工业水处理, 2021, 41(11): 23-31 doi: 10.19965/j.cnki.iwt.2020-0860

专论与综述

CNMs/PS体系降解水中有机污染物的研究进展

殷红桂,1, 钱飞跃,1,2, 谈颖1, 沈耀良1,2

1. 苏州科技大学环境科学与工程学院, 江苏苏州 215009

2. 城市生活污水资源化利用技术国家地方联合工程实验室, 江苏苏州 215009

Degradation of organic contaminants in water using CNMs/PS: A review

YIN Honggui,1, QIAN Feiyue,1,2, TAN Ying1, SHEN Yaoliang1,2

1. School of Environmental Science and Engineering of Suzhou University of Science and Technology, Suzhou 215009, China

2. National and Local Joint Engineering Laboratory of Resource Utilization Technology of Municipal Sewage, Suzhou 215009, China

通讯作者: 钱飞跃, 副教授。电话: 18694907248, E-mail: feiyuechandler@163.com

收稿日期: 2021-08-10  

基金资助: 国家自然科学基金项目.  51608341
城市生活污水资源化利用技术国家地方联合工程实验室开放课题.  2019KF02
江苏高校“青蓝工程”优秀青年骨干教师培养对象资助项目
中国大学生创新创业训练计划.  202010332002Z

Received: 2021-08-10  

作者简介 About authors

殷红桂(1995-),硕士电话:18896570683,E-mail:2769856371@qq.com , E-mail:2769856371@qq.com

Abstract

As a novel advanced oxidation process, persulfate activation with carbon nanomaterials (CNMs/PS) was widely used to remove various organic contaminants in water. The mechanisms of CNMs/PS system were classified into free radical reaction and surface catalytic oxidation, and the reactive oxygen species, oxidation capacity and characterization methods of different reaction pathways were interpreted. The influences of CNMs type, solution pH, inorganic ions, coexisting organics and operating mode etc. on the treatment efficiency of system were summarized. And a feasible method was proposed to improve the reaction selectivity of CNMs/PS in complex water matrix through CNMs functional design and surface-related catalysis enhancement. In addition, the in-situ catalytic oxidation process based on CNMs composite membranes could result in the efficient removal of target compounds and the separation and regeneration of carbonaceous catalysts, which was suitable for the real treatment in continuous operation mode. In the future, the combined application with conventional treatment processes and the stability improvement of catalysts are considered as the important research directions.

Keywords: carbon nanomaterials ; persulfate ; organic contaminants ; free radical ; surface catalytic oxidation

PDF (0KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

殷红桂, 钱飞跃, 谈颖, 沈耀良. CNMs/PS体系降解水中有机污染物的研究进展. 工业水处理[J], 2021, 41(11): 23-31 doi:10.19965/j.cnki.iwt.2020-0860

YIN Honggui. Degradation of organic contaminants in water using CNMs/PS: A review. Industrial Water Treatment[J], 2021, 41(11): 23-31 doi:10.19965/j.cnki.iwt.2020-0860

作为一种环境污染控制中常用的氧化剂,过硫酸盐(PS)依据分子结构的差异可分为对称结构的过二硫酸盐〔PDS,S2O82-E0(S2O82-/HSO4-)=2.1 V〕和非对称结构的过一硫酸盐〔PMS,HSO5-E0(HSO5-/ HSO4-)=1.82 V〕1。一般认为,PDS的氧化电位更高、溶解度更大、成品价格也更低,而PMS的化学性质更活泼,易发生自分解反应。经高温、紫外线、超声波和过渡金属催化剂等活化后,PDS和PMS均可充当最终电子受体,产生种类丰富的活性氧组分(ROS),快速降解还原性污染物2-3

以活性炭(AC)为代表的炭质材料对PS也具有很强的活化作用4-5。随着碳纳米材料(CNMs)宏量制备技术的快速发展6,新型炭质材料越来越多地用于微污染水体净化领域,尤其是药物和个人护理品(PPCPs)等新兴污染物的控制。CNMs具有与AC相似的元素组成,但其空间尺寸更小、催化活性更高、导电性能更强,更容易实现表面功能化并保持成品性能的一致性7-8

现有的综述报道大多是将CNMs作为传统炭质材料的同类催化剂进行介绍,并未针对CNMs活化PS(CNMs/PS)降解水中污染物的反应机理、效能特点和影响因素进行系统阐述1, 9。鉴于此,笔者分类介绍了常用CNMs活化PS产生各类ROS的反应机理,针对自由基反应和表面催化氧化的具体特点进行了比较分析,并系统地阐述了CNMs类型、溶液pH、背景物质和操作方式等因素对CNMs/PS处理效能的影响规律。最后,结合CNMs/PS体系的发展趋势,总结了其面临的主要挑战及应对思路,以期为推进AOPs技术的创新与工程化应用提供参考。

1 CNMs/PS体系的反应机理

1.1 CNMs的主要类型

4种常用于活化过硫酸盐的CNMs包括:

(1)纳米金刚石(ND),由无序碳层包裹sp3金刚石核构成的球形纳米颗粒,粒径在4~100 nm之间,具有良好的化学稳定性10

(2)碳纳米管(CNTs),由单层或多层石墨烯薄片卷曲而成的管状纳米材料,截面直径在0.2~100 nm之间,长度可达数百μm,是较早用于水污染控制领域的CNMs之一11-13

(3)石墨烯类材料,以六元碳环为骨架的薄片状结构,表面富含羟基(—OH)、羧基(—COOH)、羰基(—C=O)和环氧基(C—O—C)等官能团,边缘有形式多样的缺陷点位7。依据表面氧化程度由低到高,可分为石墨烯(GE)、还原氧化石墨烯(rGO)和氧化石墨烯(GO)等类型;此外,利用氮、硫等杂原子取代碳环中的部分点位,可以获得杂化型石墨烯。

(4)有序介孔碳(CMK),具有有序可控孔结构的纳米级石墨化结构,有利于孔内传质和电子传递,具有良好的催化潜力8, 14-15

1.2 主要反应机理

在CNMs/PS体系中,污染物的降解途径可分为自由基反应和表面催化氧化两大类。其中,自由基反应是CNMs通过电子转移促进PS分子中O—O键断裂,产生SO4·-和·OH,并在均相中高效降解目标物的过程3。CNMs上独特的大π共轭结构对PS分子和芳香类化合物均具有很强的亲和力,有利于形成三元电子转移体系,诱导表面催化氧化的发生16-18。自由基反应与表面催化氧化的主要差异19-20表 1所示。

表1   自由基反应与表面催化氧化的差异分析

Table 1  The difference between free radical reaction and surface catalytic oxidation

项目自由基反应表面催化氧化
活性氧组分(ROS)SO4·-、·OH表面活性络合物、络合态SO4·-1O2和电子转移等
ROS氧化性SO4·-E0为2.5~3.1 V;HO·,E0为1.8~2.8 V氧化性普遍弱于自由基
ROS稳定性SO·-4,半衰期t1/2为30~40 μs;·OH,半衰期t1/2 < 1 μs1O2:半衰期t1/2约4 μs
目标物选择性SO4·-,部分芳香类化合物;·OH,非选择性富电子芳香类有机物
常用掩蔽剂甲醇、乙醇、叔丁醇、异丙醇、HCO3-、Cl-络合态SO4·-、苯酚、I-
ROS表征方法电子自旋共振(EPR),SO4·-和·OH捕捉剂5,5-二甲基-1-吡咯啉-N-氧化物(DMPO);高效液相色谱(HPLC),·OH捕捉剂p-氯苯甲酸(p-CBA)等;荧光光度计,·OH捕捉剂对苯二甲酸等;分光光度计,NN-二甲基-p-亚硝基苯胺(RNO)等计时电流法,表面活性络合物、电子转移;电子自旋共振(EPR),1O2捕捉剂2,2,6,6-四甲基-4-哌啶酮(TMP);液质联用(LC/MS),1O2捕捉剂二甲基蒽;线性扫描伏安法(LSV),电子转移

新窗口打开| 下载CSV


1.2.1 自由基反应

相比于·OH,SO4·-的氧化电位更高、水中稳定性更好,更容易克服传质限制,在自由基反应中占据主导地位。比较特别的是,SO4·-能够降解·OH不能氧化的全氟辛酸(PFOA)21,但对硝基苯、对硝基苯甲酸等化合物的降解效果较差22

有研究表明,CNMs活化PS产生的自由基主要源于7-8, 19:(1)碳表面缺陷点位的离域π电子,典型的有石墨烯薄片的锯齿状边缘;(2)Lewis碱基上的孤对电子,如羰基(—C=O)中氧原子、吡啶氮和吡咯氮等,见反应式(1);(3)N等杂原子嵌入sp2杂化碳晶格后提供的自由电子;(4)CNMs表面吸附的水分子和OH-在电子转移过程中生成·OH,见反应式(2)。

(1)

(2)

1.2.2 表面催化氧化

对于某些CNMs/PS体系,使用电子自旋共振(EPR)无法监测到自由基产生,投加甲醇和叔丁醇等自由基掩蔽剂也不会显著削弱其除污效能,这说明表面催化氧化在非均相反应中占据了主导地位17。在表面催化氧化中,用于降解目标物的活性组分(ROS)主要包括表面活性络合物、络合态SO4·-、单线态氧(1O2)和电子转移等23。其中,嵌入sp2杂化碳晶格的石墨氮能够与相邻碳原子构成活性点位,并通过吸附和活化PMS分子,形成具有氧化还原活性的表面络合物24。当使用PDS作为氧化剂时,CNMs表面还会有络合态SO4·-生成,其不易受到甲醇等自由基掩蔽剂的干扰,但对碘离子(I-)非常敏感25。Xin CHENG等18发现,CNTs表面—C=O可与PDS形成过环氧加合物,并进一步分解产生1O2,在30 min内可去除水中约90%的2,4-二氯苯酚(2,4-DCP),期间并未出现大量SO4·-和·OH。此外,PMS在碱性条件下的自分解和PDS在CNTs表面的水解反应均会生成1O226-27。在形成表面活性络合物的同时,CNMs还可以充当目标物(电子供体)与氧化剂(电子受体)之间的电子导体,构成复杂三元体系实现污染物降解,该过程可以使用计时电流法进行验证17

在多数CNMs/PS体系中,表面催化氧化与自由基反应是同时存在的,如图 1所示。例如,Xiaoguang DUAN等28发现,CMK-8型有序介孔碳不仅能够利用离域π电子和表面—C=O活化PDS产生SO4·-,还可以利用sp2杂化碳与PDS分子形成络合态SO4·-,两者共同作用实现目标物的高效降解和最终矿化。

图1

图1   CNMs/PS体系的主要反应机理(以PDS为例)

Fig.1   The dominant reaction mechanisms of CNMs/PS (Take PDS as an example)


2 CNMs/PS体系的影响因素

现有的研究表明,碳材料类型、溶液pH、无机盐离子、背景有机物和反应操作方式都会显著影响CNMs/PS对目标物的去除效果。因此,有必要对各因素的影响机制进行系统阐述,为合理的体系设计与使用方法的建立奠定基础。

2.1 CNMs类型

尽管CNMs拥有相似的化学组成,但不同种类炭质材料之间存在明显的形态与活性差异,如表 2所示。

表2   炭质材料类型对CNMs/PS处理效能的影响

Table 2  The influence of CNMs type on the treatment performance of CNM: /PS system

目标物名称CNMs类型优势ROS种类实验条件目标物去除率
苯酚AC10SO 4·-AC 0.2 g/L,PDS 6.5 mmol/L,苯酚20 mg/L,反应180 min44.9%
ND10ND 0.2 g/L,PDS 6.5 mmol/L,苯酚20 mg/L,反应180 min39.5%
退火纳米金刚石(AND-1000)29·OH、络合态SO 4·-AND-1000 0.2 g/L,PDS 6.5 mmol/L,苯酚20 mg/L,反应180 min> 99%
CNTs16表面活性络合物CNTs 0.1 g/L,PMS 1 mmol/L,苯酚0.1 mmol/L,反应60 min> 99%
CMK-828SO 4·-、络合态SO 4·-CMK-8 0.2 g/L,PDS 6.5 mmol/L,苯酚20 mg/L,反应60 min> 99%
2,4,4’-三羟基二苯甲酮(2,4,4'-HBP)羟基化CNTsCNTs-OH)30·OH、络合态SO 4·-CNTs-OH 0.1 g/L,PDS 21.7 mmol/L,2,4,4’-HBP 43.5 μmol/L,反应120 min约89%
氮掺杂羟基化CNTs(NH 4NO 3- CNTs-OH)30·OH、络合态SO 4·-NH 4NO 3-CNTs-OH 0.1 g/L,PDS 21.7 mmol/L,2,4,4’-HBP 43.5 μmol/L,反应120 min> 99%
磺胺氯哒嗪(SCP)rGO31SO 4·-、·OHrGO 0.2 g/L,PDS 2 g/L,SCP 20 mg/L,反应180 min> 50%
N-rGO31SO 4·-、·OHN-rGO 0.2 g/L,PDS 2 g/L,SCP 20 mg/L,反应180 min> 99%
活性黑5(RBK5)石墨烯(GE)32络合态SO 4·-、·OHGE 1.5 g/L,PMS 0.3 g/L,RBK5 5 mg/L,反应15 min约91.5%
氮掺杂石墨烯(NG)32络合态SO 4·-、·OHNG 1.5 g/L,PMS 0.3 g/L,RBK5 5 mg/L,反应15 min约97.9%
四环素(TeC)700 ℃氮硫掺杂多孔碳(SNCs-700)331O 2、电子转移SNCs-700 0.4 g/L,PDS 2 mmol/L,TeC 0.02 mmol/L,反应60 min约81.4%
800 ℃氮硫掺杂多孔碳(SNCs-800)331O 2、电子转移SNCs-800 0.4 g/L,PDS 2 mmol/L,TeC 0.02 mmol/L,反应60 min> 90%
4-氯苯酚(4-CP)CNTs341O 2、络合态SO 4·-CNTs 0.2 g/L,PMS 1 mmol/L,4-CP 0.1 mmol/L,反应60 min> 90%
800℃硫掺杂多孔碳(SDAC-800)35表面活性络合物SDAC-800 0.1 g/L,PDS 15 mmol/L,4-CP 80 mg/L,反应90 min> 99%

新窗口打开| 下载CSV


Xiaoguang DUAN等10比较了多种CNMs活化PDS对苯酚的降解效果,发现目标物去除率大体遵循:rGO>CMK>CNTs>>AC>ND。由图 1可知,ND是由纳米级sp3杂化金刚石核和表面无序的碳层组成,可利用的催化点位数量远少于石墨烯类材料10。AC发达的微孔结构使其具有较大的比表面积,但孔内传质严重限制了污染物的降解速率,使催化反应仅发生在碳表面或临近的边界层内36。相比之下,CNTs的高活性主要来自sp2杂化碳六元环上丰富的离域π电子和中空管束表面较低的传质阻力,借助氧化还原循环,可以提高沿壁面方向的电子传递效率,加速催化氧化反应3-4, 37。与之类似,CMK利用立体介孔结构为传质和反应提供了良好的空间路径,有利于提高催化活性8。作为典型的二维CNMs,rGO薄片的反应活性与其表面还原程度密切相关。采用密闭水热法等温和的还原方式,可以去除rGO表面部分含氧基团,显著提高大π共轭结构的完整性和薄片表面疏水性38。Xiaoxiao CHEN等39发现,通过精准调控表面含氧基团数量(C/O),可显著增强rGO对芳香类硝基化合物的吸附性能,达到商品化CNTs的10~50倍。经还原处理后,rGO薄片弯曲形成褶皱,化学活性明显提高,但碳层还原程度过高又会出现团聚现象,表面活性点位被掩蔽,催化和吸附性能均大幅降低40-41

在碳晶格中嵌入氮原子或在缺陷点位嫁接含氮官能团也是提高CNMs催化活性的重要途径。例如,Xiaobo WANG等25发现,氮掺杂rGO(N-rGO)对双酚A(BPA)的吸附能力较原始rGO提升了1.75倍,活化PDS降解BPA的表观降解速率常数(k)更是增大了约700倍。Jian KANG等31认为,高电负性的石墨氮在N-rGO/PDS降解磺胺氯哒嗪(SCP)的过程中扮演了催化反应中心的作用。类似地,吡咯氮被证明是氮掺杂羟基化碳纳米管(NH4NO3-CNTs-OH)活化PDS生成自由基的关键点位30。在氮掺杂的基础上,引入少量硫原子将进一步优化石墨氮周边碳原子的电子排布,形成新的活性点位42-43,但过多的硫原子又会破坏电荷平衡,导致催化性能下降44-45

2.2 溶液pH

由于溶液pH会同时影响CNMs表面电荷性质、自由基类型和目标物解离形态,因此,CNMs/PS体系在不同pH条件下的处理效能往往差异较大,如表 3所示。当溶液pH小于CNMs零点电位(pHpzc)时,碳表面对阴离子污染物的亲和力更强,反之更易吸附阳离子物质,这种变化也会影响PS的表面络合过程46。尽管SO4·-的稳定性与溶液pH并不相关,但碱性条件下,大量OH-将促使SO4·-向·OH快速转化,主导自由基可能发生改变47。另外,污染物的去质子化程度与其反应活性密切相关。以广泛报道的磺胺甲唑(SMX)为例,其两级解离平衡常数分别为pKa1=1.6和pKa2=5.7,这意味着SMX在pH>5.7条件下完全解离,更容易被ROS降解48-49

表3   溶液pH对CNMs/PS处理效能的影响

Table 3  The influence of solution pH on the treatment performance of CNMs/PS system

最佳pHCNMs类型目标物名称优势ROS种类实验条件目标物去除率
酸性条件氮硫掺杂rGO(N,S-rGO)50双酚A(BPA)SO 4·-、·OHN,S-rGO 0.05 g/L,PDS 0.9 mmol/L,BPA 20 μg/L,反应60 minpH=3,>85%
pH=6,>95%
pH=11,>55%
氮掺CNTs(N-CNTs)51酸性橙7(AO7)络合态SO 4·-N-CNTs 0.2 g/L,n(PMS)/n(AO7)=40/1,AO7 20 mg/L,反应30 minpH=3,>95%
pH=7,>80%
pH=9,>70%
中性条件CNTs52AO7·OH、络合态SO 4·-CNTs 0.2 g/L,n(PDS)/n(AO7)=20/1,AO7 20 mg/L,反应90 minpH=3,>70%
pH=7,>85%
pH=9,>80%
超细石墨烯(PureG)53对羟基苯甲酸酯(PP)SO 4·-、·OHPureG 0.5 g/L,PDS 20 mg/L,PP 1 mg/L,反应120 minpH=3,>50%
pH=6.5,>80%
pH=9,>40%
氮硫掺杂rGO(N,S-rGO)50BPASO 4·-、·OHN,S-rGO 0.05 g/L,PDS 0.9 mmol/L,BPA 20 μg/L,反应60 minpH=3,>85%
pH=6.6,>95%
pH=11,>55%
碱性条件CNTs272,4-二氯苯酚(2,4-DCP)1O 2、电子转移CNTs 0.1 g/L,PDS 0.05 mmol/L,2,4-DCP 0.05 mmol/L,反应10 minpH=3,>80%
pH=7,>95%
pH=9,>99%

新窗口打开| 下载CSV


2.3 无机盐离子

一般认为,水中常见的Cl-、HCO3-/CO32-和NO2-等阴离子会对AOPs造成明显干扰,同时,溶液离子强度的增大会压缩碳表面双电层,导致Zeta电位降低,影响活性络合物的形成54。作为还原性物质,Cl-在消耗体系中SO4·-的同时,会生成·OH和氧化性较弱的Cl·、Cl2·-和HOCl·-,这使目标物降解路径更加多元化29, 55。Xiaoguang DUAN等29的研究表明,当Cl-浓度从0增至5 mmol/L时,退火纳米金刚石(AND-1000)活化PDS降解苯酚的反应速率常数k从0.084 min-1降至0.040 min-1,但随着Cl-浓度提高到20 mmol/L时,k返升至1.122 min-1,这说明高浓度Cl-可有效促进CNMs/PS体系中ROS的产生,如表 4所示。相比之下,HCO3-/CO32-对自由基和1O2前体物O2·-均具有很强的猝灭作用,导致CNTs/PS对2,4-二氯苯酚的去除率降低40%以上18, 27。需要注意的是,投加少量Cl-和HCO3-未必会对以表面催化氧化为主的CNMs/PS体系造成负面影响56-57,这应当结合ROS种类进行具体分析。此外,NO2-的影响不仅体现在与目标物竞争SO4·-方面,更应当关注有毒硝化副产物的潜在威胁58

表4   无机盐离子对CNMs/PS处理效能的影响

Table 4  The influence of inorganic ions on the treatment performance of CNMs/PS system

背景物质CNMs类型目标物名称优势ROS种类实验条件目标物去除率
Cl-退火纳米金刚石(AND -1000)29苯酚·OH、络合态SO4·-AND-1000 0.2 g/L,PDS 6.5 mmol/L,苯酚20 mg/L,反应30 minCl-=0 mmol/L,>90%
Cl-=5 mmol/L,>60%
Cl-=20 mmol/L,>95%
氮掺杂石墨烯(NG)59磺胺甲恶唑(SMX)络合态SO4·-NG 0.05 g/L,PDS 1 mmol/L,SMX 5 mg/L,反应60 minCl-=0 mmol/L,>99%
Cl-=100 mmol/L,>99%
CNTs56SMX表面活性络合物CNTs 0.1 g/L,PDS 500 μmol/L,SMX 10 μmol/L,反应60 minCl-=0 mmol/L,>60%
Cl-=5 mmol/L,>55%
600 ℃氮掺杂石墨烯(NG 600)24磺乙酰胺(SAM)表面活性络合物、SO4·-、·OHNG600 0.2 g/L,PMS 0.5 mmol/L,SAM 10 mg/L,反应50 minCl-=0 mg/L,>99%
Cl-=100 mg/L,>95%
HCO3·/CO32- CNTs182,4- DCP1O2CNTs 0.1 g/L,PDS 0.031 mmol/L,2,4-DCP 0.031 mmol/L,反应30 minCO32-=0 mmol/L,>90%
CO32-=6.2 mmol/L,>30%
CNTs272,4-DCP1O2、电子转移CNTs 0.1 g/L,PDS 0.05 mmol/L,2,4-DCP 0.05 mmol/L,反应30 minHCO3·=0 mmol/L,>99%
HCO3·=5 mmol/L,>40%
CNTs57溴代苯酚(2-Brp)表面活性络合物CNTs 0.05 mg/L,PDS 500 μmol/L,2-Brp 10 μmol/L,反应40 minHCO3·=0 mmol/L,>99%
HCO3·=1 mmol/L,>99%
900 ℃还原氧化石墨烯(rGO-900)60苯酚表面活性络合物rGO-900 0.05 g/L,PMS 6.5mmol/L,苯酚20 mg/L,反应20 minHCO3·=0 mmol/L,>99%
HCO3·=5 mmol/L,>45%

新窗口打开| 下载CSV


2.4 背景有机物

以天然有机物(NOM)为代表的背景物质对CNMs/PS体系的影响主要包括争夺表面活性点位、竞争ROS组分和干扰络合物形成等4, 61。作为优良的吸附剂,CNMs借助大π共轭结构对NOM表现出很强的静电亲和力。尽管NOM中羰基(—C=O)和邻位羟基(—OH)可以促进1O2形成26, 62,但考虑到竞争吸附、空间位阻和静电排斥等作用,NOM在CNMs表面的聚集或包覆仍将削弱对目标物的特异性吸附,阻碍PS分子参与形成活性络合物4, 61。另外,考虑到腐殖酸(HA)能够与SO4·-、·OH快速反应,反应速率常数分别为k(SO4·-+HA)=6.6×103 L/(mg·s),k(·OH+HA)=1.4×104 L/(mg·s),目标物降解所能利用的自由基数量势必减少63-64。由表 5可知,投加一定量HA后,rGO、G-ND和PureG活化PS的降解效率都出现了明显降低。

表5   表 5天然有机物对CNM: /PS处理效能的影响

Table 5  The influence of NOM on the treatment performance of CNMs/PS system

背景物质CNMs类型目标物名称优势ROS种类实验条件目标物去除率
腐殖酸(HA)900 ℃还原氧化石墨烯(rGO-900)60苯酚表面活性络合物rGO-900 0.05 g/L,PMS 6.5 mmol/L,苯酚20 mg/L,反应20 minHA=0 mg/L,>99%
HA=40 mg/L,>50%
石墨化纳米金刚石(G-ND)17苯酚电子转移G-ND 0.1 g/L,PDS 1 mmol/L,苯酚0.01 mmol/L,反应30 minHA=0 mg/L,>99%
HA=10 mg/L,>90%
超细石墨烯(PureG)53PPSO4·-、·OHPureG 0.5 g/L,PDS 20 mg/L,PP 1 mg/L,反应60 minHA=0 mg/L,>90%
HA=40 mg/L,>25%

新窗口打开| 下载CSV


2.5 反应操作方式

在实验室小试规模下,固相悬浮反应体系是运行CNMs/PS的最常用方法。将CNMs充分分散于溶液中可显著降低相间传质阻力,提高催化反应速率,但也容易导致纳米材料流失的问题,造成潜在的生态风险65-66。为解决上述问题,使用CNMs固定化技术,构建反应-分离一体化系统已成为该领域的研究热点,如表 6所示。

表6   CNMs复合膜的应用情况

Table 6  Application of CNMs composite membrane

CNMs类型目标物类型去除机理实验条件目标物去除率
CNTs复合膜三氯生(TCS)67吸附、超滤CNTs负载量22 g/m 2,TCS 1 mg/L,连续过滤120 min> 90%
GO复合膜碱基蓝68纳滤GO负载量0.14 g/m 2,碱基蓝50 mg/L,连续过滤60 min> 95%
rGO复合膜草酸69PS原位催化氧化rGO负载量15 mg,PDS 1 mmol/L,草酸90 mg/L,连续过滤175 min> 90%
N-rGO复合膜苯酚70PS原位催化氧化N-rGO负载量15 mg,PDS 1 mmol/L,苯酚0.5 mmol/L,连续过滤180 min> 70%
rGO/CNTs复合膜SMX38PS原位催化氧化rGO/CNTs负载量8 g/m2,PDS 5 mmol/L,SMX 500 μg/L,连续过滤180 min> 75%

新窗口打开| 下载CSV


例如,J. RESTIVO等71将纳米碳纤维固着在陶瓷体蜂窝状通道内,借助流体流动驱动非均相催化氧化反应,实现了对阿特拉津等多种微污染物的稳定去除。G. S. AJMANI等72将CNTs负载于微滤膜表面,通过耦合过滤吸附过程,充分发挥复合碳层的空间位阻效应,使其对水中胶体状和溶解态NOM的去除效果明显优于悬浮吸附体系。王利颖等73在聚偏氟乙烯(PVDF)中空纤维膜内表面负载CNTs功能碳层,实现了对污水厂二级出水的连续处理,其对溶解性有机物(DOC)和芳香类物质(UV254)的去除率比原始PVDF膜分别提高了37%和56%。

石墨烯类材料因具有薄片状外形、丰富的活性点位和不透水特性,很适合用于制备原位催化氧化(In-situ catalytic oxidation)复合膜74。Yanbiao LIU等70将N-rGO均匀负载在微滤膜表面,通过过滤过程驱动水流沿复合碳层表面做曲折流动,期间N-rGO活化PDS快速降解水中微量苯酚。借助于过滤操作对碳层内对流传质的强化作用,复合膜原位催化氧化的k值可达悬浮反应体系的3.6倍。此外,由于石墨烯碳层的间隙一般较窄(< 1 nm),严重限制了膜透水通量,因此,可采取嵌入一维纳米材料(扩大层间间隙)或在薄片表面开孔等措施,改善复合膜的过水性能75-76。Jiayi SHENG等38将rGO与CNTs按质量比3∶1进行复合组装,制备低压过滤复合膜,其能够在极短的接触时间内(< 0.4 s)活化PDS,快速降解水中SMX,复合膜如图 2所示。该方法通过耦合吸附过滤与催化氧化过程,实现了目标物去除和膜污染控制的双重功能。

图2

图2   rGO/CNTs复合膜及原位催化氧化反应

(a)rGO/CNTs复合膜(b)复合膜原位催化氧化反应原理

Fig.2   rGO/CNTs composite membrane and in-situ catalytic oxidation reaction


3 主要挑战与应对思路

随着纳米技术的快速发展,CNMs的制备成本正持续降低,但CNMs/PS体系的推广应用仍面临以下挑战:(1)实际水体中普遍存在NOM、Cl-、HCO3-/ CO32-等干扰AOPs的背景物质,如何实现CNMs/PS对目标物的选择性氧化是体现技术先进性的核心问题;(2)随着反应的持续进行,CNMs表面的活性点位逐渐被消耗或掩蔽,对PS活化性能将有所降低,如何保持CNMs/PS处理效能的稳定是提升技术经济性的关键问题;(3)作为一种新型AOPs技术,CNMs/PS的潜在风险主要来自纳米材料的易流失性和氧化中间产物的不确定性,如何有效管控风险是关系到绿色可持续发展的重要问题。

为应对上述挑战,CNMs/PS体系的后续研究应重点关注:(1)针对实际水体环境,开展预处理工序(如强化混凝等)优选,有效削减NOM含量,降低其对自由基的消耗。同时,将EPR等ROS定量测定方法与基于密度泛函理论(Density functional theory)的化学计算相结合,以强化表面催化氧化为目标,开展CNMs功能化设计与制备,提高体系的抗干扰能力16;(2)针对反应期间,CNMs表面Lewis碱基等供电子点位减少、含氧基团数量增多所导致的催化剂性能下降10, 70,研发高效低耗和易于操作的再生方法(如密闭热碱法等25),并开展工程化验证和技术经济分析;(3)针对CNMs原位催化氧化系统76,进一步探究碳层结构特性、膜分离操作、目标物种类(浓度)和溶液水质背景等对其处理效能的影响规律,并将中间产物毒性指标纳入技术考核体系,尝试采用生态净化方法有效控制潜在风险。

4 结语

CNMs/PS体系通过自由基反应与表面催化氧化,可以高效去除水中多种有机污染物,在微污染水体净化领域具有良好的应用前景。CNMs、PS和目标物的性质将共同决定体系中主导的ROS类型,同时,其处理效能也会受到炭质材料微观结构、溶液pH、环境背景物质和操作方式的显著影响。在未来,CNMs/PS体系的后续研究将聚焦CNMs的功能化设计与制备,强化表面催化氧化提升反应的选择性,完善以复合膜为代表的反应-分离一体化系统,并研发活性再生方法和新型组合工艺,有效解决催化剂稳定性和潜在风险防控等问题,为开展工程化验证和大规模应用奠定基础。

参考文献

WACLAWEK S , LUTZE H V , GRUBEL K , et al.

Chemistry of persulfates in water and wastewater treatment: A review

[J]. Chemical Engineering Journal, 2017, 330, 44- 62.

DOI:10.1016/j.cej.2017.07.132      [本文引用: 2]

WANG Jianlong , WANG Shizong .

Activation of persulfate(PS) and peroxymonosulfate(PMS) and application for the degradation of emerging contaminants

[J]. Chemical Engineering Journal, 2018, 334, 1502- 1517.

DOI:10.1016/j.cej.2017.11.059      [本文引用: 1]

XIAO Ruiyang , LUO Zonghao , WEI Zongsu , et al.

Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies

[J]. Current Opinion in Chemical Engineering, 2018, 19, 51- 58.

DOI:10.1016/j.coche.2017.12.005      [本文引用: 3]

LIU Xitong , WANG Mengshu , ZHANG Shujuan , et al.

Application potential of carbon nanotubes in water treatment: A review

[J]. Journal of Environmental Sciences, 2013, 25 (7): 1263- 1280.

DOI:10.1016/S1001-0742(12)60161-2      [本文引用: 4]

程爱华, 邵新岚, 王倩.

活性炭活化过硫酸盐处理含酚废水的实验研究

[J]. 科学技术与工程, 2017, 17 (35): 347- 351.

DOI:10.3969/j.issn.1671-1815.2017.35.058      [本文引用: 1]

VOIRY D , YANG J , KUPFERBERG J , et al.

High-quality graphene via microwave reduction of solution-exfoliated graphene oxide

[J]. Science, 2016, 353 (6306): 1413- 1416.

DOI:10.1126/science.aah3398      [本文引用: 1]

TANG Pei , HU Gang , LI Mengzhu , et al.

Graphene-based metal-free catalysts for catalytic reactions in the liquid phase

[J]. ACS Catalysis, 2016, 6, 6948- 6958.

DOI:10.1021/acscatal.6b01668      [本文引用: 3]

ZHANG Luhua , SHI Yumeng , WANG Ye , et al.

Nanocarbon catalysts: Recent understanding regarding the active sites

[J]. Advance Science, 2020, 7 (5): 1902116.

URL     [本文引用: 4]

肖鹏飞, 安璐, 韩爽.

炭质材料在活化过硫酸盐高级氧化技术中的应用进展

[J]. 化工进展, 2020, 39 (8): 3293- 3306.

URL     [本文引用: 1]

DUAN Xiaoguang , SUN Hongqi , KANG Jian , et al.

Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons

[J]. ACS Catalysis, 2015, 5 (8): 4629- 4636.

DOI:10.1021/acscatal.5b00774      [本文引用: 6]

YAN Jingchun , GAO Weiguo , DONG Mingang , et al.

Degradation of trichloroethylene by activated persulfate using a reduced graphene oxide supported magnetite nanoparticle

[J]. Chemical Engineering Journal, 2016, 295, 309- 316.

DOI:10.1016/j.cej.2016.01.085      [本文引用: 1]

周丰, 黄慧敏, 钱飞跃, .

碳纳米管负载层结构对复合膜分离性能的影响研究

[J]. 化工学报, 2018, 69 (5): 2318- 2326.

URL    

KIANG C H , GODDARD III W A , BETHUNE D S , et al.

Carbon nanotubes with single-layer walls carbon

[J]. Carbon, 1995, 33 (7): 903- 914.

DOI:10.1016/0008-6223(95)00019-A      [本文引用: 1]

LI Xiaoan , FOROUZANDEH F , FURSTENHAUPT T , et al.

New insights into the surface properties of hard-templated ordered mesoporous carbons

[J]. Carbon, 2018, 127, 707- 717.

DOI:10.1016/j.carbon.2017.11.049      [本文引用: 1]

张凌峰, 胡忠攀, 高泽敏, .

有序介孔碳基金属复合材料的制备及催化应用

[J]. 化学进展, 2015, 27 (8): 1042- 1056.

URL     [本文引用: 1]

LEE H , LEE H J , JEONG J , et al.

Activation of persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism

[J]. Chemical Engineering Journal, 2015, 266, 28- 33.

DOI:10.1016/j.cej.2014.12.065      [本文引用: 3]

LEE H , KIM H I , WEON S , et al.

Activation of persulfates by graphitized nanodiamonds for removal of organic compounds

[J]. Environmental Science & Technology, 2016, 50 (18): 10134- 10142.

URL     [本文引用: 3]

CHENG Xin , GUO Hongguang , ZHANG Yongli , et al.

Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes

[J]. Water Research, 2017, 113, 80- 88.

DOI:10.1016/j.watres.2017.02.016      [本文引用: 4]

CHEN Xiao , OH W D , LIM T T .

Grapheneand CNTs-based carbo-catalysts in persulfates activation: Material design and catalytic mechanisms

[J]. Chemical Engineering Journal, 2018, 354, 941- 976.

DOI:10.1016/j.cej.2018.08.049      [本文引用: 2]

YUN E T , LEE J H , KIM J , et al.

Identifying the nonradical mechanism in the peroxymonosulfate activation process: Singlet oxygenation versus mediated electron transfer

[J]. Environmental Science & Technology, 2018, 52 (12): 7032- 7042.

URL     [本文引用: 1]

LEE Y C , LO S L , KUO J , et al.

Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon

[J]. Journal of Hazard Material, 2013, 261, 463- 469.

DOI:10.1016/j.jhazmat.2013.07.054      [本文引用: 1]

WATTS R J , ASCE M , TEEL A L .

Treatment of contaminated soils and groundwater using isco

[J]. Practice Periodical of Hazardous, Toxic & Radioactive Waste Management, 2006, 10 (1): 2- 9.

URL     [本文引用: 1]

DUAN Xiaoguang , SUN Hongqi , SHAO Zongping , et al.

Nonradical reactions in environmental remediation processes: Uncertainty and challenges

[J]. Applied Catalysis B: Environmental, 2018, 224, 973- 982.

DOI:10.1016/j.apcatb.2017.11.051      [本文引用: 1]

CHEN Xiao , OH W D , HU Z T , et al.

Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes

[J]. Applied Catalysis B: Environmental, 2018, 225, 243- 257.

DOI:10.1016/j.apcatb.2017.11.071      [本文引用: 2]

WANG Xiaobo , QIN Yanlei , ZHU Lihua , et al.

Nitrogen-doped reduced graphene oxide as a bifunctional material for removing bisphenols: Synergistic effect between adsorption and catalysis

[J]. Environmental Science & Technology, 2015, 49 (11): 6855- 6864.

URL     [本文引用: 3]

ZHOU Yang , JIANG Jin , GAO Yuan , et al.

Activation of peroxymonosulfate by benzoquinone: A novel nonradical oxidation process

[J]. Environmental Science & Technology, 2015, 49 (21): 12941- 12950.

URL     [本文引用: 2]

CHENG Xin , GUO Hongguang , ZHANG Yongli , et al.

Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: Activation performance and structure-function relationship

[J]. Water Research, 2019, 157, 406- 414.

DOI:10.1016/j.watres.2019.03.096      [本文引用: 4]

DUAN Xiaoguang , SUN Hongqi , TADE M , et al.

Metal-free activation of persulfate by cubic mesoporous carbons for catalytic oxidation via radical and nonradical processes

[J]. Catalysis Today, 2018, 307, 140- 146.

DOI:10.1016/j.cattod.2017.04.038      [本文引用: 2]

DUAN Xiaoguang , SU Chao , ZHOU Li , et al.

Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds

[J]. Applied Catalysis B: Environmental, 2016, 194, 7- 15.

DOI:10.1016/j.apcatb.2016.04.043      [本文引用: 4]

PAN Xiaoxue , CHEN Jing , WU Nannan , et al.

Degradation of aqueous 2, 4, 4'-trihydroxybenzophenone by persulfate activated with nitrogen doped carbonaceous materials and the formation of dimer products

[J]. Water Research, 2018, 143, 176- 187.

DOI:10.1016/j.watres.2018.06.038      [本文引用: 3]

KANG Jian , DUAN Xiaoguang , ZHOU Li , et al.

Carbocatalytic activation of persulfate for removal of antibiotics in water solutions

[J]. Chemical Engineering Journal, 2016, 288, 399- 405.

DOI:10.1016/j.cej.2015.12.040      [本文引用: 3]

于永波, 黄湾, 董正玉, .

N原子杂化石墨烯高效活化过一硫酸盐降RBK5染料废水

[J]. 环境科学, 2019, 40 (7): 3154- 3161.

URL     [本文引用: 2]

HUO Xiaowei , ZHOU Peng , ZHANG Jing , et al.

N, S-doped porous carbons for persulfate activation to remove tetracycline: Nonradical Mechanism

[J]. Journal of Hazard Material, 2020, 391, 122055.

DOI:10.1016/j.jhazmat.2020.122055      [本文引用: 2]

ADIL S , KIM W S , KIM T H , et al.

Defective, oxygen-functionalized multi-walled carbon nanotubes as an efficient peroxymonosulfate activator for degradation of organic pollutants

[J]. Journal of Hazard Material, 2020, 396, 122757.

DOI:10.1016/j.jhazmat.2020.122757      [本文引用: 1]

GUO Yaoping , ZENG Zequan , ZHU Youcai , et al.

Catalytic oxidation of aqueous organic contaminants by persulfate activated with sulfur-doped hierarchically porous carbon derived from thiophene

[J]. Applied Catalysis B: Environmental, 2018, 220, 635- 644.

DOI:10.1016/j.apcatb.2017.08.073      [本文引用: 1]

杨世迎, 邵雪停, 韩强, .

活性炭/过一硫酸盐降解水中金橙Ⅱ活性炭的循环利用

[J]. 环境化学, 2012, 31 (5): 692- 696.

URL     [本文引用: 1]

曹永海, 李博, 余皓, .

纳米碳材料催化液相选择性氧化的研究进展

[J]. 化工学报, 2014, 7 (65): 2645- 2656.

URL     [本文引用: 1]

SHENG Jiayi , YIN Honggui , QIAN Feiyue .

Reduced graphene oxide-based composite membranes for in-situ catalytic oxidation of sulfamethoxazole operated in membrane filtration

[J]. Separation and Purification Technology, 2020, 236 (1): 116275.

[本文引用: 3]

CHEN Xiaoxiao , CHEN Baoliang .

Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets

[J]. Environmental Science & Technology, 2015, 49 (10): 6181- 6189.

URL     [本文引用: 1]

ROSSI A , PICCININ S , PELLEGRINI V , et al.

Nano-scale corrugations in graphene: A density functional theory study of structure, electronic properties and hydrogenation

[J]. The Journal of Physical Chemistry C, 2015, 119 (14): 7900- 7910.

DOI:10.1021/jp511409b      [本文引用: 1]

杨凯杰. 石墨烯基吸附-膜分离材料的构建、结构调控及其污染控制应用[D]. 杭州: 浙江大学, 2018.

[本文引用: 1]

CHAO Guojie , ZHANG Longsheng , WANG Dong , et al.

Activation of graphitic nitrogen sites for boosting oxygen reduction

[J]. Carbon, 2020, 159, 611- 616.

DOI:10.1016/j.carbon.2019.12.052      [本文引用: 1]

DUAN Xiaoguang , O DONNELL K , SUN H , et al.

Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions

[J]. Small, 2015, 11 (25): 3036- 3044.

DOI:10.1002/smll.201403715      [本文引用: 1]

LI Jiajie , ZHANG Yumin , ZHANG Xinghong , et al.

S, N dual-doped graphene-like carbon nanosheets as efficient oxygen reduction reaction electrocatalysts

[J]. ACS Applied Materials & Interfaces, 2017, 9 (1): 398- 405.

URL     [本文引用: 1]

杨世迎, 张翱, 任腾飞, .

炭基材料催化过氧化物降解水中有机污染物表面作用机制

[J]. 化学进展, 2017, 29 (5): 539- 552.

URL     [本文引用: 1]

FAN Xinfei , LI Shanshan , SUN Menghan , et al.

Degradation of phenol by coal-based carbon membrane integrating sulfate radicals-based advanced oxidation processes

[J]. Ecotoxicology and Environmental Safety, 2019, 185, 109662.

DOI:10.1016/j.ecoenv.2019.109662      [本文引用: 1]

FANG Guodong , DIONYSIOU D D , ZHOU Dongmei , et al.

Transfor-mation of polychlorinated biphenyls by persulfate at ambient temperature

[J]. Chemosphere, 2013, 90 (5): 1573- 1580.

DOI:10.1016/j.chemosphere.2012.07.047      [本文引用: 1]

BOREEN A L , ARNOLD W A , MCNEILL K .

Photochemical fate of sulfa drugs in the aquatic environment sulfa drugs containing fivemembered heterocyclic groups

[J]. Environmental Science & Technology, 2004, 14 (38): 3933- 3940.

URL     [本文引用: 1]

QI Chengdu , LIU Xitao , LIN Chunye , et al.

Degradation of sulfamethoxazole by microwave-activated persulfate: Kinetics, mechanism and acute toxicity

[J]. Chemical Engineering Journal, 2014, 249, 6- 14.

DOI:10.1016/j.cej.2014.03.086      [本文引用: 1]

WANG Qiang , LI Lei , LUO Li , et al.

Activation of persulfate with dual-doped reduced graphene oxide for degradation of alkylphenols

[J]. Chemical Engineering Journal, 2019, 376, 120891.

DOI:10.1016/j.cej.2019.01.170      [本文引用: 2]

王莹, 魏成耀, 黄天寅, .

氮掺杂碳纳米管活化过一硫酸盐降解酸性橙AO7

[J]. 中国环境科学, 2017, 37 (7): 2583- 2590.

DOI:10.3969/j.issn.1000-6923.2017.07.021      [本文引用: 1]

陈家斌, 魏成耀, 房聪, .

碳纳米管活化过二硫酸盐降解偶氮染料酸性橙7

[J]. 中国环境科学, 2016, 36 (12): 3618- 3624.

DOI:10.3969/j.issn.1000-6923.2016.12.012      [本文引用: 1]

BEKRIS L , FRONTISTIS Z , TRAKAKIS G , et al.

Graphene: A new activator of sodium persulfate for the advanced oxidation of parabens in water

[J]. Water Research, 2017, 126, 111- 121.

DOI:10.1016/j.watres.2017.09.020      [本文引用: 2]

HENDERSON M A .

The interaction of water with solid surfaces: Fundamental aspects

[J]. Surface Scrence Reports, 1987, 7, 211- 385.

DOI:10.1016/0167-5729(87)90001-X      [本文引用: 1]

BENNEDSEN L R , MUFF J , SOGAARD E G .

Influence of chloride and carbonates on the reactivity of activated persulfate

[J]. Chemosphere, 2012, 86 (11): 1092- 1097.

DOI:10.1016/j.chemosphere.2011.12.011      [本文引用: 1]

GUAN Chaoting , JIANG Jin , PANG Suyan , et al.

Nonradical transformation of sulfamethoxazole by carbon nanotube activated peroxydisulfate: Kinetics, mechanism and product toxicity

[J]. Chemical Engineering Journal, 2019, 378, 122147.

DOI:10.1016/j.cej.2019.122147      [本文引用: 2]

GUAN Chaoting , JIANG Jin , PANG Suyan , et al.

Oxidation kinetics of bromophenols by nonradical activation of peroxydisulfate in the presence of carbon nanotube and formation of brominated polymeric products

[J]. Environmental Science & Technology, 2017, 51 (18): 10718- 10728.

URL     [本文引用: 2]

JI Yuefei , WANG Lu , JIANG Mengdi , et al.

The role of nitrite in sulfate radical-based degradation of phenolic compounds: An unexpected nitration process relevant to groundwater remediation by in-situ chemical oxidation(ISCO)

[J]. Water Research, 2017, 123, 249- 257.

DOI:10.1016/j.watres.2017.06.081      [本文引用: 1]

CHEN Hao , CARROLL K C .

Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene

[J]. Environmental Pollution, 2016, 215, 96- 102.

DOI:10.1016/j.envpol.2016.04.088      [本文引用: 1]

DUAN Xiaoguang , AO Zhimin , ZHOU Li , et al.

Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation

[J]. Applied Catalysis B: Environmental, 2016, 188, 98- 105.

DOI:10.1016/j.apcatb.2016.01.059      [本文引用: 2]

HUA Zulin , TANG Zhiqiang , BAI Xue , et al.

Aggregation and resuspension of graphene oxide in simulated natural surface aquatic environments

[J]. Environmental Pollution, 2015, 205, 161- 169.

DOI:10.1016/j.envpol.2015.05.039      [本文引用: 2]

BOKARE A D , CHOI W .

Singlet-oxygen generation in alkaline periodate solution

[J]. Environmental Science & Technology, 2015, 49 (24): 14392- 14400.

URL     [本文引用: 1]

GARA P M , BOSIO G N , GONZALEZ M C , et al.

A combined theoretical and experimental study on the oxidation of fulvic acid by the sulfate radical anion

[J]. Photochemical & Photobiological Sciences, 2009, 8 (7): 992- 997.

URL     [本文引用: 1]

LUTZE H V , BIRCHER S , RAPP I , et al.

Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter

[J]. Environmental Science & Technology, 2015, 49 (3): 1673- 1680.

URL     [本文引用: 1]

AKHAVAN O , GHADERI E , EMAMY H , et al.

Genotoxicity of graphene nanoribbons in human mesenchymal stem cells

[J]. Carbon, 2013, 54, 419- 431.

DOI:10.1016/j.carbon.2012.11.058      [本文引用: 1]

AHMED F , RODRIGUES D F .

Investigation of acute effects of graphene oxide on wastewater microbial community: A case study

[J]. Journal of Hazard Material, 2013, 256

URL     [本文引用: 1]

WANG Yifei , MA Jing , ZHU Jiaxin , et al.

Multi-walled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products

[J]. Water Research, 2016, 92, 104- 112.

DOI:10.1016/j.watres.2016.01.038      [本文引用: 1]

ZHONG Yun , MAHMUD S , HE Zijun , et al.

Graphene oxide modified membrane for highly efficient wastewater treatment by dynamic combination of nanofiltration and catalysis

[J]. Journal of Hazard Material, 2020, 397, 122774.

DOI:10.1016/j.jhazmat.2020.122774      [本文引用: 1]

PEDROSA M , DRAZIC G , TAVARES P B , et al.

Metal-free graphene-based catalytic membrane for degradation of organic contaminants by persulfate activation

[J]. Chemical Engineering Journal, 2019, 369, 223- 232.

DOI:10.1016/j.cej.2019.02.211      [本文引用: 1]

LIU Yanbiao , YU Ling , ONG C N , et al.

Nitrogen-doped graphene nanosheets as reactive water purification membranes

[J]. Nano Research, 2016, 9 (7): 1983- 1993.

DOI:10.1007/s12274-016-1089-7      [本文引用: 3]

RESTIVO J , ORFAO J J M , PEREIRA M F R , et al.

Catalytic ozonation of organic micropollutants using carbon nanofibers supported on monoliths

[J]. Chemical Engineering Journal, 2013, 230, 115- 123.

DOI:10.1016/j.cej.2013.06.064      [本文引用: 1]

AJMANI G S , CHO H H , ABBOTT CHALEW T E , et al.

Static and dynamic removal of aquatic natural organic matter by carbon nanotubes

[J]. Water Research, 2014, 59, 262- 270.

DOI:10.1016/j.watres.2014.04.030      [本文引用: 1]

王利颖, 石洁, 王凯伦, .

碳纳米管改性PVDF中空纤维超滤膜处理二级出水抗污染性能研究

[J]. 环境科学, 2017, 38 (1): 220- 228.

URL     [本文引用: 1]

王茜, 郭晓燕, 邵怀启, .

石墨烯及氧化石墨烯对分离膜改性的方法、效能和作用机理

[J]. 化学进展, 2015, 27 (10): 1470- 1480.

DOI:10.7536/PC150321      [本文引用: 1]

HAN Yi , JIANG Yanqiu , GAO Chao .

High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes

[J]. ACS Applied Materials & Interfaces, 2015, 7 (15): 8147- 8155.

URL     [本文引用: 1]

钱飞跃, 王俊霞, 沈耀良, 等. 一种水深度处理方法: 中国专利, CN109052728B[P]. 2019-07-19.

[本文引用: 2]

/