工业水处理, 2021, 41(6): 48-57 doi: 10.11894/iwt.2021-0282

工业污水处理及回用专题

污水中新兴污染物的非靶向筛查研究进展

钱玉立,, 耿金菊,, 于清淼, 吴刚, 许柯, 任洪强

Research progress of identification of emerging contaminants in wastewater using non-target screening

Qian Yuli,, Geng Jinju,, Yu Qingmiao, Wu Gang, Xu Ke, Ren Hongqiang

通讯作者: 耿金菊, 教授。E-mail: jjgeng@nju.edu.cn

收稿日期: 2021-06-4  

基金资助: 江苏省自然科学基金.  BK20180010
国家自然科学基金.  51978327
国家自然科学基金.  21677071
国家重点研发计划.  2018YF0214105
江苏省重点研发计划.  BE2020686

Received: 2021-06-4  

作者简介 About authors

钱玉立(1996-),硕士E-mail:a17862702908@163.com , E-mail:a17862702908@163.com

Abstract

A large quantitative of emerging contaminants(ECs) are discharged into natural water body with treated wastewater, which are posing a potential threat to the aquatic organisms and safety of water quality. The identification of ECs in sewage is the prerequisite for studying the migrationand transformation process and toxic effects of pollutants. High-throughput identification of ECs in complex water environment has been realized by nontarget screening based on chromatographic-high resolution mass spectrometry. The current research progress of nontarget screening in identifying ECs in wastewater were reviewed, which included the sample pretreatment method, the determination methods by chromatography-high resolution mass spectrometry, the data processing and parameter optimization, the existing applications and future development directions of identification of ECs by non-target screening. The review could provide methodological reference for the identification of emerging pollutants in wastewater.

Keywords: non-target screening ; ECs ; wastewater ; identification

PDF (0KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

钱玉立, 耿金菊, 于清淼, 吴刚, 许柯, 任洪强. 污水中新兴污染物的非靶向筛查研究进展. 工业水处理[J], 2021, 41(6): 48-57 doi:10.11894/iwt.2021-0282

Qian Yuli. Research progress of identification of emerging contaminants in wastewater using non-target screening. Industrial Water Treatment[J], 2021, 41(6): 48-57 doi:10.11894/iwt.2021-0282

新兴污染物是指“新的”或“新发现的”不受管制的污染物,主要包括一些被人类大量使用、在环境中广泛存在的产品,例如全氟化合物、药物及个人护理品、表面活性剂、新型增塑剂和各种工业添加剂等1-2。污水中的新兴污染物是环境水体中新兴污染物的主要来源之一3-4,Qian Sun等5对厦门的某污水厂进行了为期一年的调查,在污水进水中检出39种药物及个人护理品,而仅有14种污染物的去除率超过50%。传统的污水处理工艺仅能去除污水中的大部分易降解有机物,而不能完全去除其中的新兴污染物6-8。残留的新兴污染物随处理后的污水排入地表水、地下水等自然水生态环境中9,对水生生物构成了潜在的威胁10-11,甚至威胁到人类健康12-13。在我国的地表及地下水中检测到的新兴污染物的质量浓度分布从几ng/L到几百ng/L不等14-17。但即使在低质量浓度(ng/L)下,某些种类的新兴污染物仍可能具有持久性、生物蓄积性和毒性18-19。与毒性更大的化合物相比,新兴污染物潜移默化的毒性通常被人们所忽略,但由于持久排放,这种影响是长远且不容忽视的20-22。因此,对于污水中的新兴污染物的监管刻不容缓。然而,目前已有研究中的污染物,仅仅占生物所接触污染物的极小一部分。对于复杂环境中新兴污染物的识别,是进行污染物监管的前提。

目前,识别新兴污染物的方法主要可以分为靶向和非靶向两种方法。传统的靶向研究方法仅能针对少量关注的目标化合物进行识别,而基于高分辨率质谱的非靶向分析技术,无需购买众多参考标准品,即可实现复杂混合物中未知化合物的识别23-24。非靶向筛查方法最显著的优点之一在于其无偏检测。在选择恰当的色谱和电离方法的前提下,所有在预处理过程中被保留的化合物均可以被识别25。然而污水中的新兴污染物种类繁多、化学性质复杂26,可靠的鉴定需要考虑在样品预处理过程如何最大程度地保留化合物,选择最佳的质谱扫描参数设置以及全过程的质量控制等23, 27-28。非靶向识别过程艰巨且耗时29-30,如何优化非靶向识别流程,减少非靶向识别的工作量,识别出更多值得高度关注的污染物以及非靶向识别新兴污染物的已有应用和未来的发展方向等都是值得考虑的问题。

笔者通过分析现有非靶向筛查技术在识别污水中的新兴污染物的研究进展,主要包括非靶向技术识别新兴污染物过程中样品的预处理、污染物的仪器分析、数据处理流程及条件优化、非靶向识别在污水中新兴污染物的已有应用和未来的发展方向等,为污水中新兴污染物的监管提供方法学参考。

1 非靶向识别流程及优化

污水中新兴污染物的非靶向识别主要包括样品预处理、仪器分析、数据分析和物质鉴别等过程,如图 1所示。

图1

图1   非靶向识别的工作流程


(1)样品的预处理。污水中新兴污染物主要有种类较多、浓度较低、基质复杂等特点。这些特点给不同介质中新兴污染物的鉴定带来了较大的挑战。为了实现对污水样品中微量新兴污染物的富集浓缩,减少样品中的杂质对仪器的损害和后续仪器分析和数据处理过程中的信号干扰,通常会对水样进行预处理。

(2)将预处理后的样品进行色谱-高分辨率质谱仪器分析。不同仪器适用于不同性质的污染物的测定,应根据分析对象(包括样品和其中的污染物)物理化学性质的不同选择恰当的色谱-高分辨率质谱仪器和质谱扫描方式。

(3)质谱数据的分析。为了减少识别的工作量,将识别工作集中在值得高度关注的物质上,通常需要对质谱峰进行优先级分析。

(4)物质鉴别。表 1列出了可供上述步骤(3)~(4)使用的部分商用和开源的化合物数据库、化合物谱图数据库、非靶向数据处理和谱图预测的软件和网站。

表1   部分商用和开源的化合物数据库、化合物谱图数据库、非靶向数据处理和谱图预测的软件或网站

化合物数据库化合物质谱谱图数据库非靶向数据处理软件和网站谱图预测软件和网站
Pubchem(https://pubchem.ncbi.nlm.nih.gov/)MZcloud(https://www.mzcloud.org/)MZmine2(http://mzmine.github.io/)SIRIUS(CSI: FID,https://bio.informatik.uni-jena.de/software/sirius/)
ChemSpider(http://www.chemspider.com/)NIST(https://www.nist.gov/)XCMS(http://bioconductor.org/packages/2.3/bioc/html/xcms.html)CFM-ID(http://cfmid.wishartlab.com/)
KEGG(https://www.genome.jp/kegg/pathway.html)MassBank(https://massbank.eu/MassBank/Search)EnviMass(https://www.envibee.ch/eng/enviMass/overview.htm)Metfrag(https://msbi.ipb-halle.de/MetFrag/)
ToxCast(https://comptox.epa.gov/dashboard/chemical_lists/toxcast)HMDB(https://hmdb.ca/)Openms(https://www.openms.de/)Mass Frontier(https://www.thermofisher.com/order/catalog/product/OPTON-30984#/OPTON-30984)
DrugBank(https://www.drugbank.ca/)EPA(https://comptox.epa.gov/dashboard)Markerview(AB SCIEX,https://sciex.com.cn/products/software/markerview-software)
OECD(http://www.oecd.org/)GNPS(https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp)Mass lynx(Waters,https://www.waters.com/waters/zh_CN/MassLynx-MS-Software/nav.htm?locale=zh_CN&cid=513662)
Norman suspect list(https://www.norman-network.com/?q=node/19)Compound Discover(Thermo Scientific,https://www.thermofisher.com/cn/zh/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-analysis/compound-discoverer-software.html)
Mass Hunter(Agilent,https://www.agilent.com/zh-cn/products/software-informatics/masshunter-suite/masshunter/masshunter-software)
MS-DIAL(http://prime.psc.riken.jp/compms/msdial/main.html)

新窗口打开| 下载CSV


1.1 样品预处理方法比较

水样预处理常采用的方法有大体积进样法(LVI,large-volume injection,又称直接进样法)和固相萃取法(SPE,solid phase extraction)。SPE是提取污水中新兴污染物的最为常用的方法31-36。SPE是一种基于色谱理论的样品预处理技术,通过选择性吸附的方式对样品中的目标污染物进行富集、浓缩,并通过洗脱液洗脱,从而达到分离、纯化目标物的效果37。尽管SPE能实现样品的浓缩与净化,但相比LVI,部分目标分析物的回收率较低且样品易受含氟化合物污染38-39。为了获得更好的回收率和净化效果,优化SPE提取流程是实验过程中必不可少的一步。K. K. Chee等40通过正交设计法优化并确定了SPE萃取有机氯农药的实验条件,包括pH、盐度、小柱类型、风干时间等。相比于耗时且繁琐的传统SPE,近年来发展的在线SPE方法通过自动化执行活化、淋洗、洗脱等步骤,不仅可以免去耗时的样品制备过程、减少有机溶剂消耗,还可以减少洗脱时间、增加样品通量,降低样品的污染风险41-42。但是,在线SPE需要额外的设备如进样泵、自动进样器、六通阀等43-44

LVI指仅仅经过离心或过滤的方式除去水样中的颗粒物后直接将样品注射到分析柱上对样品进行分析的预处理方法。LVI能够最大程度地实现绿色化学,减少溶剂、助剂和能源使用,减少污染物提取的损失,使分析结果有较好的重现性45-47。T. Reemtsma等48对基于LVI的液相色谱-高分辨率质谱仪器分析方法进行优化,最终确定了150种农药及其代谢产物的定量测定的广谱分析方法。然而对于检测浓度较低或灵敏度较弱的化合物,直接进样法可能会得到假阳性结果。此外,采用直接进样的预处理方法时,简单的样品预处理过程可能导致基质效应的增加以及将污染引入仪器导致仪器维护成本增加28,这导致了尽管LVI的好处众多,但其在环境分析领域应用仍受到限制。对此F. Busetti等49指出为使LVI更具通用性,需要对复杂环境基质和生物基质效应的限制作用进行系统化的研究。W. J. Backe等50分别考察了SPE和LVI这两种分析方法下污水中的4种雌激素、8种全氟烷基羧酸盐和5种全氟烷基磺酸盐的基质效应,结果表明LVI获得的数据质量可与SPE相媲美,且在成本、材料、劳动力等方面具有明显的优势。K. J. Bisceglia等51利用同位素稀释直接注射法测定污水中的23种滥用药物,并结合了SPE以进一步提高灵敏度。其中,稳定同位素标记标准品用于评估目标分析物的基质效应。同一方法被继续沿用以测量地表水中的药物残留52。综合来讲,相比于SPE,LVI更适用于检测复杂基质背景下的低响应痕量物质,但该方法研究较少、不够成熟,有待进一步完善。

1.2 污水中新兴污染物的测定

对于预处理得到的样品,需进一步采用高分辨率质谱仪器对其中的污染物成分进行测定。

1.2.1 仪器的分类及选择

高分辨率质谱具有较高的灵敏度、准确度和检出限,能够进行精准的质量数分析,实现复杂基质样品中污染物的快速筛选与结构鉴定。色谱-高分辨率质谱联用技术的发展极大地加速了环境中未知污染物的识别研究进程。具有不同结构性质的污染物经过色谱的初步分离后,以不同的保留时间依次由进样系统进入电离源、质量分析器和检测器后成像。不同仪器类型及其适用范围见表 2,应根据目标物质性质与分析目的的不同合理选择不同的色谱-高分辨率质谱联用技术。T. Rousu等53比较了实验室常用的4种质谱仪〔包括飞行时间质谱(TOFMS)、三重四极杆质谱(QqQ)、混合线性离子阱三重四极质谱(Q-trap)和线性离子阱-静电场轨道阱高分辨质谱(LTQ-Orbitrap)〕的代谢物识别能力。相比之下,TOFMS能检测全部已发现物质,而LTQ-Orbitrap的检测灵敏度和假阳性率较低。其他2种仪器则能提供更高数量的碎片数据但是不能产生精确的质量数据。线性离子阱和飞行时间质谱目前已被广泛应用于污水中的新兴污染物的非靶向筛选54-57

表2   不同仪器类型及其适用范围

仪器或结构种类适用范围参考文献
色谱气相色谱-高分辨率质谱联用技术热不稳定的、不挥发的极性大分子化合物58-61
液相色谱-高分辨率质谱联用技术小分子、易挥发的,热稳定、能气化的化合物
其他辅助仪器及联用技术,如核磁共振等更全面、深入地分析未知化合物的元素组成、分子式、结构式等
电离源电子轰击电离不适用于稳定性不高的分子62
化学电离软电离,便于识别准分子离子峰
场电离和场解析适用于难气化、热不稳定的物质
基质辅助激光解吸电离适用于测定难电离物质、生物大分子等
质量分析器轨道阱
四极杆
离子阱
单聚焦
双聚焦
飞行时间
傅里叶变换质谱仪

新窗口打开| 下载CSV


1.2.2 仪器采集方式的比较

目前最常用的采集方式包括数据依赖采集模式(data-dependent acquisition,DDA)和数据非依赖采集(data-independent acquisition,DIA)。DDA是将某一时刻一级质谱信号最强的小部分化合物进行二级打碎,然后进入二级质谱进行检测。该方法有利于后续定性分析,却容易忽略部分低强度的化合物信息。而DIA的扫描方式则是将整个全扫描范围分为若干个窗口,循环地对窗口中的所有离子进行选择、碎裂与检测,所获信息更加完整,能够实现化学品的深度覆盖及精准定量63。J. B. Renaud64等发展了一种光谱计数方法以比较质谱两种采集数据方式的选择性。对于观察的95种药物,DDA的选择性最高,只产生一个假阳性结果,而DIA的检测限较低,且能检测出更多的药物。相比于传统的不使用前驱离子过滤的技术,DIA兼顾了选择性和检测性,似乎更适用于无偏的非靶向筛选65。但是由于在DIA采集方式下,碎裂时所设置的窗口范围内的所有母离子的二级信息都将被采集成一张谱图,所以在实验前需要对于隔离窗口设置进行设计考察66,此外,此方法数据量较大、杂峰干扰较多,识别未知化合物的过程也更加复杂。针对DIA和DDA数据采集的不足之处,研究人员采用了不同的改进方法。例如,Jian Guo等67以DIA模式下提取的特征为分析目标,改进了DDA数据提取的方式,提高了DDA方式下的识别通量。而Gengbo Chen等68建立了一个基于DDA的化合物质谱库,通过质谱库中的物质质谱信息简化DIA扫描方式下物质的定性识别。Feifei Sun等69则综合了DDA和DIA的优点,提出了一种新的采集方式(DDIA)用于化合物的筛查,该方法具有较高的重现性、较低的误差率和数据的可追溯性。

为了增加有效碎片的数目,降低识别的假阳性率等,除了设置不同的采集方式外,还可以通过优化仪器参数设置以提高所获数据的质量。如通过比较所提取化合物的丰度、覆盖率、线性、重现性和部分分子特征如保留时间、峰形、碎片等70-71,对液相色谱梯度的时间长度、质谱的分辨能力和正负电离模式等参数进行优化。

1.3 数据处理

在获取大量高分辨率质谱信息(包括未知物质的保留时间、精确质量数以及质谱扫描碎片信息等)后,即可开展未知污染物的鉴别工作。主要包括对质谱扫描获得的数据进行色谱峰提取、峰的解卷积、峰对齐、优先峰的确认、物质鉴定等步骤。这些步骤均可以通过相应的软件实现,笔者针对峰优先级分析和物质鉴定这两个关键难点步骤展开叙述。

1.3.1 峰优先级策略分析

虽然利用非靶向筛查技术能够识别复杂混合样品中的大量未知物质,但是工作量巨大,过程可能持续数月。因此,需要将非靶向的识别工作集中在值得高度关注的物质上。峰优先级分析在非靶向识别过程中起着关键作用。目前的峰优先级主要有2种方式,一种基于数据,另一种是基于实验结果24。在基于数据的方法中,样品特征和物质结构信息都是缩减数据的依据。样品特征包括物质出现频率72、物质峰信号强度73及样本的时空分布74-75等。基于物质结构的方法,是根据具有氯溴等明显同位素分布特征、同源序列、质量缺陷等进行识别76,或是基于已有数据库的可疑物筛查方法,即根据已有数据库中物质的精确质量数、同位素物质信息等对未知物进行对比与确认77。基于实验的方法主要原理是根据污染物迁移转化过程或毒性等效应对特定物质进行识别78-79。在识别过程中常辅助以不同的方法进一步锁定目标物。例如,J. E. Schollée等80通过将代谢逻辑与多元统计分析结合识别母体化合物与转化产物对。M. Krauss等81通过综合考虑多个参数如信号强度、检测频率等的稀有度公式对特定地点的不同污染物优先级进行了评估,结果表明该方法能够识别常规监测难以发现的有害化学物质。

1.3.2 非靶向筛查技术的物质鉴定步骤

在获得关注的优先峰后,需要对其进行分子式、结构式的确认。以下是基本步骤:

(1)分子式的拟合。可以通过Xcalibur、peakview等软件中的公式生成器计算未知化合物的分子式。可根据样品的特点确定重点关注的物质类别,从而预设具体物质的特定元素组成。例如,Yi Wang等82在对化工园区的含氟废水中的未知氟化物进行识别时,F元素的含量设置相对较高,而N、P、S等含量设置较低。

(2)结构式推测。根据计算得到的分子式,在ChemSpider等数据库中搜索可能的分子结构,或使用Metfrag等软件根据计算机预测的碎裂方式等,对众多可能结构进行排名。将实验过程中质谱扫描获得的二级碎片与预测的或已有数据库中的二级碎片进行比较,得出匹配值。

(3)标准品验证。对于较高得分的可能结构,购买标准品以进一步验证。注意,该得分应综合考虑多个方面,例如已有的参考文献数量、未知物的峰形保留时间是否与以往报道相匹配等73

2 非靶向筛查技术在识别污水中新兴污染物方面的应用

目前,非靶向筛查策略在识别污水中的新兴污染物方面有着较为广泛的应用。主要包括水质监测与饮用水安全保障、关键致毒物质识别、污染物来源和迁移转化过程研究及污水处理有效性评估等。

2.1 水质监测与饮用水安全保障

莱茵河河流沿岸各国和相关组织〔如International Commission for the Protection of the Rhine(ICPR)〕利用非靶向筛查技术对莱茵河水质进行日常监测。通过对莱茵河320种(半)定量目标化合物的定期监测、1 500种可疑化合物(基于莱茵河流域的使用情况)的监测以及突发的未知物(例如来自工业、市政污水或农业点源污染物泄露)的检测,实现上游水质监测、下游产水预警的作用24。通过对两种优先级排序方式——对氯同位素模式组分的分析及沿岸河流物质的首次出现(利用上游作为背景值,下游扣除该背景)以缩减非靶向特征的数量,M. Ruff等83成功确定了造成泄露事件的多个工业污水点源。

2.2 关键致毒物质识别

在质谱进样前,通过对样品进行生物效应测试对活性组分逐级分离并对效应污染物进行鉴定的方法,称为效应导向分析方法(EDA)。通过效应导向分析,可实现关键致毒物质的非靶向识别。Z. Tousova等84结合生物测试、分馏和非靶向筛查技术,在污水出水中识别出了383种可能引起藻类毒性的物质,主要包括一些农药和医药类化合物。M. A. K. Hashmi等85使用EDA评估了未经处理的废水中的类固醇类物质对于河水水质的影响,确认了氧化应激反应主要来源于雌激素和雄激素等混合物的累积效应。

2.3 污染物来源及迁移转化过程研究

在识别污染物迁移转化过程中,基于时空变化和聚类等统计学手段分析所得数据,是常用的方法之一。S. Anliker等9提出了一种非靶向筛查方法,通过对市政污水处理厂中污染物的强度随时间变化规律进行描述,以10倍的信号变化区分工业排放物质与来源于生活污水的污染物。该方法识别出了由于常规工业生产导致的美沙酮排放,并在污水处理厂下游的河流中发现了与污水厂中类似的浓度变化过程。通过对污水厂中污染物的来源与迁移转化过程的研究,可以为化学品的生产与水处理过程提供参考建议。例如,R. M. A. Sjerps等86研究发现从废水到地表水、地下水再到饮用水过程中,污染物的保留时间显著减少,证明了饮用水中出现了极性更大的化合物。此前为防止生物累积与生物放大,欧盟的REACH法规(Registration,Evaluation,Authorisationand Restriction of Chemicals)建议企业生产极性更高的化合物,而由此看来这一举措可能为饮用水处理带来了更多挑战。

2.4 污水处理过程的有效性评估

2014年,瑞士会议批准了《瑞士水保护法》的修正案。该法案对污水处理厂尾水中微污染物浓度设定了限值,并将12种新兴污染物作为指示化合物,要求污水处理厂进行升级改造,增加臭氧、粉末活性炭等先进的污水处理工艺。对于法案中提到的水处理工艺,应如何评估其污染物的去除性能?非靶向筛查手段已经被证明是评估污水处理过程的有力工具87-88。M. Bourgin等89通过目标、可疑物的方法评估了臭氧联合生物后处理装置的处理效果,并确定了臭氧剂量等最适宜的操作条件。J. E. Schollée等90通过代谢逻辑与统计学手段相结合的方式,利用非靶向筛查对可能的臭氧转化产物进行识别与结构阐述。F. Itzel等79利用非靶向趋势分析对臭氧联合生物后处理后的污染物及其转化产物的去除趋势进行了描述,并考察了臭氧氧化后的污染物综合毒性(内分泌作用)的变化情况。由此可见,通过非靶向筛查手段和其他方式的结合,可以实现对污水厂中处理工艺的最优操作参数的调控、污染物及其转化产物的识别、毒性效应变化的评估等。

3 发展方向

虽然非靶向筛查技术在识别污水中的新兴污染物方面已经有较为广泛的应用,但仍存在识别过程耗时费力,识别流程不统一,定量不准确等问题。其中,亟待解决的部分问题如下:

3.1 非靶向筛查识别出的新兴污染物的定量问题

虽然非靶向分析往往只能获得数百种化合物的定性或半定量数据,但这比仅针对少数目标化合物的定量数据更有价值。非靶向识别后的污染物定量问题一直是研究人员关注的。在污水中新兴污染物的识别过程中,量化不是首要任务,但应是研究人员努力的方向之一。目前常用的量化方法之一是利用非靶向特征峰的峰面积进行定量或比较。然而化合物结构、溶剂效应、仪器条件、样品类型等均会对物质的电离效率产生影响,从而导致定量结果偏差较大。也可采用其他方法,如使用一组涵盖范围更广的有机化合物内标、使用基于分子式或特定官能团的响应因子来改善单个化合物的定量86。然而,新兴污染种类繁多、性质复杂,因此即便通过具有相似结构的物质进行校正,亦难以实现精准定量。此外,同位素标记的内标也时常被用作校正和定量。但这些方法均有所偏差。近期,L. Jaanus等91提出了一种全新的基于随机森林模型模拟、根据电离效率预测化合物浓度的无标准非靶向定量策略,大大提高了污染物的定量准确性。如何进一步提高污染物的定量准确性和定量方法覆盖度是当下亟待解决的问题之一。

3.2 非靶向识别新兴污染物的可靠性及实用性

当前,不同实验室间的合作大大促进了数据的共享,包括化合物谱图数据库、化合物信息(包括结构相关、毒性相关等信息)数据库等。例如,由欧洲和北美70多个领先实验室和管理机构参与的NORMAN网络(https://www.norman-network.com/)为新兴污染物清单的完善及全球的新兴污染物的协同监管做出了巨大贡献。然而实验比较发现,对于同一批数据,不同的软件之间得到的结果往往差异较大92。因此,确立统一的非靶向识别的质量控制标准尤为重要,包括识别方法化学覆盖度的描述,仪器灵敏度和可识别的范围、实验过程的重现性以及化合物的回收率等方面质控标准。2014年,E. L. Schymanski等93建立了非靶向识别小分子化合物的不同置信度水平,这是非靶向工作流程标准化迈出的第一步。除了非靶向识别流程的标准化之外,研究人员应致力于非靶向识别工作的简单化。当前国际上的非靶向工作者有限,而非靶向技术广泛识别新兴污染物的应用场景无限——除了污水中新兴污染物的监管之外,其他如垃圾填埋场垃圾渗滤液的监控、大气环境质量监管等各个方面,都是非靶向筛查工作可能涉及的应用场景。在不断培养非靶向分析人才及壮大非靶向分析队伍的同时,研究人员应注意开发更为高效实用的非靶向软件等工具,以便非靶向识别过程更加简单易得。

3.3 利用非靶向技术实现新兴污染物的全“生命周期”监管

我们应当如何实现新兴污染物源头、传播、最终去路的全“生命周期”监管?除了确定化合物的基本信息如分子式、结构式、质谱图等分子指纹外,还应当建立每种污染物的源头与去向的指纹——包括化学品的来源、加工生产、消费使用、排放情况、污水厂去除情况与自然降解情况等。目前已有研究通过对污染物的生产和消耗状况识别污染物或对污染物进行浓度估算等,但这远远不够。未来研究更应侧重通过非靶向筛查手段对不同性质化合物的整个“生命周期”进行耦合,以实现对新兴污染物的全过程监管。即结合污染物上下游关系,综合考虑多种因素包括污染物生产使用的广泛程度、污染物在环境中的迁移转化行为和转化产物的风险等,确定高风险的优先控制污染物,并在污染物的产生到猝灭的全过程设立相关的法律法规,实现新兴污染物的全“生命周期”监管。

4 展望

目前,非靶向技术已经越来越多地被用于监测污水中的新兴污染物、分析污染物的源头与去向等各个方面。在实际应用过程中,我们需要针对样品的特征,以提高所获取数据的质量和减少识别工作量等为目标,对方法的全过程进行优化。虽然非靶向识别技术仍存在着定量不够准确、缺乏统一的识别流程、缺乏数据可靠性的评估标准等缺点,但随着这些问题的不断解决与完善,非靶向分析技术必将为污染物在生态环境中的全过程监管提供最强有力的支持。

参考文献

Petrovie M , Gonzalez S , Barceló D .

Analysis and removal of emerging contaminants in wastewater and drinking water

[J]. TrAC Trends in Analytical Chemistry, 2003, 22 (10): 685- 696.

DOI:10.1016/S0165-9936(03)01105-1      [本文引用: 1]

文湘华, 申博.

新兴污染物水环境保护标准及其实用型去除技术

[J]. 环境科学学报, 2018, 38 (3): 847- 857.

URL     [本文引用: 1]

Tran N H , Reinhard M , Gin K Y .

Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review

[J]. Water research, 2018, 133, 182- 207.

DOI:10.1016/j.watres.2017.12.029      [本文引用: 1]

Eggen R I , Hollender J , Joss A , et al.

Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants

[J]. Environmental Science & Technology, 2014, 48 (14): 7683- 7689.

URL     [本文引用: 1]

Sun Qian , Lv Min , Hu Anyi , et al.

Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen, China

[J]. Journal of Hazardous Materials, 2014, 277, 69- 75.

DOI:10.1016/j.jhazmat.2013.11.056      [本文引用: 1]

Tixier C , Singer H P , Oellers S , et al.

Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters

[J]. Environmental science & technology, 2003, 37 (6): 1061- 1068.

URL     [本文引用: 1]

Ben Weiwei , Zhu Bing , Yuan Xiangjuan , et al.

Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes

[J]. Water Research, 2018, 130, 38- 46.

DOI:10.1016/j.watres.2017.11.057     

Behera S K , Kim H W , Oh J , et al.

Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea

[J]. Science of The Total Environment, 2011, 409 (20): 4351- 4360.

DOI:10.1016/j.scitotenv.2011.07.015      [本文引用: 1]

Anliker S , Loos M , Comte R , et al.

Assessing emissions from pharmaceutical manufacturing based on temporal high-resolution mass spectrometry data

[J]. Environmental Science & Technology, 2020, 54 (7): 4110- 4120.

URL     [本文引用: 2]

Hernando M D , Mezcua M , Fernández-Alba A R , et al.

Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments

[J]. Talanta, 2006, 69 (2): 334- 342.

DOI:10.1016/j.talanta.2005.09.037      [本文引用: 1]

Tanoue R , Nomiyama K , Nakamura H , et al.

Uptake and tissue distribution of pharmaceuticals and personal care products in wild fish from treated-wastewater-impacted streams

[J]. Environmental Science & Technology, 2015, 49 (19): 11649- 11658.

URL     [本文引用: 1]

Fu Qiuguo , Malchi T , Carter L J , et al.

Pharmaceutical and personal care products: From wastewater treatment into Agro-Food systems

[J]. Environmental Science & Technology, 2019, 53 (24): 14083- 14090.

URL     [本文引用: 1]

Loraine G A , Pettigrove M E .

Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in Southern California

[J]. Environmental Science & Technology, 2006, 40 (3): 687- 695.

URL     [本文引用: 1]

Bu Qingwei , Wang Bin , Huang Jun , et al.

Pharmaceuticals and personal care products in the aquatic environment in China: A review

[J]. Journal of Hazardous Materials, 2013, 262, 189- 211.

DOI:10.1016/j.jhazmat.2013.08.040      [本文引用: 1]

Chen Shu , Jiao Xingchun , Gai Nan , et al.

Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China

[J]. Environmental Pollution, 2016, 211, 124- 131.

DOI:10.1016/j.envpol.2015.12.024     

Shi Yali , Gao Lihong , Li Wenhui , et al.

Occurrence, distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing, China

[J]. Environmental Pollution, 2016, 209, 1- 10.

DOI:10.1016/j.envpol.2015.11.008     

Li Zhen , Xiang Xi , Li Miao , et al.

Occurrence and risk assessment of pharmaceuticals and personal care products and endocrine disrupting chemicals in reclaimed water and receiving groundwater in China

[J]. Ecotoxicology and Environmental Safety, 2015, 119, 74- 80.

DOI:10.1016/j.ecoenv.2015.04.031      [本文引用: 1]

Deblonde T , Hartemann P .

Environmental impact of medical prescriptions: Assessing the risks and hazards of persistence, bioaccumulation and toxicity of pharmaceuticals

[J]. Public Health, 2013, 127 (4): 312- 317.

DOI:10.1016/j.puhe.2013.01.026      [本文引用: 1]

Díaz-Garduno B , Pintado-Herrera M G , Biel-Maeso M , et al.

Environmental risk assessment of effluents as a whole emerging contaminant: Efficiency of alternative tertiary treatments for wastewater depuration

[J]. Water Research, 2017, 119, 136- 149.

DOI:10.1016/j.watres.2017.04.021      [本文引用: 1]

Vermeulen R , Schymanski E L , Barabási A , et al.

The exposome and health: Where chemistry meets biology

[J]. Science, 2020, 367 (6476): 392- 396.

DOI:10.1126/science.aay3164      [本文引用: 1]

Daughton C G , Ternes T A .

Pharmaceuticals and personal care products in the environment: Agents of subtle change?

[J]. Environmental Health Perspectives, 1999, 107 (S6): 907- 938.

URL    

Zhang Kun , Zhao Yanbin , Fent K .

Occurrence and ecotoxicological effects of free, conjugated, and halogenated steroids including 17α-hydroxypregnanolone and pregnanediol in swiss wastewater and surface water

[J]. Environmental Science & Technology, 2017, 51 (11): 6498- 6506.

URL     [本文引用: 1]

Krauss M , Singer H , Hollender J .

LC-high resolution MS in environmental analysis: From target screening to the identification of unknowns

[J]. Analytical and Bioanalytical Chemistry, 2010, 397 (3): 943- 951.

DOI:10.1007/s00216-010-3608-9      [本文引用: 2]

Hollender J , Schymanski E L , Singer H P , et al.

Nontarget screening with high resolution mass spectrometry in the environment: Ready to go?

[J]. Environmental Science & Technology, 2017, 51 (20): 11505- 11512.

URL     [本文引用: 3]

Ibánez M , Sancho J V , Hernández F , et al.

Rapid non-target screening of organic pollutants in water by ultraperformance liquid chromatography coupled to time-of-light mass spectrometry

[J]. TrAC Trends in Analytical Chemistry, 2008, 27 (5): 481- 489.

DOI:10.1016/j.trac.2008.03.007      [本文引用: 1]

Sauvé S , Desrosiers M .

A review of what is an emerging contaminant

[J]. Chemistry Central Journal, 2014, 8 (1): 1- 7.

DOI:10.1186/1752-153X-8-1      [本文引用: 1]

Gosetti F , Mazzucco E , Gennaro M C , et al.

Contaminants in water: Non-target UHPLC/MS analysis

[J]. Environmental Chemistry Letters, 2016, 14 (1): 51- 65.

DOI:10.1007/s10311-015-0527-1      [本文引用: 1]

Pérez-Parada A , Gómez-Ramos M D M , Martínez Bueno M J , et al.

Analytical improvements of hybrid LC-MS/MS techniques for the efficient evaluation of emerging contaminants in river waters: a case study of the Henares River (Madrid, Spain)

[J]. Environmental Science and Pollution Research, 2012, 19 (2): 467- 481.

DOI:10.1007/s11356-011-0585-2      [本文引用: 2]

Hernández F , Portolés T , Pitarch E , et al.

Gas chromatography coupled to high-resolution time-of-flight mass spectrometry to analyze trace-level organic compounds in the environment, food safety and toxicology

[J]. TrAC Trends in Analytical Chemistry, 2011, 30 (2): 388- 400.

DOI:10.1016/j.trac.2010.11.007      [本文引用: 1]

Serrano R , Nácher-Mestre J , Portolés T , et al.

Non-target screening of organic contaminants in marine salts by gas chromatography coupled to high-resolution time-of-flight mass spectrometry

[J]. Talanta, 2011, 85 (2): 877- 884.

DOI:10.1016/j.talanta.2011.04.055      [本文引用: 1]

Valsecchi S , Polesello S , Mazzoni M , et al.

On-line sample extraction and purification for the LC-MS determination of emerging contaminants in environmental samples

[J]. Trends in Environmental Analytical Chemistry, 2015, 8, 27- 37.

DOI:10.1016/j.teac.2015.08.001      [本文引用: 1]

Spongberg A L , Witter J D , Acuna J , et al.

Reconnaissance of selected PPCP compounds in Costa Rican surface waters

[J]. Water Research, 2011, 45 (20): 6709- 6717.

DOI:10.1016/j.watres.2011.10.004     

Kock-Schulmeyer M , Villagrasa M , López De Alda M , et al.

Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact

[J]. Science of The Total Environment, 2013, 458/459/460, 466- 476.

URL    

Kim U , Oh J K , Kannan K .

Occurrence, removal, and environmental emission of organophosphate flame retardants/plasticizers in a wastewater treatment plant in New York State

[J]. Environmental Science & Technology, 2017, 51 (14): 7872- 7880.

Edwards Q A , Sultana T , Kulikov S M , et al.

Micropollutants related to human activity in groundwater resources in Barbados, West Indies

[J]. Science of The Total Environment, 2019, 671, 76- 82.

DOI:10.1016/j.scitotenv.2019.03.314     

Backe W J , Ort C , Brewer A J , et al.

Analysis of androgenic steroids in environmental waters by large-volume injection liquid chromatography tandem mass spectrometry

[J]. Analytical Chemistry, 2011, 83 (7): 2622- 2630.

DOI:10.1021/ac103013h      [本文引用: 1]

李存法, 何金环.

固相萃取技术及其应用

[J]. 天中学刊, 2005, 22 (5): 13- 16.

DOI:10.3969/j.issn.1006-5261.2005.05.006      [本文引用: 1]

Schultz M M , Barofsky D F , Field J A .

Quantitative determination of fluorinated alkyl substances by large-volume-injection liquid chromatography tandem mass spectrometry characterization of municipal wastewaters

[J]. Environmental Science & Technology, 2006, 40 (1): 289- 295.

[本文引用: 1]

Chiaia A C , Banta-Green C , Field J .

Eliminating solid phase extraction with large-volume injection LC/MS/MS: Analysis of illicit and legal drugs and human urine indicators in US wastewaters

[J]. Environmental Science & Technology, 2008, 42 (23): 8841- 8848.

URL     [本文引用: 1]

Chee K K , Wong M K , Lee H K .

Optimization by orthogonal array design of solid phase extraction of organochlorine pesticides from water

[J]. Chromatographia, 1995, 41 (3): 191- 196.

[本文引用: 1]

Rodriguez-Mozaz S , Lopez De Alda M J , Barceló D .

Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography-mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water

[J]. Journal of Chromatography A, 2007, 1152 (1): 97- 115.

URL     [本文引用: 1]

Pozo O J , Guerrero C , Sancho J V , et al.

Efficient approach for the reliable quantification and confirmation of antibiotics in water using on-line solid-phase extraction liquid chromatography/tandem mass spectrometry

[J]. Journal of Chromatography A, 2006, 1103 (1): 83- 93.

DOI:10.1016/j.chroma.2005.10.073      [本文引用: 1]

Enevoldsen R , Juhler R K .

Perfluorinated compounds(PFCs) in groundwater and aqueous soil extracts: Using inline SPE-LC-MS/ MS for screening and sorption characterisation of perfluorooctane sulphonate and related compounds

[J]. Analytical and Bioanalytical Chemistry, 2010, 398 (3): 1161- 1172.

DOI:10.1007/s00216-010-4066-0      [本文引用: 1]

Viglino L , Aboulfadl K , Prévost M , et al.

Analysis of natural and synthetic estrogenic endocrine disruptors in environmental waters using online preconcentration coupled with LC-APPI-MS/MS

[J]. Talanta, 2008, 76 (5): 1088- 1096.

DOI:10.1016/j.talanta.2008.05.008      [本文引用: 1]

Tobiszewski M , Namiesnik J .

Direct chromatographic methods in the context of green analytical chemistry

[J]. TrAC Trends in Analytical Chemistry, 2012, 35, 67- 73.

DOI:10.1016/j.trac.2012.02.006      [本文引用: 1]

Campos-Manas M C , Plaza-Bolanos P , Sánchez-Pérez J A , et al.

Fast determination of pesticides and other contaminants of emerging concern in treated wastewater using direct injection coupled to high -lysensitive ultra-high performance liquid chromatography-tandem mass spectrometry

[J]. Journal of Chromatography A, 2017, 1507, 84- 94.

DOI:10.1016/j.chroma.2017.05.053     

Hauser B , Schellin M , Popp P .

Membrane-assisted solvent extraction of triazines, organochlorine, and organophosphorus compounds in complex samples combined with large-volume injection-gas chromatography/mass spectrometric detection

[J]. Analytical Chemistry, 2004, 76 (20): 6029- 6038.

DOI:10.1021/ac0492923      [本文引用: 1]

Reemtsma T , Alder L , Banasiak U .

A multimethod for the determination of 150 pesticide metabolites in surface water and groundwater using direct injection liquid chromatography-mass spectrometry

[J]. Journal of Chromatography A, 2013, 1271 (1): 95- 104.

DOI:10.1016/j.chroma.2012.11.023      [本文引用: 1]

Busetti F , Backe W J , Bendixen N , et al.

Trace analysis of environmental matrices by large-volume injection and liquid chromatography-mass spectrometry

[J]. Analytical and Bioanalytical Chemistry, 2012, 402 (1): 175- 186.

DOI:10.1007/s00216-011-5290-y      [本文引用: 1]

Backe W J , Field J A .

Is SPE necessary for environmental analysis? A quantitative comparison of matrix effects from large-volume injection and solid-phase extraction based methods

[J]. Environmental Science & Technology, 2012, 46 (12): 6750- 6758.

[本文引用: 1]

Bisceglia K J , Roberts A L , Schantz M M , et al.

Quantification of drugs of abuse in municipal wastewater via SPE and direct injection liquid chromatography mass spectrometry

[J]. Analytical and Bioanalytical Chemistry, 2010, 398 (6): 2701- 2712.

DOI:10.1007/s00216-010-4191-9      [本文引用: 1]

Brieudes V , Lardy-Fontan S , Lalere B , et al.

Validation and uncertainties evaluation of an isotope dilution-SPE-LC-MS/MS for the quantification of drug residues in surface waters

[J]. Talanta, 2016, 146, 138- 147.

DOI:10.1016/j.talanta.2015.06.073      [本文引用: 1]

Rousu T , Herttuainen J , Tolonen A .

Comparison of triple quadrupole, hybrid linear ion trap triple quadrupole, time-of-flight and LTQ-Orbitrap mass spectrometers in drug discovery phase metabolite screening and identification in vitro-amitriptyline and verapamil as model compounds

[J]. Rapid Communications in Mass Spectrometry, 2010, 24 (7): 939- 957.

DOI:10.1002/rcm.4465      [本文引用: 1]

Gago-Ferrero P , Schymanski E L , Bletsou A A , et al.

Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS

[J]. Environmental Science & Technology, 2015, 49 (20): 12333- 12341.

URL     [本文引用: 1]

Qian Yuli , Wang Xuebing , Wu Gang , et al.

Screening priority indicator pollutants in full-scale wastewater treatment plants by non-target analysis

[J]. Journal of Hazardous Materials, 2021, 414, 125490.

DOI:10.1016/j.jhazmat.2021.125490     

Wang Xuebing , Yu Nanyang , Yang Jingping , et al.

Suspect and non-target screening of pesticides and pharmaceuticals transformation products in wastewater using QTOF-MS

[J]. Environment International, 2020, 137, 105599.

DOI:10.1016/j.envint.2020.105599     

Hernández F , Ibánez M , Botero-Coy A , et al.

LC-QTOF MS screening of more than 1000 licit and illicit drugs and their metabolites in wastewater and surface waters from the area of Bogotá, Colombia

[J]. Analytical and Bioanalytical Chemistry, 2015, 407 (21): 6405- 6416.

DOI:10.1007/s00216-015-8796-x      [本文引用: 1]

林必桂, 于云江, 向明灯, .

基于气相/液相色谱-高分辨率质谱联用技术的非目标化合物分析方法研究进展

[J]. 环境化学, 2016, 35 (3): 466- 476.

URL     [本文引用: 1]

Hogenboom A C , van Leerdam J A , de Voogt P .

Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry

[J]. Journal of Chromatography A, 2009, 1216 (3): 510- 519.

DOI:10.1016/j.chroma.2008.08.053     

Richardson S D .

Water analysis: Emerging contaminants and current issues

[J]. Analytical Chemistry, 2007, 79 (12): 4295- 4323.

DOI:10.1021/ac070719q     

Bletsou A A , Jeon J , Hollender J , et al.

Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment

[J]. TrAC Trends in Analytical Chemistry, 2015, 66, 32- 44.

DOI:10.1016/j.trac.2014.11.009      [本文引用: 1]

Yong C . Structure identifying of organic compound and organic spectroscopy[M]. Beijing: Science Press, 2000: 182- 204.

[本文引用: 1]

Fernández-Costa C , Martínez-Bartolomé S , Mcclatchy D B , et al.

Impact of the identification strategy on the reproducibility of the DDA and DIA results

[J]. Journal of Proteome Research, 2020, 19 (8): 3153- 3161.

DOI:10.1021/acs.jproteome.0c00153      [本文引用: 1]

Renaud J B , Sabourin L , Topp E , et al.

Spectral counting approach to measure selectivity of high-resolution LC-MS methods for environmental analysis

[J]. Analytical Chemistry, 2017, 89 (5): 2747- 2754.

DOI:10.1021/acs.analchem.6b03475      [本文引用: 1]

Bilbao A , Varesio E , Luban J , et al.

Processing strategies and software solutions for data-independent acquisition in mass spectrometry

[J]. Proteomics, 2015, 15 (5/6): 964- 980.

URL     [本文引用: 1]

Li Shanshan , Cao Qichen , Xiao Weidi , et al.

Optimization of acquisition and data-processing parameters for improved proteomic quantification by sequential window acquisition of all theoretical fragment ion mass spectrometry

[J]. Journal of Proteome Research, 2017, 16 (2): 738- 747.

DOI:10.1021/acs.jproteome.6b00767      [本文引用: 1]

Guo Jian , Huan Tao .

Evaluation of significant features discovered from different data acquisition modes in mass spectrometry-based untargeted metabolomics

[J]. Analytica Chimica Acta, 2020, 1137, 37- 46.

DOI:10.1016/j.aca.2020.08.065      [本文引用: 1]

Chen Gengbo , Walmsley S , Cheung G C M , et al.

Customized consensus spectral library building for untargeted quantitative metabolomics analysis with data independent acquisition mass spectrometry and metaboDIA workflow

[J]. Analytical Chemistry, 2017, 89 (9): 4897- 4906.

DOI:10.1021/acs.analchem.6b05006      [本文引用: 1]

Sun Feifei , Tan Haiguang , Li Yanshen , et al.

An integrated data-dependent and data-independent acquisition method for hazardous compounds screening in foods using a single UHPLC-Q-Orbitrap run

[J]. Journal of Hazardous Materials, 2021, 401, 123266.

DOI:10.1016/j.jhazmat.2020.123266      [本文引用: 1]

Knolhoff A M , Kneapler C N , Croley T R .

Optimized chemical coverage and data quality for non-targeted screening applications using liquid chromatography/high-resolution mass spectrometry

[J]. Analytica Chimica Acta, 2019, 1066, 93- 101.

DOI:10.1016/j.aca.2019.03.032      [本文引用: 1]

Ng B , Quinete N , Gardinali P R .

Assessing accuracy, precision and selectivity using quality controls for non-targeted analysis

[J]. Science of The Total Environment, 2020, 713, 136568.

DOI:10.1016/j.scitotenv.2020.136568      [本文引用: 1]

Gros M , Blum K M , Jernstedt H , et al.

Screening and prioritization of micropollutants in wastewaters from on-site sewage treatment facilities

[J]. Journal of Hazardous Materials, 2017, 328, 37- 45.

DOI:10.1016/j.jhazmat.2016.12.055      [本文引用: 1]

Schymanski E L , Singer H P , Longrée P , et al.

Strategies to characterize polar organic contamination in wastewater: Exploring the capability of high resolution mass spectrometry

[J]. Environmental Science & Technology, 2014, 48 (3): 1811- 1818.

URL     [本文引用: 2]

Alygizakis N A , Gago-Ferrero P , Hollender J , et al.

Untargeted timepattern analysis of LC-HRMS data to detect spills and compounds with high fluctuation in influent wastewater

[J]. Journal of Hazardous Materials, 2019, 361, 19- 29.

DOI:10.1016/j.jhazmat.2018.08.073      [本文引用: 1]

Beckers L , Brack W , Dann J P , et al.

Unraveling longitudinal pollution patterns of organic micropollutants in a river by non-target screening and cluster analysis

[J]. Science of The Total Environment, 2020, 727, 138388.

DOI:10.1016/j.scitotenv.2020.138388      [本文引用: 1]

Chiaia-Hernandez A C , Schymanski E L , Kumar P , et al.

Suspect and non-target screening approaches to identify organic contaminant records in lake sediments

[J]. Analytical and bioanalytical chemistry, 2014, 406 (28): 7323- 7335.

DOI:10.1007/s00216-014-8166-0      [本文引用: 1]

Kiefer K , Müller A , Singer H , et al.

New relevant pesticide transformation products in groundwater detected using target and suspectscreening for agricultural and urban micropollutants with LCHRMS

[J]. Water Research, 2019, 165, 114972.

DOI:10.1016/j.watres.2019.114972      [本文引用: 1]

Pochiraju S S , Linden K , Gu A Z , et al.

Development of a separation framework for effects-based targeted and non-targeted toxicological screening of water and wastewater

[J]. Water Research, 2020, 170, 115289.

DOI:10.1016/j.watres.2019.115289      [本文引用: 1]

Itzel F , Baetz N , Hohrenk L L , et al.

Evaluation of a biological posttreatment after full-scale ozonation at a municipal wastewater treatment plant

[J]. Water Research, 2020, 170, 115316.

DOI:10.1016/j.watres.2019.115316      [本文引用: 2]

Schollée J E , Schymanski E L , Avak S E , et al.

Prioritizing unknown transformation products from biologically-treated wastewater using high-resolution mass spectrometry, multivariate statistics, and metabolic logic

[J]. Analytical Chemistry, 2015, 87 (24): 12121- 12129.

DOI:10.1021/acs.analchem.5b02905      [本文引用: 1]

Krauss M , Hug C , Bloch R , et al.

Prioritising site-specific micropollutants in surface water from LC-HRMS non-target screening data using a rarity score

[J]. Environmental Sciences Europe, 2019, 31 (1): 45.

DOI:10.1186/s12302-019-0231-z      [本文引用: 1]

Wang Yi , Yu Nanyang , Zhu Xiaobin , et al.

Suspect and non-target screening of perand polyfluoroalkyl substances in wastewater from a fluorochemical manufacturing park

[J]. Environmental science & technology, 2018, 52 (19): 11007- 11016.

URL     [本文引用: 1]

Ruff M , Mueller M S , Loos M , et al.

Quantitative target and systematic non-target analysis of polar organic micro-pollutants along the river Rhine using high-resolution mass-spectrometry-Identification of unknown sources and compounds

[J]. Water Research, 2015, 87, 145- 154.

[本文引用: 1]

Tousova Z , Froment J , Oswald P , et al.

Identification of algal growth inhibitors in treated waste water using effect-directed analysis based on non-target screening techniques

[J]. Journal of Hazardous Materials, 2018, 358, 494- 502.

DOI:10.1016/j.jhazmat.2018.05.031      [本文引用: 1]

Hashmi M A K , Escher B I , Krauss M , et al.

Effect-directed analysis(EDA) of Danube River water sample receiving untreated municipal wastewater from Novi Sad, Serbia

[J]. Science of The Total Environment, 2018, 624, 1072- 1081.

DOI:10.1016/j.scitotenv.2017.12.187      [本文引用: 1]

Sjerps R M A , Vughs D , van Leerdam J A , et al.

Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS

[J]. Water Research, 2016, 93, 254- 264.

DOI:10.1016/j.watres.2016.02.034      [本文引用: 2]

Nürenberg G , Kunkel U , Wick A , et al.

Nontarget analysis: A new tool for the evaluation of wastewater processes

[J]. Water Research, 2019, 163, 114842.

DOI:10.1016/j.watres.2019.07.009      [本文引用: 1]

Parry E , Young T M .

Comparing targeted and non-targeted high-resolution mass spectrometric approaches for assessing advanced oxi-dation reactor performance

[J]. Water Research, 2016, 104, 72- 81.

DOI:10.1016/j.watres.2016.07.056      [本文引用: 1]

Bourgin M , Beck B , Boehler M , et al.

Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products

[J]. Water Research, 2018, 129, 486- 498.

DOI:10.1016/j.watres.2017.10.036      [本文引用: 1]

Schollée J E , Bourgin M , von Gunten U , et al.

Non-target screening to trace ozonation transformation products in a wastewater treatment train including different post-treatments

[J]. Water Research, 2018, 142, 267- 278.

DOI:10.1016/j.watres.2018.05.045      [本文引用: 1]

Jaanus L , Wang Tingting , Kellogg J , et al.

Quantification for non-targeted LC/MS screening without standard substances

[J]. Scientific Reports, 2020, 10, 5808.

DOI:10.1038/s41598-020-62573-z      [本文引用: 1]

Hohrenk L L , Itzel F , Baetz N , et al.

Comparison of software tools for liquid chromatography-high-resolution mass spectrometry data processing in non-target screening of environmental samples

[J]. An-alytical Chemistry, 2020, 92 (2): 1898- 1907.

DOI:10.1021/acs.analchem.9b04095      [本文引用: 1]

Schymanski E L , Jeon J , Gulde R , et al.

Identifying small molecules via high resolution mass spectrometry: Communicating confidence

[J]. Environmental Science & Technology, 2014, 48 (4): 2097- 2098.

URL     [本文引用: 1]

/