URL     [本文引用: 1]

Leonards P E G , Postma J F , Comber M , et al.

Impact of biodegradation on the potential bioaccumulation and toxicity of refinery effluents

[J]. Environmental Toxicology & Chemistry, 2011, 30 (10): 2175- 2183.

URL     [本文引用: 1]

Vartiainen T , Liimatainen A .

High levels of mutagenic activity in chlorinated drinking water in Finland

[J]. Mutation Research, 1986, 169 (1/2): 29- 34.

[本文引用: 1]

Yang Mengting , Liu Jiaqi , Zhang Xiangru , et al.

Comparative toxicity of chlorinated saline and freshwater wastewater effluents to marine organisms

[J]. Environmental Science & Technology, 2015, 49 (24): 14475- 14483.

URL     [本文引用: 1]

Qin Rui , Lillico D , How Z T , et al.

Separation of oil sands process water organics and inorganics and examination of their acute toxicity using standard in-vitro bioassays

[J]. Science of The Total Environment, 2019, 695, 133532.

DOI:10.1016/j.scitotenv.2019.07.338      [本文引用: 2]

Duong C N , Ra J S , Cho J , et al.

Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries

[J]. Chemosphere, 2010, 78 (3): 286- 293.

DOI:10.1016/j.chemosphere.2009.10.048      [本文引用: 1]

Morandi G D , Wiseman S B , Pereira A , et al.

Effects-directed analysis of dissolved organic compounds in oil sands process-affected water

[J]. Environmental Science & Technology, 2015, 49 (20): 12395- 12404.

[本文引用: 1]

Andrad-Eiroa A , Canle M , Leroy-Cancellieri V , et al.

Solid-phase extraction of organic compounds: A critical review(Part Ⅰ)

[J]. TracTrends in Analytical Chemistry, 2016, 80, 641- 654.

DOI:10.1016/j.trac.2015.08.015      [本文引用: 1]

Hemmati M , Rajabi M , Asghari A .

Magnetic nanoparticle based solid-phase extraction of heavy metal ions: A review on recent advances

[J]. Microchimica Acta, 2018, 185 (3): 1- 32.

URL     [本文引用: 1]

Conley J M , Evans N , Cardon M C , et al.

Occurrence and in vitro bioactivity of estrogen, androgen, and glucocorticoid compounds in a nationwide screen of united states stream waters

[J]. Environmental Science & Technology, 2017, 51 (9): 4781- 4791.

[本文引用: 2]

Sun Jie , Wang Jing , Zhang Rui , et al.

Comparison of different advanced treatment processes in removing endocrine disruption effects from municipal wastewater secondary effluent

[J]. Chemosphere, 2017, 168, 1- 9.

DOI:10.1016/j.chemosphere.2016.10.031      [本文引用: 2]

Leusch F D L , Neale P A , Arnal C , et al.

Analysis of endocrine activity in drinking water, surface water and treated wastewater from six countries

[J]. Water Research, 2018, 139, 10- 18.

DOI:10.1016/j.watres.2018.03.056      [本文引用: 2]

Wang Dongsheng , Xu Zhizhen , Zhao Yanmei , et al.

Change of genotoxicity for raw and finished water: Role of purification processes

[J]. Chemosphere, 2011, 83 (1): 14- 20.

DOI:10.1016/j.chemosphere.2011.01.039      [本文引用: 2]

Dong Shengkun , Masalha N , Plewa M J , et al.

Toxicity of wastewater with elevated bromide and iodide after chlorination, chloramination, or ozonation disinfection

[J]. Environmental Science & Technology, 2017, 51 (16): 9297- 9304.

URL     [本文引用: 3]

Leusch F D L , Khan S J , Laingam S , et al.

Assessment of the application of bioanalytical tools as surrogate measure of chemical contaminants in recycled water

[J]. Water Research, 2014, 49, 300- 315.

DOI:10.1016/j.watres.2013.11.030      [本文引用: 2]

Keiter S , Rastall A , Kosmehl T , et al.

Ecotoxicological assessment of sediment, suspended matter and water samples in the upper Danube River. A pilot study in search for the causes for the decline of fish catches(12 pp)

[J]. Environmental Science and Pollution Research, 2006, 13 (5): 308- 319.

DOI:10.1065/espr2006.04.300      [本文引用: 2]

Li Jian , Chen Ming , Wang Zijian , et al.

Analysis of environmental endocrine disrupting activities in wastewater treatment plant effluents using recombinant yeast assays incorporated with exogenous metabolic activation system

[J]. Biomedical & Environmental Sciences, 2011, 24 (2): 132- 139.

URL     [本文引用: 1]

Balaguer P , Fenet H , Georget V , et al.

Reporter cell lines to monitor steroid and antisteroid potential of environmental samples

[J]. Ecotoxicology, 2000, 9 (1/2): 105- 114.

DOI:10.1023/A:1008980515297      [本文引用: 1]

Hu Xinxin , Shi Wei , Wei Si , et al.

Occurrence and potential causes of androgenic activities in source and drinking water in China

[J]. Environmental Science & Technology, 2003, 47 (18): 10591- 10600.

URL     [本文引用: 1]

Shieh B H H , Louie A , Law F C P .

Factors affecting distribution of estrogenicity in the influents, effluents, and biosolids of canadian wastewater treatment plants

[J]. Archives of Environmental Contamination and Toxicology, 2016, 70 (4): 682- 691.

DOI:10.1007/s00244-015-0230-z      [本文引用: 2]

Conley J M , Evans N , Mash H , et al.

Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 US drinking water treatment plants

[J]. Science of the Total Environment, 2017, 579, 1610- 1617.

DOI:10.1016/j.scitotenv.2016.02.093      [本文引用: 1]

Scott P D , Bartkow M , Blockwell S J , et al.

An assessment of endocrine activity in Australian rivers using chemical and in vitro analyses

[J]. Environmental Science and Pollution Research, 2014, 21 (22): 12951- 12967.

DOI:10.1007/s11356-014-3235-7      [本文引用: 1]

Bain P A , Williams M , Kumar A .

Assessment of multiple hormonal activities in wastewater at different stages of treatment

[J]. Environmental Toxicology and Chemistry, 2014, 33 (10): 2297- 2307.

DOI:10.1002/etc.2676      [本文引用: 1]

Ma Dehua , Chen Lujun , Lui Rui .

Decrease of antiandrogenic activity in gray water and domestic wastewater treated by the MBR process

[J]. Environmental Science-Processes & Impacts, 2014, 15 (3): 668- 676.

URL     [本文引用: 1]

Ma Fujun , Yuan Guanxiang , Meng Liping , et al.

Contributions of flumequine and nitroarenes to the genotoxicity of river and ground waters

[J]. Chemosphere, 2012, 88 (4): 476- 483.

DOI:10.1016/j.chemosphere.2012.02.080      [本文引用: 1]

Sun Qingfeng , Deng Shubo , Huang Jun , et al.

Contributors to estrogenic activity in wastewater from a large wastewater treatment plant in Beijing, China

[J]. Environmental Toxicology and Pharmacology, 2018, 25 (1): 20- 26.

URL     [本文引用: 1]

Rivetti C , Lopez-Perea J J , Laguna C , et al.

Integrated environmental risk assessment of chemical pollution in a Mediterranean floodplain by combining chemical and biological methods

[J]. Science of the Total Environment, 2017, 583, 248- 256.

DOI:10.1016/j.scitotenv.2017.01.061      [本文引用: 1]

Rosenmai A K , Lundqvist J , Le Godec T , et al.

In vitro bioanalysis of drinking water from source to tap

[J]. Water Research, 2018, 139, 272- 280.

DOI:10.1016/j.watres.2018.04.009      [本文引用: 1]

Loos R , Carvalho R , Antonip D C , et al.

EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents

[J]. Water Research, 2013, 47 (17): 6475- 6487.

DOI:10.1016/j.watres.2013.08.024      [本文引用: 1]

Yao Bo , Li Rui , Yan Shuwen , et al.

Occurrence and estrogenic activity of steroid hormones in Chinese streams: A nationwide study based on a combination of chemical and biological tools

[J]. Environment International, 2018, 118, 1- 8.

DOI:10.1016/j.envint.2018.05.026      [本文引用: 1]

Aleem A , Malik A .

Genotoxicity of the yamuna river water at Okhla (Delhi), India

[J]. Ecotoxicology and Environmental Safety, 2005, 61 (3): 404- 412.

DOI:10.1016/j.ecoenv.2004.09.001      [本文引用: 1]

Dong Shengkun , Page M A , Wagner E D , et al.

Thiol reactivity analyses to predict mammalian cell cytotoxicity of water samples

[J]. Environmental Science & Technology, 2018, 52 (15): 8822- 8829.

URL     [本文引用: 1]

Yang Yang , Komaki Y , Kimura S Y , et al.

Toxic impact of bromide and iodide on drinking water disinfected with chlorine or chloramines

[J]. Environmental Science & Technology, 2014, 48 (20): 12362- 12369.

URL     [本文引用: 1]

Lv Xuemin , Lu Yi , Yang Xiaoming , et al.

Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River(Wuhan section) and correlations with water quality parameters

[J]. Scientific Reports, 2015, 5, 9572.

DOI:10.1038/srep09572      [本文引用: 1]

Massalha N , Dong Shengkun , Plewa M J , et al.

Spectroscopic indicators for cytotoxicity of chlorinated and ozonated effluents from wastewater stabilization ponds and activated sludge

[J]. Environmental Science & Technology, 2018, 52 (5): 3167- 3174.

URL     [本文引用: 1]

Ringhand H P , Meier J R , Kopfler F C , et al.

Importance of sample pH on recovery of mutagenicity from drinking-water by XAD resins

[J]. Environmental Science & Technology, 1987, 21 (4): 382- 387.

URL     [本文引用: 1]

Abbas A , Schneider I , Bollmann A , et al.

What you extract is what you see: Optimising the preparation of water and wastewater samples for in vitro bioassays

[J]. Water Research, 2019, 152, 47- 60.

DOI:10.1016/j.watres.2018.12.049      [本文引用: 3]

Wagner M , Oehlmann J .

Endocrine disruptors in bottled mineral water: Estrogenic activity in the E-Screen

[J]. Journal of Steroid Biochemistry & Molecular Biology, 2011, 127 (1/2): 128- 135.

URL     [本文引用: 1]

Gros M , Petrovi M , Barcelo D .

Development of a multi-residue analytical methodology based on liquid chromatography-tandem mass spectrometry(LC-MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters

[J]. Talanta, 2006, 70 (4): 678- 690.

DOI:10.1016/j.talanta.2006.05.024      [本文引用: 1]

Hong Y , Sharma V K , Chiang P C , et al.

Fast-target analysis and hourly variation of 60 pharmaceuticals in wastewater using uplchigh resolution mass spectrometry

[J]. Arch Environ Contam Toxicol, 2015, 69 (4): 525- 534.

DOI:10.1007/s00244-015-0214-z      [本文引用: 1]

祝金凤. Ⅱ型菊酯类农药广谱特异性抗体的制备和多残留免疫技术建立[D]. 扬州: 扬州大学, 2008.

[本文引用: 1]

李洪鑫, 唐琨, 郭震宇.

固相萃取技术富集水中萘的影响因素探讨

[J]. 天津科技, 2020, 47 (8): 24- 27.

DOI:10.3969/j.issn.1006-8945.2020.08.008      [本文引用: 1]

Kiss G , VatgaPuchony Z , Hlavay J .

Determination of polycyclic aromatic hydrocarbons in precipitation using solid-phase extraction and column liquid chromatography

[J]. Journal of Chromatography A, 1996, 725 (2): 261- 272.

DOI:10.1016/0021-9673(95)00940-X      [本文引用: 1]

Lai Jiaping , He Xiwen , Jiang Yue , et al.

Preparative separation and determination of matrine from the Chinese medicinal plant sophora flavescens Ait by molecularly imprinted solid-phase extraction

[J]. Analytical and Bioanalytical Chemistry, 2002, 375 (2): 264- 269.

[本文引用: 1]

Weigel S , Kallenborn R , Huhnerfuss H .

Simultaneous solid-phase extraction of acidic, neutral and basic pharmaceuticals from aqueous samples at ambient(neutral) pH and their determination by gas chromatography-mass spectrometry

[J]. Journal of Chromatography A, 2004, 1023 (2): 183- 195.

DOI:10.1016/j.chroma.2003.10.036      [本文引用: 1]

Baker D R , Kasprzyk-Hordern B .

Critical evaluation of methodology commonly used in sample collection, storage and preparation for the analysis of pharmaceuticals and illicit drugs in surface water and wastewater by solid phase extraction and liquid chromatography-mass spectrometry

[J]. Journal of Chromatography A, 2011, 1218 (44): 8036- 8059.

DOI:10.1016/j.chroma.2011.09.012      [本文引用: 1]

Janex-Habibi M L , Huyard A , Esperanza M , et al.

Reduction of endocrine disruptor emissions in the environment: The benefit of wastewater treatment

[J]. Water Research, 2009, 43 (6): 1565- 1576.

DOI:10.1016/j.watres.2008.12.051      [本文引用: 1]

Dagnino S , Gomez E , Picot B , et al.

Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants

[J]. Science of the Total Environment, 2010, 408 (12): 2608- 2615.

URL     [本文引用: 1]

Chang H S , Choo K H , Lee B , et al.

The methods of identification, analysis, and removal of endocrine disrupting compounds(EDCs) in water

[J]. Journal of Hazardous Materials, 2009, 172 (1): 1- 12.

DOI:10.1016/j.jhazmat.2009.06.135      [本文引用: 1]

Stalter D , Peters L I , O'Malley E , et al.

Sample enrichment for bioanalytical assessment of disinfected drinking water: Concentrating the polar, the volatiles, and the unknowns

[J]. Environmental Science & Technology, 2016, 50 (12): 6495- 6505.

URL     [本文引用: 1]

Banks J N , Chaudhry M Q , Matthews W A , et al.

Production and characterisation of polyclonal antibodies to the common moiety of some organophosphorus pesticides and development of a generic type ELISA

[J]. Food and Agricultural Immunology, 1998, 10 (4): 349- 361.

DOI:10.1080/09540109809354998      [本文引用: 1]

Lika I , Bilikova K .

Stability of polar pesticides on disposable solidphase extraction precolumns

[J]. Journal of Chromatography A, 1998, 795 (1): 61- 69.

DOI:10.1016/S0021-9673(97)01038-8      [本文引用: 1]

Slooff W , Dezwart D , Vandekerkhoff J F J .

Monitoring the rivers rhine and meuse in the netherlands for toxicity

[J]. Aquatic Toxicology, 1983, 4 (2): 189- 198.

DOI:10.1016/0166-445X(83)90055-3      [本文引用: 1]

/