工业水处理, 2022, 42(12): 47-54 doi: 10.19965/j.cnki.iwt.2021-1137

标识码(

磁化改性吸附剂去除废水中污染物的研究进展

何佩霖,, 高雅, 刘新,

成都医学院公共卫生学院,四川 成都 610500

Research progress on the removal of pollutants in wastewater by magnetized modified adsorbents

HE Peilin,, GAO Ya, LIU Xin,

School of Public Health,Chengdu Medical College,Chengdu 610500,China

收稿日期: 2022-10-17  

基金资助: 四川省科技厅项目.  2018SZ0306

Received: 2022-10-17  

作者简介 About authors

何佩霖(1996—),硕士研究生,E-mail:1605658046@qq.com , E-mail:1605658046@qq.com

刘新,教授级实验师,E-mail:liuxin834@163.com , E-mail:liuxin834@163.com

摘要

近年来随着农业和工业领域的高速发展,纺织、化学制造、农副产品加工、医疗等行业产生大量废水。这些废水中含有染料、重金属、持久性有机污染物、药物及个人护理品等多种污染物,排入水环境后造成自然水体的严重污染。生物吸附法具有高吸附量、低成本、环境友好等特点,常用于废水中各类污染物的吸附去除。然而,生物吸附法在净化废水过程中普遍存在吸附剂回收难、回收不彻底的难题,导致水环境发生再次污染。磁化改性技术可使磁性吸附剂与水溶液实现快速分离,解决生物吸附剂吸附后回收困难的问题。综述了磁性天然生物材料、磁性生物炭和磁性复合材料吸附剂的制备,以及该类吸附剂在废水处理中的应用现状和局限性。同时,对磁化改性技术在生物吸附研究领域的未来发展趋势进行了展望。未来的废水治理研究中,可围绕磁性吸附剂制备工艺优化、磁性吸附材料改性、吸附机制探究、中小试实验、生命周期分析等方面开展,以实现废水中各种有害污染物的无公害处理。

关键词: 吸附 ; 磁化 ; 改性 ; 生物吸附

Abstract

With the rapid development of agricultural and industry in recent years, a large amount of wastewater has been generated from textile, chemical manufacturing, agricultural by-product processing, medical and other industries. These wastewaters contain various pollutants such as dyes, heavy metals, persistent organic pollutants, pharmaceutical and personal care products, which cause serious pollution of natural water bodies. Biological adsorption has the characteristics of high adsorption capacity, low cost and environmental friendly, and is commonly used for the adsorption and removal of various pollutants from wastewater. However, biological adsorption generally has the problem of difficult and incomplete recovery of adsorbent in the process of purifying wastewater, which leads to re-contamination of water environment. Magnetization modification technology can achieve rapid separation of magnetic adsorbent from aqueous solution and solve the problem of difficult recovery of biosorbent after adsorption. The preparation of magnetic natural biomaterials, magnetic biochar and magnetic composite adsorbents, as well as the current status and limitations of these adsorbents in wastewater treatment were reviewed. Meanwhile, the future development trend of magnetization modification technology in the field of biological adsorption research was foreseen. The future research on wastewater treatment can be focused on optimization of magnetic adsorbent preparation, modification of magnetic adsorbent materials, exploration of adsorption mechanism, small-scale and pilot scale test, and life cycle assessment to achieve the pollution-free treatment of harmful pollutants in wastewater.

Keywords: adsorption ; magnetization ; modification ; biological adsorption

PDF (2002KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

何佩霖, 高雅, 刘新. 磁化改性吸附剂去除废水中污染物的研究进展. 工业水处理[J], 2022, 42(12): 47-54 doi:10.19965/j.cnki.iwt.2021-1137

HE Peilin. Research progress on the removal of pollutants in wastewater by magnetized modified adsorbents. Industrial Water Treatment[J], 2022, 42(12): 47-54 doi:10.19965/j.cnki.iwt.2021-1137

工业废水中的污染物种类繁多并具有一定毒性,对生态环境和人体健康形成潜在威胁1。因此,采用经济、高效、适宜的处理技术对废水中的污染物进行净化去除显得尤为重要。吸附法具有吸附剂来源广泛、环保安全、去除效果较好等优点,受到国内外学者的关注2。废水处理中常采用化学吸附法和生物吸附法。化学吸附法主要通过化学键作用吸附去除废水中的污染物3。由于化学吸附剂表面官能团数量有限,无法处理废水中的大量污染物,且化学吸附剂制备过程复杂、成本较高、性能不稳定,制约了化学吸附法的应用4。生物吸附法凭借生物质材料自身结构吸附水中的污染物,通过固液分离过程实现污染物的去除5。生物吸附剂的表面孔隙多、比表面积大、结构粗糙,并带有多种官能团和大量电荷,可通过络合、离子交换、静电吸引、孔隙填充等作用对污染物进行吸附去除,能够弥补化学吸附法的不足。

近年来,天然生物材料(如农业废弃物、壳聚糖、树脂等)、生物炭、复合材料等展现出良好的吸附能力6-9,但用于废水处理时存在一定难题,即投入废水中的生物吸附剂回收难、回收不彻底,可能导致吸附剂表面结合的污染物发生解吸,造成二次污染。此外,生物吸附剂还会继续消耗水中的溶解氧,使水质进一步恶化。对生物吸附剂进行磁化改性使其具有磁性,并用外部磁场快速回收吸附剂,可有效解决生物吸附剂因回收难而导致的一系列问题10。笔者阐述了天然生物材料、生物炭、复合材料的磁化改性方法,重点介绍了不同类型磁性吸附剂在废水净化中的应用情况及局限性,以期为高效、低成本的废水净化技术提供一定理论借鉴。

1 吸附材料的磁化改性

在磁化改性过程中,无毒、绿色环保、易生物降解的材料是首选的生物吸附剂。天然生物材料因表面孔隙多、有机基团丰富等特性,常被选作磁化改性的模板11。也有研究发现炭化后的生物材料较天然材料对水中目标污染物的吸附效果更好12。但磁性生物炭的制备过程复杂、成本高,且制备过程可能产生SO2、NO、NO2等气体,增加环境废气负荷。因此,复合材料的磁化改性成为新的发展趋势。研究者通常采用共沉淀法对材料进行磁化改性:在一定温度下,将粉碎后的吸附剂投入含有Fe2+和Fe3+的酸性混合溶液中,滴加碱性溶液反应生成黑色沉淀,静置一段时间后洗涤、分离、干燥沉淀,即可获得磁化改性吸附剂,如图1(a)所示。磁化后的吸附剂不仅能高效去除废水中的目标污染物,还能快速从水溶液中分离出来,实现吸附剂的高效回收和再利用。磁性复合材料的制备过程几乎没有毒副产物产生,可广泛应用于废水的净化处理。天然生物材料、生物炭和复合材料的磁化改性过程见图1(b)13-15

图1

图1   磁性吸附剂的回收思路(a)与吸附材料磁化改性过程(b)

Fig. 1   The recycle of magnetic adsorbent (a) and magnetization modification process of adsorbent (b)


1.1 天然生物材料磁化

天然生物材料是自然界中天然存在的未经加工或基本不加工就可直接使用的生物材料,包括农业废弃物、壳聚糖、树脂、藻类、微生物、活性污泥等16。它们具有成本低、易降解、绿色环保等特点,表面含有大量有机基团,便于化学修饰16。天然生物材料表面的羟基、胺基等富电子基团可与目标污染物表面的缺电子基团发生络合,从而吸附去除废水中的污染物。此外,天然生物材料还可通过离子交换作用去除污染物17。D. CHOLICO-GONZÁLEZ等18利用天然甘蔗渣吸附废水中的Pb2+、Cd2+和Zn2+,最大吸附量分别达到93.14、28.50、24.66 mg/g。大量研究也表明,天然生物材料还可用于废水中染料、抗生素等的吸附去除19

天然生物材料在使用过程中常被研磨成粉末,尽管在溶液中分散性能佳,但吸附后与溶液分离困难,难以快速高效回收吸附剂。天然生物材料经磁化后,可在外部磁场作用下快速从水溶液中回收。Chaofan ZHENG等13采用共沉淀法制备了一种新型磁性壳聚糖吸附剂,用于去除废水中的Cr(Ⅵ),制备过程见图1(b)。表征结果显示磁化后的吸附剂表面具有—OH、—NH2、C̿     N、C̿     S、Fe—O等基团,饱和磁化强度为11.6 emu/g,提示Fe3O4已成功负载在壳聚糖表面。该磁性壳聚糖吸附剂对水溶液中Cr(Ⅵ)的吸附量达153.85 mg/g;用磁分离法收集吸附Cr(Ⅵ)的磁性吸附剂,置于含NaCl的NaOH溶液中进行再生,再生后的磁性吸附剂仍可吸附水溶液中的污染物13。Jie ZHONG等20以树脂为原料制备磁性树脂,通过Fenton结合磁性树脂的方式降解废水中的3种抗生素和17种抗性基因。结果显示,Fenton法结合磁性树脂几乎可以去除废水中全部的目标抗生素,且抗性基因降解率达99.5%,而对照组中的目标抗生素去除率不足50%,抗性基因降解率为99.9%。说明磁性树脂能够提高对抗生素的去除率,同时一定程度上维持对抗性基因的降解效果。

天然生物材料的磁化及其在废水中的应用情况如表1所示21-29

表1   磁性天然生物材料对废水中污染物的吸附量

Table 1  Adsorbed amacnt of pollutants in wastewater by magnetic natural biomaterials

污染物吸附材料吸附量/(mg·g-1文献
重金属磁性壳聚糖83.3321
六价铬磁性壳聚糖153.8513
磁性壳聚糖66.2322
126.58
磁性壳聚糖13623
磁性石墨烯13.16924
染料亚甲基蓝磁性花生壳43.525
孔雀石绿磁性花穗56.5026
抗生素四环素磁性壳聚糖806.6027
金霉素876.60
全氟化合物全氟辛烷磺酸盐磁性壳聚糖43.5028
全氟辛烷羧酸盐35.70
全氟辛烷磺酸盐磁性树脂65.00
全氟辛烷羧酸盐82.00
阻燃剂四溴双酚A磁性树脂59.4429
2,4,6-三溴苯酚74.64

新窗口打开| 下载CSV


表1显示,磁化改性后的天然生物材料对废水中的染料、抗生素、全氟化合物、阻燃剂均表现出优良的吸附效果,尤其是磁性壳聚糖吸附剂对四环素和金霉素的吸附量分别高达806.60、876.60 mg/g。这是由于2-丙烯酰胺-2-甲基丙磺酸改性后得到的磁性壳聚糖稳定性增加,且引入N—H基团,提高了对抗生素的吸附效果27。另外,磁性石墨烯对Cd2+的吸附量很低,原因在于Fe3O4负载到石墨烯表面时聚合了一些氧化石墨烯片段,导致吸附剂表面吸附位点损失,从而影响磁性石墨烯对重金属离子的吸附量24。有学者发现纳米化的天然生物材料对污染物有极佳的去除能力。M. GHOBADI等30采用共沉淀法,以纳米级石墨烯为原料制备了一种磁性纳米吸附剂,粒径为30~100 nm,对水中La3+和Ce3+的吸附量高达1 001、982 mg/g。与非纳米尺寸的吸附剂相比,纳米级吸附剂的表面活性位点更多、比表面积更大,有效提高对污染物的吸附能力30。未来的研究中可以侧重磁性天然生物材料的纳米化,以弥补天然生物材料因吸附位点少、化学元素缺失、单位质量减小而导致的吸附量降低的不足。

1.2 生物炭磁化

生物炭是以生物质为原料,在无氧或有氧条件下热解得到的富碳产物,常用作生物吸附剂去除废水中的污染物。生物炭以粉末形态为主,会造成过滤器堵塞,再次污染水质31。对生物炭进行磁化改性有利于其与水溶液的分离,不仅避免了二次污染,还可达到资源回收利用、节约成本的目的。Sha LIANG等14采用梧桐树叶制备了一种磁性生物炭并用其去除水溶液中的Cr(Ⅵ)。表征结果显示,磁化后的生物炭(桐树叶)表面含有—OH、C̿     O、C—H、—COOH、Fe—OH、Fe—O等基团,且磁化过程中有铁氧化物形成。磁性化生物炭(梧桐叶)对水中Cr(Ⅵ)的吸附量为55.00 mg/g,优于未磁化吸附剂的吸附量(39.80 mg/g)。Wenyan JIANG等32以甘蔗渣为原料制备了磁性生物炭,用于水中亚甲基蓝的去除,同样取得良好的吸附和回收效果。由其他生物废弃材料制得的磁性生物炭对废水中的诺氟沙星、对硝基甲苯、萘、四环素、微塑料等污染物具有良好的去除效果33-39,如表2所示。

表2   磁性生物炭对废水中污染物的吸附量

Table 2  Adsorbed amount of pollutants in wastewater by magnetic biochar

污染物吸附剂来源吸附量/(mg·g-1文献
重金属羽毛/蛋壳113.333
76.3
56.5
45.5
32.6
六价铬树叶55.0014
染料酸性橙污泥和木屑110.2734
吖啶橙玉米穗116.335
亚甲基蓝甘蔗渣36.1432
抗生素四环素稻秆98.3336
诺氟沙星含铁的糠醛类残留物30037
微塑料聚苯乙烯微球木屑23.70238
其他有机污染物2,4-二氯苯酚木材298.1239
阿特拉津102.17

新窗口打开| 下载CSV


表2可以看出,含铁的糠醛类残留物制备的磁性生物炭对诺氟沙星的吸附量较大(300 mg/g),推测可能是制备过程中添加了十二烷基硫酸钠和十二烷基苯磺酸钠,增加了生物炭的亲水性和吸附剂表面的吸附位点数量,吸附量提高37。文献显示,磁性生物炭经纳米化处理后对污染物的吸附能力提高。Qiuju WANG等40使用青霉素发酵渣制备了一种纳米尺寸的磁性生物炭,粒径为30~80 nm,比表面积为735 m2/g,对水溶液中青霉素的吸附量为322 mg/g。

1.3 复合材料磁化

复合材料是通过化学或物理方法将2种及以上不同性质的吸附材料组合而成的具有新性能的材料41。单一材料作为吸附剂用于废水污染物处理时,吸附剂用量多、吸附效率低、吸附速率慢,采用复合材料作吸附剂可弥补单一材料的不足。研发新型复合吸附剂成为未来研究的发展趋势。由于复合材料吸附剂的应用过程仍然存在回收难的问题,研究者将复合材料与磁化改性技术联用,在超声或高温条件下制备磁性复合材料42。E. ALVER等15以海藻酸盐和天然稻壳为原料,采用磁化改性方法合成了磁性海藻酸盐/稻壳生物复合吸附剂,用于水中亚甲基蓝的去除。表征结果显示,磁性海藻酸盐/稻壳生物复合材料表面含有—OH、—COOH、—CH2、C̿     O、Si—O、酰胺基、Fe—O等基团,饱和磁化强度为9.97 emu/g,提示磁性海藻酸盐/稻壳生物复合材料制备成功。该磁性复合材料对亚甲基蓝的吸附量达274.9 mg/g,是一种低成本、高效率的可替代单一材料的吸附剂。近年来,研究者研发了种类繁多的磁性复合吸附材料,其应用情况如表3所示43-49

表3   磁性复合材料吸附剂对废水中目标污染物的吸附量

Table 3  Adsorbed amount of pollutants in wastewater by magnetic composite adsorbents

污染物吸附剂吸附量/(mg·g-1文献
重金属壳(CaSiO3)-心(Fe3O4)复合材料427.1043
391.59
三价铬371.39
六价铬磁性山软木/纳米纤维蛋白/壳聚糖复合材料91.0044
67.80
染料亚甲基蓝磁性海藻酸盐/稻壳生物复合材料吸附剂274.915
刚果红磁性山软木/纳米纤维蛋白/壳聚糖复合材料230.0044
活性橙16磁性壳聚糖/乙醛/粉煤灰/Fe3O4生物复合材料112.5045
内分泌干扰素双酚A微孔有机网络复合材料124.146
4-α-烯丙基酚105.6
4-叔辛基酚116.6
4-壬基酚117.9
阻燃剂四溴双酚A新型碳纳米管@金属有机骨架复合材料92.1247
抗生素四环素新型磁性纳米复合材料215.3148
其他有机污染物2-萘酚磁性/石墨烯/壳聚糖纳米复合材料169.4949

新窗口打开| 下载CSV


复合材料集几种材料的特点于一体,弥补了吸附材料吸附量不高、制备或改性难度大等不足,实现对废水中污染物的高效去除。表3显示,磁性复合材料极易结合废水中的重金属离子和染料类污染物,吸附量相对较高。具有核心(Fe3O4)与外壳(CaSiO3)的层状多孔的双组分材料Fe3O4@CaSiO3对Cu2+、Ni2+和Cr3+的吸附量为400 mg/g左右,是因为Fe3O4@CaSiO3不仅具备良好的磁分离性,还兼备多孔硅酸钙比表面积大、孔隙率高、化学稳定性好的优势43。磁性复合材料对废水中的内分泌干扰素、抗生素及其他有机污染物亦有较高的吸附量46-49。研究表明,纳米材料因尺寸小、比表面积大,去除废水中的重金属离子、有机污染物时表现出较高的吸附效率。阮长平等50以纳米级有机金属框架为原料合成了一种新型的磁性纳米复合材料吸附剂,其粒径约为10 nm,对水中孔雀石绿染料的吸附量达562 mg/g。

磁性纳米复合材料具有吸附量大、回收率高、绿色环保的优势,是未来处理废水中各种污染物的发展方向。

2 实际废水处理应用案例

近年来,随着环境治理技术的成熟,生物吸附法结合磁化改性技术处理废水的研究和应用获得新的进展。符丽纯51用自主研发的磁性树脂处理苏北某企业排出的电镀废水,该示范工程的设计规模为100 t/d,工艺流程见图2

图2

图2   电镀废水处理工艺流程

Fig. 2   Technological process of electroplating wastewater treatment


图2中,深度处理技术单元主要包括磁性树脂吸附和磁性分离两部分。其中,磁性树脂吸附单元的树脂凭借自身的羟基、羧基等官能团吸附多种污染物,如Cr(Ⅵ)、Ni2+、Zn2+等。树脂吸附单元排出的废水流入斜管沉淀池,通过磁场作用实现磁性树脂与水的分离,处理后的废水从溢流堰排出。该电镀废水经磁性树脂深度处理后,COD、总Ni、总Cu等皆满足GB 21900—2008《电镀污染物排放标准》、GB 3838—2002《地表水环境质量标准》的要求。该技术处理成本为1.53元/t,具有良好的应用与推广价值51

Zongwu WANG等52用二氨基吡啶聚合物和氧化石墨烯制备了一种新型磁性复合材料,用于去除电池厂废水中的Pb2+。该磁性吸附剂对Pb2+的去除率为97.51%,吸附饱和后的废水中含Pb2+ 0.45 mg/L,远低于GB 30484—2013《电池工业污染物排放标准》对Pb2+的排放要求限值(≤0.70 mg/L);5次吸附-解吸循环实验后,该磁性吸附剂对Pb2+依旧保持较高的去除率(91%),且饱和磁化强度并未降低。但目前磁性材料处理废水的工艺仍需迭代升级,未来在中小试中展现其应用优势。

3 展望

与传统天然生物材料相比,磁化改性后的吸附剂不仅能高效吸附废水中的目标污染物,还能快速彻底地从水中回收,再次去除污染物,进一步提高吸附剂的利用率。目前,研发吸附速率快、吸附效率高、成本低、绿色环保的新型吸附材料仍是需要关注的重点。随着新型复合材料合成技术与磁化改性技术的融合发展,磁性吸附剂对水环境中污染物的处理效率和应用范围能够得到有效提升。

采用磁化改性吸附剂去除废水中的污染物时存在一些优势与不足,如图3所示。

图3

图3   磁化改性吸附剂的特性

Fig. 3   Properties of magnetization modified adsorbent


(1)天然生物材料成本低、来源广泛、吸附性能良好且绿色环保,是磁化改性的理想吸附材料。磁化后的天然生物材料可回收再利用,在废水净化方面具有广阔的应用潜能。但对于各行业每年排放的大量废水,磁化改性天然生物材料无论在吸附量还是吸附速度方面,仍难以应对废水中不断增加的污染物。

(2)生物炭吸附去除废水中的污染物是目前最成熟的方法之一。磁性生物炭吸附剂解吸后可循环再利用,且制备工艺完备、吸附效果佳。然而,生物炭的制备过程较复杂,热解过程中会产生SO2、NO x 等有害气体,难以大范围净化处理废水。

(3)磁性复合材料在处理废水时表现出吸附量大、吸附速度快、吸附剂回收率高、对环境无污染等优势,但制备成本较高,制备工艺有待完善。

未来磁性生物材料净化废水的应用研究可关注下列方面:

(1)考虑磁性吸附剂的制备过程简易性、制备成本、吸附剂稳定性等,改进制备工艺,提高磁性材料在废水净化中的应用规模。

(2)着重于磁性吸附材料的物理、化学和生物改性,如纳米化处理、交联改性、菌种改性等,增加吸附剂表面的吸附位点、比表面积、孔隙数量,进一步提高磁性吸附剂的吸附量。

(3)尝试从Zeta电位、红外光谱、扫描电镜、能谱等分析方法入手,探讨吸附材料磁化前后的电荷强度、官能团种类、表面形态和元素种类的变化情况,深入研究其吸附机制。

(4)为确保磁性吸附剂在处理实际废水中的实用性和稳定性,需继续开展磁性吸附剂处理实际废水的中小型实验,建立稳定且高效的磁性吸附单元,保证有效净化废水的同时,提高吸附剂的回收率,进而延长其使用寿命。

(5)为实现环境效益和经济效益的“双赢”,未来的研究中可运用全生命周期分析方法,以吸附材料的生长、材料运输、磁性吸附剂制备、吸附过程、磁性吸附剂回收再利用5个阶段为切入点,分析影响其制备成本和应用过程中可疑污染物产生量的影响因素,为磁性吸附剂的大规模应用研究提供参考。

4 结语

采用磁化改性技术对废水进行净化处理,不仅提高了吸附剂对废水中目标污染物的去除率,还能解决吸附剂回收效果不佳的问题,具体表现在吸附污染物后的吸附剂可在磁场作用下快速从水溶液中分离,避免对水环境造成二次污染。现有的磁化改性技术仍有升级改进的空间,如磁性天然材料吸附剂吸附能力欠佳、磁性生物炭吸附剂制备成本高和易造成大气污染等。未来的研究应致力于改进磁性吸附剂的制备工艺,开展中试检验其废水处理效果,早日实现磁化改性吸附剂商品化,以满足大规模水环境污染治理需求。


参考文献

PENG ShenghanWANG RongYANG Lizhiet al.

Biosorption of copper,zinc,cadmium and chromium ions from aqueous solution by natural foxtail millet shell

[J]. Ecotoxicology and Environmental Safety,201816561-69.

[本文引用: 1]

MEILI LLINS P V SCOSTA M Tet al.

Adsorption of methylene blue on agroindustrial wastes:Experimental investigation and phenomenological modelling

[J]. Progress in Biophysics and Molecular Biology,201914160-71.

[本文引用: 1]

蒋芳雷婷李声剑.

聚合物吸附剂的制备及在水体重金属污染净化应用中的研究进展

[J]. 材料导报,201933S2):526-532.

[本文引用: 1]

JIANG FangLEI TingLI Shengjianet al.

Research progress in preparation of polymer adsorbents and purification of heavy metal pollution in water body

[J]. Materials Reports,201933S2):526-532.

[本文引用: 1]

池成龙贾爱忠孙道来.

表面离子印迹聚合物金属离子吸附材料研究进展

[J]. 化工进展,2022417):3758-3769.

[本文引用: 1]

CHI ChenglongJIA AizhongSUN Daolaiet al.

Research progress on adsorbents of surface ion-imprinted polymer for heavy metal ions

[J]. Chemical Industry and Engineering Progress,2022417):3758-3769.

[本文引用: 1]

WANG JiadeZHANG TianMEI Yuet al.

Treatment of reverse-osmosis concentrate of printing and dyeing wastewater by electro-oxidation process with controlled oxidation-reduction potential (ORP)

[J]. Chemosphere,2018201621-626. doi:10.1016/j.chemosphere.2018.03.051

[本文引用: 1]

强小虎欧阳成伟郭鑫.

以碳纤维和壳聚糖为原料制备吸附性能良好的吸附剂的方法

113058565A[P]. 2021-03-19.

[本文引用: 1]

QIANG XiaohuOUYANG ChengweiGUO Xin.

Method for preparation of adsorbent with good adsorption performance from carbon fiber and chitosan

CN113058565A[P]. 2021-03-19.

[本文引用: 1]

YU HangWANG JingYU Junxiaet al.

Effects of surface modification on heavy metal adsorption performance and stability of peanut shell and its extracts of cellulose,lignin,and hemicellulose

[J]. Environmental Science and Pollution Research,20202721):26502-26510.

陈佼刘欢刘浩霖.

生物炭对阳离子染料的吸附性能研究进展

[J]. 工业水处理,2022428):27-33.

CHEN JiaoLIU HuanLIU Haolinet al.

Research progress on the adsorption property of biochar for cationic dyes

[J]. Industrial Water Treatment,2022428):27-33.

PIMRAKSA KSETTHAYA NTHALA Met al.

Geopolymer/Zeolite composite materials with adsorptive and photocatalytic properties for dye removal

[J]. PLoS One,20201510):e0241603. doi:10.1371/journal.pone.0241603

[本文引用: 1]

HEO JYOON YLEE Get al.

Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4-biochar composite

[J]. Bioresource Technology,2019281179-187. doi:10.1016/j.biortech.2019.02.091

[本文引用: 1]

ARYEE A AMPATANI F MDU Yangyanget al.

Fe3O4 and iminodiacetic acid modified peanut husk as a novel adsorbent for the uptake of Cu (Ⅱ) and Pb (Ⅱ) in aqueous solution:Characterization,equilibrium and kinetic study

[J]. Environmental Pollution,2021268115729.

[本文引用: 1]

毕景望单锐韩静.

改性西瓜皮生物炭的制备及其对Pb(Ⅱ)的吸附特性

[J]. 环境科学,2020414):1770-1778.

[本文引用: 1]

BI JingwangSHAN RuiHAN Jinget al.

Preparation of modified watermelon biochar and its adsorption properties for Pb(Ⅱ)

[J]. Environmental Science,2020414):1770-1778.

[本文引用: 1]

ZHENG ChaofanZHENG HuailiWANG Yongjuanet al.

Synthesis of novel modified magnetic chitosan particles and their adsorption performance toward Cr(Ⅵ)

[J]. Bioresource Technology,20182671-8.

[本文引用: 4]

LIANG ShaSHI ShunquanZHANG Haohaoet al.

One-pot solvothermal synthesis of magnetic biochar from waste biomass:Formation mechanism and efficient adsorption of Cr(Ⅵ) in an aqueous solution

[J]. Science of the Total Environment,2019695133886.

[本文引用: 2]

ALVER EMETIN A ÜBROUERS F.

Methylene blue adsorption on magnetic alginate/rice husk bio-composite

[J]. International Journal of Biological Macromolecules,2020154104-113. doi:10.1016/j.ijbiomac.2020.02.330

[本文引用: 3]

王宁芬.

天然材料辅助去除水环境中微污染物抗生素的应用效果研究

[D]. 兰州兰州大学2020.

[本文引用: 2]

WANG Ningfen.

Natural materials assisted removal of micro-pollutants antibiotics in water

[D]. LanzhouLanzhou University2020.

[本文引用: 2]

CHOUDHARY MKUMAR RNEOGI S.

Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye,Cu2+ and Ni2+ from water

[J]. Journal of Hazardous Materials,2020392122441.

[本文引用: 1]

CHOLICO-GONZÁLEZ DORTIZ LARA NFERNÁNDEZ MACEDO A Met al.

Adsorption behavior of Pb(Ⅱ),Cd(Ⅱ),and Zn(Ⅱ) onto agave bagasse,characterization,and mechanism

[J]. ACS Omega,202057):3302-3314.

[本文引用: 1]

MO JiahaoYANG QiZHANG Naet al.

A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment

[J]. Journal of Environmental Management,2018227395-405. doi:10.1016/j.jenvman.2018.08.069

[本文引用: 1]

ZHONG JieYANG BinGAO Fangzhouet al.

Performance and mechanism in degradation of typical antibiotics and antibiotic resistance genes by magnetic resin-mediated UV-Fenton process

[J]. Ecotoxicology and Environmental Safety,2021227112908. doi:10.1016/j.ecoenv.2021.112908

[本文引用: 1]

ZHANG WeijiangZHANG YaceYUVARAJA Get al.

Adsorption of Pb (Ⅱ) ions from aqueous environment using eco-friendly chitosan Schiff ’s base@Fe3O4(CSB@Fe3O4) as an adsorbent;kinetics,isotherm and thermodynamic studies

[J]. International Journal of Biological Macromolecules,2017105422-430.

[本文引用: 2]

THUAN L VCHAU T BNGAN T T Ket al.

Preparation of cross-linked magnetic chitosan particles from steel slag and shrimp shells for removal of heavy metals

[J]. Environmental Technology,20183914):1745-1752. doi:10.1080/09593330.2017.1337236

[本文引用: 1]

PANAHANDEH APARVAREH AMORAVEJI M K.

Synthesis and characterization of γ-MnO2/chitosan/Fe3O4 cross-linked with EDTA and the study of its efficiency for the elimination of zinc(Ⅱ) and lead(Ⅱ) from wastewater

[J]. Environmental Science and Pollution Research International,2021288):9235-9254.

[本文引用: 1]

WANG HuiZHOU YimingHU Xinjianget al.

Optimization of cadmium adsorption by magnetic graphene oxide using a fractional factorial design

[J]. International Journal of Environmental Research and Public Health,20201718):6648. doi:10.3390/ijerph17186648

[本文引用: 2]

ARYEE A AMPATANI F MKANI A Net al.

Iminodiacetic acid functionalized magnetic peanut husk for the removal of methylene blue from solution:Characterization and equilibrium studies

[J]. Environmental Science and Pollution Research International,20202732):40316-40330.

[本文引用: 1]

PARLAYıCı ŞPEHLIVAN E.

Biosorption of methylene blue and malachite green on biodegradable magnetic Cortaderia selloana flower spikes:Modeling and equilibrium study

[J]. International Journal of Phytoremediation,2021231):26-40.

[本文引用: 1]

LU TaotaoZHU YongfengQI Yanxinget al.

Magnetic chitosan-based adsorbent prepared via Pickering high internal phase emulsion for high-efficient removal of antibiotics

[J]. International Journal of Biological Macromolecules,2018106870-877. doi:10.1016/j.ijbiomac.2017.08.092

[本文引用: 2]

林圣然.

氨(胺)基吸附材料改性及对水中全氟化合物的去除效能

[D]. 哈尔滨哈尔滨工业大学2018.

[本文引用: 1]

LIN Shengran.

Ammonia adsorption materials modification and removal efficiency of perfluorochemicals in water

[D]. HarbinHarbin Institute of Technology2018.

[本文引用: 1]

何勇.

MIEX树脂吸附—电解两步法去除水中溴代阻燃剂研究

[D]. 赣州江西理工大学2017.

[本文引用: 2]

HE Yong.

Study on the removal of brominated flame retardants from water by a two-step method of MIEX resin adsorption and electrolysis

[D]. GanzhouJiangxi University of Science and Technology2017.

[本文引用: 2]

GHOBADI MGHARABAGHI MABDOLLAHI Het al.

MnFe2O4-graphene oxide magnetic nanoparticles as a high-performance adsorbent for rare earth elements:Synthesis,isotherms,kinetics,thermodynamics and desorption

[J]. Journal of Hazardous Materials,2018351308-316.

[本文引用: 2]

ESSANDOH MWOLGEMUTH DPITTMAN C U Jret al.

Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents

[J]. Environmental Science and Pollution Research International,2017245):4577-4590. doi:10.1007/s11356-016-8188-6

[本文引用: 1]

JIANG WenyanZHANG LinyeGUO Xiaominget al.

Adsorption of cationic dye from water using an iron oxide/activated carbon magnetic composites prepared from sugarcane bagasse by microwave method

[J]. Environmental Technology,2021423):337-350. doi:10.1080/09593330.2019.1627425

[本文引用: 2]

RAHMANI-SANI ASINGH PRAIZADA Pet al.

Use of chicken feather and eggshell to synthesize a novel magnetized activated carbon for sorption of heavy metal ions

[J]. Bioresource Technology,2020297122452. doi:10.1016/j.biortech.2019.122452

[本文引用: 2]

SANTHOSH CDANESHVAR ETRIPATHI K Met al.

Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr(Ⅵ) and Acid orange 7 dye from aqueous solution

[J]. Environmental Science and Pollution Research International,20202726):32874-32887.

[本文引用: 1]

WANG HuanZHAO WeiCHEN Youninget al.

Nickel aluminum layered double oxides modified magnetic biochar from waste corncob for efficient removal of acridine orange

[J]. Bioresource Technology,2020315123834. doi:10.1016/j.biortech.2020.123834

[本文引用: 1]

DAI JiaweiMENG XiangfuZHANG Yuhuet al.

Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water

[J]. Bioresource Technology,2020311123455. doi:10.1016/j.biortech.2020.123455

[本文引用: 1]

LI ChangjingGAO YuanLI Aiminet al.

Synergistic effects of anionic surfactants on adsorption of norfloxacin by magnetic biochar derived from furfural residue

[J]. Environmental Pollution,2019254113005. doi:10.1016/j.envpol.2019.113005

[本文引用: 2]

WANG JunSUN ChenHUANG Qunxinget al.

Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars

[J]. Journal of Hazardous Materials,2021419126486. doi:10.1016/j.jhazmat.2021.126486

[本文引用: 1]

DAI ShijinZHAO YoucaiNIU Dongjieet al.

Preparation and reactivation of magnetic biochar by molten salt method:Relevant performance for chlorine-containing pesticides abatement

[J]. Journal of the Air & Waste Management Association,2019691):58-70.

[本文引用: 2]

WANG QiujuZHANG ZhaoXU Guorenet al.

Magnetic porous biochar with nanostructure surface derived from penicillin fermentation dregs pyrolysis with K2FeO4 activation:Characterization and application in penicillin adsorption

[J]. Bioresource Technology,2021327124818.

[本文引用: 1]

杨宗政朱雅萍武莉娅.

新型复合材料吸附放射性废水中锶的研究进展

[J]. 工业水处理,20214112):7-14.

[本文引用: 1]

YANG ZongzhengZHU YapingWU Liyaet al.

Research progress of novel composite materials adsorption strontium in radioactive wastewater

[J]. Industrial Water Treatment,20214112):7-14.

[本文引用: 1]

MA YaojiaJIANG XiaoxueLV Yunkai.

Recent advances in preparation and applications of magnetic framework composites

[J]. Chemistry,an Asian Journal,20191420):3515-3530.

[本文引用: 1]

LIU LihuaLIU JinyanZHAO Luet al.

Synthesis and characterization of magnetic Fe3O4@CaSiO3 composites and evaluation of their adsorption characteristics for heavy metal ions

[J]. Environmental Science and Pollution Research International,2019269):8721-8736. doi:10.1007/s11356-019-04352-6

[本文引用: 3]

CHEN XiaoCUI JianXU Xuranet al.

Bacterial cellulose/attapulgite magnetic composites as an efficient adsorbent for heavy metal ions and dye treatment

[J]. Carbohydrate Polymers,2020229115512. doi:10.1016/j.carbpol.2019.115512

[本文引用: 2]

MALEK N N AJAWAD A HABDULHAMEED A Set al.

New magnetic Schiff’s base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye:An optimized process

[J]. International Journal of Biological Macromolecules,2020146530-539.

[本文引用: 1]

DU ZongdaCUI YuanyuanYANG Chengxionget al.

Synthesis of magnetic amino-functionalized microporous organic network composites for magnetic solid phase extraction of endocrine disrupting chemicals from water,beverage bottle and juice samples

[J]. Talanta,2020206120179.

[本文引用: 2]

周廷廷.

两种新型复合材料的制备及其在四溴双酚A快速检测与去除中的应用研究

[D]. 武汉华中科技大学2017.

[本文引用: 1]

ZHOU Tingting.

Study on the preparation of two novel composites and their applications in the rapid detection and removal of tetrabromobisphenol A

[D]. WuhanHuazhong University of Science and Technology2017.

[本文引用: 1]

AHAMAD TNAUSHAD MAL-SHAHRANI Tet al.

Preparation of chitosan based magnetic nanocomposite for tetracycline adsorption:Kinetic and thermodynamic studies

[J]. International Journal of Biological Macromolecules,2020147258-267.

[本文引用: 1]

REBEKAH ABHARATH GNAUSHAD Met al.

Magnetic graphene/chitosan nanocomposite:A promising nano-adsorbent for the removal of 2-naphthol from aqueous solution and their kinetic studies

[J]. International Journal of Biological Macromolecules,2020159530-538.

[本文引用: 3]

阮长平艾可龙逯乐慧.

耐酸性的磁性纳米复合材料去除水中有机污染物

[J]. 分析化学,2016442):224-231. doi:10.11895/j.issn.0253-3820.150537

[本文引用: 1]

RUAN ChangpingAI KelongLU Lehui.

An acid-resistant magnetic Co/C nanocomposite for adsorption and separation of organic contaminants from water

[J]. Chinese Journal of Analytical Chemistry,2016442):224-231. doi:10.11895/j.issn.0253-3820.150537

[本文引用: 1]

符丽纯.

磁性树脂吸附法深度净化电镀废水技术研究与工程应用

[D]. 南京南京大学2015.

[本文引用: 2]

FU Lichun.

Theoretical basis and application demonstration on advanced treatment of electroplating wastewater based on magnetic exchange resins adsorption

[D]. NanjingNanjing University2015.

[本文引用: 2]

WANG ZongwuWU QingZHANG Jinget al.

In situ polymerization of magnetic graphene oxide-diaminopyridine composite for the effective adsorption of Pb(Ⅱ) and application in battery industry wastewater treatment

[J]. Environmental Science and Pollution Research International,20192632):33427-33439.

[本文引用: 1]

/