工业水处理, 2022, 42(4): 46-56 doi: 10.19965/j.cnki.iwt.2021-0238

标识码(

短程硝化的影响因素及其耦合工艺的研究进展

郭凯成,1, 刘文如1,2,3, 宋家俊1, 汪倩1, 沈耀良,1,2,3

1.苏州科技大学环境科学与工程学院, 江苏 苏州 215009

2.城市生活污水资源化利用技术国家地方联合工程实验室, 江苏 苏州 215009

3.江苏省水处理技术与材料协同创新中心, 江苏 苏州 215009

Research progress on influencing factors of partial nitrification and its coupling process

GUO Kaicheng,1, LIU Wenru1,2,3, SONG Jiajun1, WANG Qian1, SHEN Yaoliang,1,2,3

1.School of Environmental Science and Engineering,Suzhou University of Science and Technology,Suzhou 215009,China

2.National and Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology,Suzhou 215009,China

3.Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment,Suzhou 215009,China

收稿日期: 2022-03-15  

Received: 2022-03-15  

作者简介 About authors

郭凯成(1995—),硕士电话:18352403886,E-mail:876609235@qq.com , E-mail:876609235@qq.com

沈耀良,博士,教授E-mail:ylshen@mail.usts.edu.cn , E-mail:ylshen@mail.usts.edu.cn

摘要

氮素负荷过高是淡水生态系统富营养化的直接原因之一。水体富营养化会导致藻类水华现象发生,消耗水体中的溶解氧,产生对人体有威胁的天然毒素,使水体不宜饮用、关键物种消失,最终导致淡水生态系统的退化。作为生物脱氮的前端处理阶段,短程硝化具有高效、低耗的性能而被人们广泛关注。对近年来短程硝化研究中的各影响因素,如微生物、温度、pH、游离氮、游离亚硝酸盐、DO、碳氮比、化学抑制剂等进行总结,同时综述了短程硝化耦合反硝化(PND)、短程硝化耦合厌氧氨氧化(PNA)及短程硝化耦合反硝化除磷(PN-DPR)等新型生物脱氮工艺的反应机理、处理废水种类及运行条件。上述耦合工艺对实际污水进行高效节能处理还需进一步研究。

关键词: 短程硝化 ; 耦合工艺 ; 实际污水

Abstract

One of the direct causes of eutrophication in freshwater ecosystems is excessive nitrogen loading. Phytoplankton bloom caused by eutrophication in water will consume dissolved oxygen in water bodies, produce natural toxins that are threatening to humans, make water bodies unfit for drinking, key species disappear, and eventually lead to degradation of freshwater ecosystems. As the front-end treatment stage of biological denitrification, partial nitrification has been widely concerned for its high efficiency and low consumption. The influencing factors of partial nitrification, such as microorganisms, temperature, pH, FA, FNA, DO, carbon-nitrogen ratio, and chemical inhibitors in recent partial nitrification studies were summarized. The reaction mechanisms, types of treated wastewater and operating conditions of new biological denitrification processes such as partial nitrification coupled with denitrification(PND), partial nitrification coupled with anammox(PNA), partial nitrification coupled with denitrification and phosphorus removal(PN-DPR) were also reviewed. The coupled processes need to be further studied for efficient and energy-saving treatment of actual wastewater.

Keywords: partial nitrification ; coupling process ; actual sewage

PDF (1091KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

郭凯成, 刘文如, 宋家俊, 汪倩, 沈耀良. 短程硝化的影响因素及其耦合工艺的研究进展. 工业水处理[J], 2022, 42(4): 46-56 doi:10.19965/j.cnki.iwt.2021-0238

GUO Kaicheng. Research progress on influencing factors of partial nitrification and its coupling process. Industrial Water Treatment[J], 2022, 42(4): 46-56 doi:10.19965/j.cnki.iwt.2021-0238

传统的脱氮过程依赖于好氧与缺氧条件下分别进行的硝化和反硝化。硝化过程中,氨氧化微生物将氨氮氧化为亚硝酸盐,随后亚硝酸盐被微生物氧化为硝酸盐。反硝化过程中,异养反硝化微生物以有机物为电子受体将硝酸盐还原为氮气,亚硝酸盐、一氧化氮和一氧化二氮则以中间产物形式存在1。新型脱氮技术依赖于氨氧化为亚硝酸盐(短程硝化),亚硝酸盐通过反硝化或厌氧氨氧化进一步还原为氮气。此过程与传统脱氮过程相比可降低40%的COD消耗,耗氧量降低25%,生物质产量减少300%,后续反硝化阶段的亚硝酸盐的还原速率可提高1.5~2倍,CO2排放量减少20%2。因此,新型脱氮技术日益受到研究者的青睐。

笔者对近年来短程硝化的相关文献进行统计分析,得出维持短程硝化稳定运行的各种影响因素,如pH、游离氮(FA)与游离亚硝酸盐(FNA)、温度、溶解氧浓度和化学抑制剂等,并总结了可与短程硝化耦合的新型脱氮工艺:短程硝化耦合反硝化、短程反硝化耦合厌氧氨氧化、短程硝化耦合反硝化除磷等,为类似研究提供理论借鉴。

1 短程硝化原理及菌种分类

短程硝化并非简单的氨氧化菌(AOB)将氨氮转化为亚硝酸盐的过程,而是伴有多种中间产物和酶促反应的复杂电子传递与能量转化过程。目前国内外学者将氨为最主要基质、羟氨为真正能源的假设作为生化反应基础,对短程硝化过程进行研究,发现其反应过程主要分为2步:(1)基质NH3(非NH4+)透过AOB细胞膜,与细胞质膜中的氨单加氧酶(AMO)发生反应形成羟胺NH2OH,放出120 kJ/moL能量,反应式为NH3+O2+2H++2e-AMONH2OH+H2O;(2)NH2OH在羟胺氧化还原酶(HAO)的作用下氧化形成亚硝态氮,吸收23 kJ/moL能量3,反应式为NH2OH+H2OHAOHNO2+4H++4e-

第1步反应中NH3氧化所需的1个氧原子来自分子氧,第2步反应中羟胺氧化所需的氧来自细胞质内的水分子,同时转移出4个电子和4个H+,为第1步反应另一氧原子还原为水分子提供条件。也有研究提出羟胺的氧化也可分为两步进行4,反应中间产物也不止一种,因此对氨与羟胺耦合的机理还需深入探索。

目前已知的能将氨氮氧化为亚硝酸盐的微生物主要有两大类:氨氧化细菌(AOB)和氨氧化古生菌(AOA)。基于AOB与AOA基因的系统发育树由图1所示5

图1

图1   基于AOB amoA(a)和AOA amoA(b)基因的系统发育树

Fig. 1   Phylogenetic tree based on AOB amoA (a) and AOA amoA (b) genes


AOB被归于γ⁃变形杆菌亚门(γ⁃Proteobacteria)和β-变形杆菌亚门(β⁃Proteobacteria)。γ⁃AOB包括Nitrosococcusoceani等菌种,β⁃AOB门下的菌属有NitrosospiraNitrosomonas等,Nitrosomonas 菌属包括Nitrosomonas europaeaNitrosococcusmobilis菌种、Nitrosomonas communis菌种、Nitrosomonas oligotropha菌种、Nitrosomonas marina菌种、Nitrosomonas cryotolerans菌种和Nitrosomonas Nm143菌种6。其中,Nitrosospira菌属、Nitrosomonas europaeaNitrosococcusmobilis菌种和Nitrosomonas oligotropha菌种在污水处理系统中较为常见6。有研究证实AOA在全球氮素循环中有氨氧化的潜在作用7,其也被归入近期发现的Thaumarchaeota门8。该门下具有氨氧化功能的菌属主要有NitrosopumilusNitrososphaeraNitrosocaldusNitrosotaleaNitrososphaera姊妹菌属9,其氨氧化原理现阶段还不明确。在一些大型污水处理厂中,AOA被认为是氨氧化的主要作用菌群10,但在大部分脱氮系统中AOB仍是主要氨氧化菌群11

2 影响因素

AOB和亚硝酸盐氧化菌(NOB)的生理特性不同,通过控制某些环境参数如温度、pH、DO、FA和FNA等可促进AOB的生长并抑制NOB活性,达到短程硝化的目的12。但在主流条件下NOB相比于AOB有更强的适应性,在系统运行一段时间后NOB活性得到恢复,使亚硝酸盐的积累不稳定,运行中一旦条件发生变化硝酸盐便会大量积累13。因此需寻找合适的操作条件抑制NOB的活性,最大限度地提高脱氮效能14

2.1 温度

在短程硝化系统中,温度对氨的氧化有显著影响。C. HELLINGA等15发现AOB的生长速率随温度升高而增大,在35 ℃左右达到峰值,且高温时NOB的生长速率低于AOB。在氨氮负荷与DO浓度恒定的条件下,S. LÓPEZ⁃PALAU等16观察到短程硝化反应器在33~37 ℃范围内的氨氧化速率达到最大。Yongzhen PENG等12认为温度>25 ℃时NOB的停留时间低于AOB,系统可实现稳定的短程硝化,而低温会导致NOB在系统中占主导地位。巩有奎等17研究了温度变化对短程硝化的影响,发现温度≥20 ℃时NH4+去除率均>95%,温度降至15、10 ℃时,亚硝态氮积累率低至21.3%、26.7%。王丽媛等18在SBR反应器中(25 ℃)成功实现了短程硝化,逐步降低反应温度至20、15 ℃后,MLSS总量大幅减少,污泥活性明显降低,AOB与NOB的生长均受到抑制,体现出低温条件下寻求稳定短程硝化策略的重要性。通过pH在线监测19或根据出水亚硝氮积累率18等控制SBR反应器的曝气时间,可强化AOB的硝化性能,防止NOB硝化过程产生,再通过不断淘洗排泥使AOB逐步成为优势菌种,最终在低温下实现稳定的短程硝化过程。M. PICULELL等20通过保持生物膜反应器的生物膜厚度及交替使用合成废水进水,在15 ℃下实现了稳定的短程硝化。低温时不同运行方式下的短程硝化效果见表1

表1   低温下不同运行方式的短程硝化效果

Table 1  Partial nitrification effects of different operation modes at low temperature

温度/℃运行装置进水氨氮/(mg‧L-1氨氮去除率/%亚硝氮积累率/%控制措施文献

15

10

SBR40

53.5±4.2

21.8±2.1

21.3

26.7

铵谷点停曝气17
15SBR14041.2±3.261.2缩短曝气时长18
15SBR58.197.2±1.295.6铵谷点停曝气19
10MBBR4060±485.8限氧与控制pH21
15MBBR5090.3±2.684.6限氧22

16

6

MBBR60

86.7±2.1

83.3±1.6

98.9

91.2

根据DO/TAN限氧23

新窗口打开| 下载CSV


2.2 pH、FA与FNA

pH可改变酶反应机制,直接影响AOB和NOB的活性24,或通过改变FA和FNA的浓度间接影响AOB、NOB的活性25。Yuling HE等26认为pH在7.5~8.5条件下NOB活性会被抑制,pH在7.5~7.8有利于短程硝化作用。S. PARK等24报道AOB、NOB的最适pH分别为(8.2±0.3)、(7.9±0.4)。B. SINHA等27研究了pH对硝化作用的影响,发现pH较高时亚硝酸盐的积累量增加。

高浓度的FA和FNA均能抑制AOB与NOB的活性,但与NOB相比,AOB对FA和FNA浓度的耐受性更强28。在悬浮污泥系统中,0.1~0.4 mg/L FA和0.24 mg/L FNA对亚硝酸盐的氧化有抑制作用29,而氨氧化直至较高浓度时(10~150 mg/L FA、1.35 mg/L FNA)才被抑制30。因此,在适当的FA或FNA浓度下,AOB活性不受影响而NOB活性会被抑制。处理含高浓度氨氮废水如侧流废水、垃圾渗滤液、畜禽粪便发酵出水时,FA浓度可保持在较高水平以抑制NOB的活性。城市污水的游离氨浓度较低,一般采用FNA浓缩液即部分硝化侧流处理单元的出水进行在线污水处理,可有效提高FNA从而抑制NOB活性30

2.3 DO

DO是AOB和NOB氧化还原链中的底物及末端电子受体。在低DO浓度下,AOB和NOB的生长速率均会降低31。NOB的氧半饱和系数(Ko)一般高于AOB32,因此AOB对氧的亲和力高于NOB,竞争DO时NOB往往处于劣势。有研究表明,DO<1.0 mg/L情况下,AOB的生长速率是NOB的2.6倍33。K. HANAKI等34研究表明DO为0.5 mg/L(25 ℃)时,实验室规模的混流反应器可抑制亚硝酸盐氧化而不会抑制氨氧化。维持限氧状态无需额外的能量或化学物质,被广泛用于高、低氨氮含量废水的处理35

然而,以限氧为唯一控制策略往往不足以维持长期稳定的短程硝化过程。Guoqiang LIU等36发现DO为0.16 mg/L时,经过长时间运行亚硝态氮仍会被全部硝化,类Nitrobacter硝化菌群被类Nitrospira硝化菌群替代,进行亚硝氮的氧化过程。同样地,C. M. FITZGERALD等37研究发现DO<0.3 mg/L时2个短程硝化反应器均实现完全硝化,分离出的微生物与任何已知的氨氧化原核微生物都无关联。导致这一现象的原因可能为:(1)存在其他有利于NOB增殖的条件,如低FA、低温等;(2)NOB具有适应性,可在微氧环境下存活并生长;(3)NOB不同谱系中的微生物种群对氧的亲和力不同,生长特性也不同。

硝化杆菌和硝酸螺旋菌是废水处理中常见的2种亚硝氧化细菌。其氧亲和力趋于不同,硝化杆菌的亲和力较低,硝化螺旋菌的亲和力较高38。Zhonghua HUANG等39发现低DO条件下(<1.0 mg/L)大型污水处理厂中的硝化螺旋菌数量高于硝化杆菌。硝化螺旋菌可被分为Ⅰ系与Ⅱ系。H. D. PARK等40报道硝化螺旋菌Ⅰ系在低DO条件下(0.12~0.24 mg/L)存在,而硝化螺旋菌Ⅱ系在高DO条件下(8.5 mg/L)被发现。表明一些NOB菌种可在限氧环境下存活并具有活性,可能导致短程硝化失败,尤其是长期运行时。但也有研究指出AOB与NOB对底物的亲和力取决于其菌落大小或生物量,并非细胞自身的特性41。在给定环境基质中,NOB的氧亲和力会随时间推移而发生较大变化,这取决于细胞环境和NOB在基质中的适应性。因此,仅以限氧作为短程硝化长期运行的策略可能不适宜,应考虑与其他控制条件联合应用以抑制NOB活性。

2.4 碳氮比

碳氮比是影响短程硝化性能的另一关键因素42。在高COD负荷下,具有较高生长速率和生物量的异养微生物会在营养底物和溶解氧的竞争中胜过AOB,可利用的氧电子受体下降将导致氨氧化细菌种群多样性和生物量的减少42。F. IANNACONE等43发现过量有机碳会抑制氨氧化过程,因此有必要严格控制并选择合适的进水碳氮比。Jialin LI等44考察了碳氮比对单级短程硝化-厌氧氨氧化耦合工艺处理高氨氮废水的影响,结果表明,碳氮比为0.4时脱氮效果稳定,但COD去除不完全,导致脱氮效率不高。

也有研究发现,低温下有机碳源的存在可改善硝化过程,异养菌可对氨氧化细菌起到保护作用45。孙艺齐等46考察了SBR反应器中(15 ℃)碳氮比对短程硝化启动和稳定性的影响,发现60个周期(每周期12 h)内,碳氮比为1.5时短程硝化的启动十分迅速且成功,碳氮比为0或3时短程硝化启动失败。Fan DING等47也认为碳氮比为1、2时对低温下的短程硝化直接启动有很大促进作用。Li JIA等48以葡萄糖为碳源启动短程硝化,当进水碳氮比为1.2时,脱氮效率可达84%~95%;当碳氮比为2.7~2.9时AOB活性明显下降49

2.5 抑制性化合物

NOB抑制剂有硫化物、羟胺、盐类等2。T. H. ERGUDER等50在初始硫化物质量浓度为45 mg/L、pH为7.5的条件下获得75%的亚硝酸盐积累率,而添加硫化物之前亚硝酸盐积累率不到13%。D. I. B. ORTIZ等51观察到硫化物对AOB和NOB均有抑制作用,其对亚硝酸盐氧化的影响更大。常赜等52以硫化物为电子供体,在DO为(1.5±0.5) mg/L、硫化物为50 mg/L、温度为25 ℃、水力停留时间为12 h的条件下启动部分硝化-自养反硝化工艺,总氮去除率达到90%。

羟胺作为硝化的中间产物,对NOB的生长较AOB和厌氧氨氧化细菌有更明显的不可逆抑制作用53。在好氧颗粒污泥反应器、生物膜反应器、一体式生物滤池系统中分别投加10、8.25、2.5~5 mg/L羟胺,均能成功实现部分硝化。考虑到羟胺是AOB氨氧化的第一个产物,且并非亚硝化的限速步骤,上述抑制浓度不应视作硝化系统中的一般积累水平,而应解释为抑制NOB的外部因素。

盐度对硝化作用影响的研究结果并不一致54。有研究称,与NOB相比,AOB对NaCl(10 g/L)的短期和长期抑制更敏感55,但Y. W. CUI等56认为在SBR反应器中投加10 g/L NaCl时短程硝化效果最好,NOB活性因NaCl的加入而受到抑制并被冲刷去除。

重金属对硝化作用的抑制因素为:(1)污泥类型,即活性污泥或硝化富集污泥;(2)暴露方式、时间长短、剂量;(3)温度。镍抑制硝化作用的浓度范围尚未明确。C. W. RANDALL等57研究发现,14 ℃时长期且大剂量加入镍对NOB的毒性大于对AOB的毒性,而在17、30 ℃时对AOB和NOB的毒性相当。Zhiqiang HU等58报道镍达到58.5 mg/L时对AOB有抑制作用,对NOB无抑制作用。Xiaoguang LIU等59研究了10、23、35 ℃下低氨合成废水硝化过程中镍的毒性抑制作用,结果表明:(1)镍/MLSS更能代表镍的毒性范围;(2)镍对硝化菌的毒性受温度影响较大。10 ℃时,镍的毒性主要针对AOB,对NOB的抑制作用相当或更小。23、35 ℃时,NOB受镍毒性的抑制作用更强。在活性污泥中,铜对AOB的抑制作用比对NOB的更强60

3 耦合工艺

相比于物理化学工艺,硝化反硝化生物脱氮技术具有更高的经济效益,但也存在硝化反应缓慢、高氨氮和有机物负荷下硝化反应活性下降、氧气控制等缺点。由于硝化速率低,需要大型反应器或更长的水力停留时间(HRT)以完成氨氮的去除61。将短程硝化与反硝化、厌氧氨氧化和反硝化除磷进行耦合,不仅能进一步提高效能与经济效益,还能为不同种类的含氮废水提供更合适的处理方法。比较了各新型脱氮工艺处理废水的控制参数与效能,如表2所示。

表2   各新型脱氮工艺处理不同种类废水的控制参数与效果

Table 2  Control parameters and treatment effects of new denitrification technologies for different types of wastewater

脱氮工艺实验装置废水种类碳氮比温度/℃总氮去除率/%主要控制参数文献
短程硝化耦合反硝化(PND)连续流反应器生活污水5.8625±0.176FNA、DO62
SBR生活污水2~330±193.5pH、DO63
SBR垃圾渗滤液1.4428±121.75FA、FNA、DO64
A/O-MBR垃圾渗滤液3.7578.5DO、碳源65
SBR高盐度污水3.1730±198.5盐度、pH66
短程硝化耦合厌氧氨氧化(PNA)MBBR城市污水3.171570DO22
MBBR合成污水01084温度、DO67
MBBR合成污水01070温度、DO68
SBR合成污水03092DO69
SBR城市污水0.227±292.1±3.2DO70
连续流反应器城市污水2.94±0.531±186.28DO71
BTF-UASB氨淋洗液02584FA、FNA、DO72
短程硝化耦合反硝化除磷(PN⁃DPR)SBR生活污水3.118~2366DO、SRT73
SBR生活污水3.424±281.4DO、pH74
AAO城市污水5.1772.9DO75
AAO-MBBR生活污水3.05~4.1530~3285.03DO、HRT、SRT、温度76
ABR-MBR合成污水6.9330±278DO、HRT77
ABR-MBR生活污水5.4328~3271.8DO、HRT78

新窗口打开| 下载CSV


3.1 PND工艺

PND工艺是反硝化菌利用短程硝化产生的亚硝酸盐作为电子受体进行脱氮的耦合工艺,其流程如图2所示。

图2

图2   PND工艺流程

Fig. 2   Technological process of PND


完全硝化需氧量为4.57 g/g,而亚硝化只需3.43 g/g,抑制硝化可节省约25%的曝气成本。此外,短程反硝化速率比全程反硝化速率高出1.5~2倍,有机碳源需求量最高可降低40%,理论上短程硝化与短程反硝化的污泥产量分别减少33%、55%12。因此,该工艺被认为是提高生活污水脱氮效果的有效解决方案之一。Cancan JIANG等62通过联合控制DO与FNA成功建立了短程硝化反硝化工艺以处理低碳氮比生活污水,在连续流系统中,当DO为1.5 mg/L时实际污水的平均亚硝氮积累率为78%,平均总氮去除率为76%。Yuanyuan GUO等63通过pH与DO的联合控制(即在pH铵谷点时停止曝气)强化短程硝化,并在SBR反应器中增加厌氧发酵过程,为反硝化提供优质碳源及减少剩余污泥产生,总氮去除率可达93.5%。

PND工艺在高氨氮、高盐度的工业废水处理方面具有广阔的应用前景。Jiayi LI等64采用PND工艺对垃圾渗滤液进行处理,发现随着进水m(BOD)∶m(TN)的升高,污泥沉降性变好,原因可能在于类腐殖酸物质在胞外聚合物(EPS)中的比例增加,从而提高系统性能;m(BOD)∶m(TN)为1.44时,总氮去除速率稳定在226 mg/(L‧d)。Binbin SHENG等65对DO和外部碳源进行优化,促进了系统内亚硝化单胞菌的富集,优势反硝化菌Thauera的丰度也由0.60%显著富集到5.52%,成功将大型垃圾渗滤液处理厂原有硝化反硝化工艺升级为PND工艺。Zonglian SHE等66在SBR反应器内启动PND工艺,当进水盐度为5~37.9 g/L时,亚硝氮积累率>92.6%,氨氮与总氮的去除率保持在98.5%以上;盐度为9.0 g/L时,活性污泥的氨氧化速率可达接种时的2倍。

3.2 PNA工艺

PNA工艺对短程硝化与厌氧氨氧化进行耦合,是对PND工艺的进一步改进,其工艺流程如图3所示。

图3

图3   PNA工艺流程

Fig. 3   Technological process of PNA


在PNA工艺中,进水氨氮一半被AOB氧化产生亚硝酸盐,一半被厌氧氨氧化菌(Anammox)以亚硝酸盐为电子受体直接氧化为氮气,达到高效脱氮的目的。与传统脱氮工艺相比,PNA主要优势在于:(1)无需有机碳源;(2)曝气能量减少约60%;(3)污泥产量减少约75%;(4)CO2和N2O排放量更低31。PNA工艺可设计为单级或二级反应过程。单级反应一般在移动床生物膜反应器、颗粒污泥和旋转生物接触反应器中运行,通过曝气在生物膜或颗粒污泥外层富集AOB将废水中的氨氮转化为亚硝酸盐,内层因传质效应溶解氧较少,为厌氧氨氧化细菌的富集提供条件,利用亚硝酸盐转化氨氮。二级反应即设置2个反应器,通过参数控制设立短程硝化和厌氧氨氧化的适宜运行条件,达到耦合脱氮目的15

PNA工艺具有高效的脱氮性能,成功应用于世界上200多家规模化污水处理厂,对低碳氮比消化出水进行处理79。因此,PNA工艺用于主流处理受到极大关注。PNA工艺的理论最大脱氮效率为89%80,但存在异养反硝化菌(HDB)与外部有机碳源时,系统的最大脱氮效率可达90%以上81。一方面,Anammox和HDB会竞争亚硝酸盐,降低系统的脱氮性能;另一方面,HDB可利用厌氧氨氧化产生的硝酸盐,在某些情况下积累亚硝氮,表明2种菌群的相互作用能增强脱氮效果82。有研究发现,低碳氮比时PNA工艺的性能提高,而高碳氮比会增加HDB的活性,使厌氧氨氧化性能降低82。有机物浓度低时HDB出现在悬浮相,高浓度时主要存在于生物膜中83。因此可通过膜生物反应器、颗粒污泥及生物膜系统保留生物量,以恢复与稳定Anammox的活性22

奥地利Strass污水厂和新加坡Changi污水厂成功应用PNA工艺处理主流生活污水。Strass污水厂通过间歇曝气及添加Anammox颗粒污泥以维持较高的生物量,但厌氧氨氧化对脱氮的贡献率并未报道84。Changi污水厂采用分段式进水及交替好氧、缺氧条件来抑制NOB,且由于工厂位于热带地区,进水温度基本保持30 ℃,厌氧氨氧化效果较稳定,但只占总氮去除的37.5%85。这些案例都证明了主流PNA工艺的潜力,但均存在特殊情况,因此PNA工艺在广泛应用前还需进一步研究。

3.3 PN-DPR

反硝化除磷工艺(DPR)是强化生物除磷(EBPR)的新型工艺。在缺氧状态下,反硝化聚磷菌(DPAOs)利用细胞内的PHA以NO x--N为电子受体超量吸收水中的磷,达到一碳两用的效果86。对于短程硝化与反硝化除磷工艺耦合的可行性,有研究者认为高硝态氮浓度下反硝化除磷性能会受到抑制87,或厌氧状态下反硝化聚糖菌会与DPAOs竞争优质碳源(VFA)从而降低除磷性能88。但最近研究证明89,通过合理驯化反硝化聚磷菌在高浓度NO2--N下也能稳定吸磷,且部分聚糖菌能利用VFA将硝态氮转化为亚硝氮,为反硝化除磷提供电子受体,进一步说明PN-DPR工艺具有稳定脱氮除磷的能力。PN-DPR工艺流程如图4所示。

图4

图4   PN-DPR工艺流程

Fig. 4   Technological process of PN-DPR


PN-DPR工艺可在单污泥系统和双污泥系统中进行。单污泥系统的特点在于不同时间与空间的微生物具有协同作用,达到脱氮除磷效果。该系统有利于颗粒污泥的形成,使微生物量得到保留。Jianhua ZHANG等73在SBR反应器中接种富含聚磷菌的絮体污泥,采用较短的SRT、合理搅拌与曝气等条件成功洗脱NOB,达到短程硝化耦合反硝化除磷的目的,并在第63天成功富集形成功能颗粒污泥。Chuansheng YUAN等74建立了PN⁃DPR单污泥系统对低碳氮比(3.4)的实际生活污水进行研究,在266 d的稳定运行过程中总氮、磷的去除率分别达到81.4%、91%,颗粒污泥也在长期低DO和低负荷条件下逐渐形成,避免了污泥膨胀,证实了该工艺处理实际污水的可行性。

单污泥系统存在微生物间生境的矛盾90,而双污泥系统在独立格室中分别进行短程硝化和反硝化除磷,提供适宜生长的条件,促进微生物生长,形成高效稳定的脱氮除磷系统91。常见的采用双污泥系统运行的PN⁃DPR装置有A2N⁃SBR工艺、AAO工艺、A2O⁃MBBR工艺、MUCT工艺及ABR-MBR工艺等。Miao ZHANG等76研究了浓度与回流液NO x-⁃N比例对反硝化除磷的影响,发现NO3-⁃N、NO2-⁃N溶液浓度较高时反硝化除磷菌会受到不同程度的抑制,但PN⁃DPR系统去除1 mg PO43-⁃P消耗的碳源仍远低于常规EBPR系统,并节省16%碳源和15%氧耗。ABR⁃MBR工艺利用厌氧折流板反应器结构简单、整体推流单格完全混合的特点92,在前端格室对大分子有机物进行降解,为后端反硝化除磷提供优质碳源;利用膜生物反应器高效截留微生物93,为氨氧化细菌富集提供有利条件,形成高效稳定的PN⁃DPR工艺。为避免污泥回流破坏ABR的相分离特点,缪新年等78探索了无污泥回流情况下ABR⁃MBR工艺实现短程硝化耦合反硝化除磷的可能性,通过缩短HRT提升水力负荷〔0.48~1.2 kg/(m3‧d)〕,MBR回流液中ρ(NO2-⁃N)∶ρ(NO3-⁃N)逐渐升高(0.029~1.68),ABR回流格室内逐渐形成以亚硝氮为电子受体进行缺氧吸磷的聚磷菌;回流比达到150%时,回流格室的PO43-⁃P去除率可达64.94%,证明了该工艺的可行性。其反硝化除磷机理可能与回流格室内的氧化还原电位分布及污泥颗粒化形成的厌氧缺氧交替环境有关94,该机理的准确性有待进一步研究。

4 结语与展望

(1)大部分短程硝化工艺的优势种群为AOB,但AOA在极端环境下(低温低氧)的适应性更强,使得短程硝化具有多环境适用的可能性。AOA对底物的反应机理,AOA与环境微生物之间的竞争合作关系有待进一步探索。

(2)抑制NOB活性的手段并不单一,单因素控制不一定会对NOB产生抑制作用,甚至会影响AOB的活性,需联合其他因素控制达到长期稳定运行。化学抑制剂的投加量需根据实际条件考量,并考虑其降解性以减少对环境的二次污染。

(3)短程硝化与各后端脱氮工艺耦合形成的新型生物脱氮工艺具有更高效、低耗的性能。其不同反应机理增加了处理废水种类的多样性。通过分子生物学技术研究微生物内部聚合物丰度变化以及种群间协同竞争机制,将成为新型脱氮技术处理实际污水的新方向。


参考文献

HULLE S W H VANVANDEWEYER H J PMEESSCHAERT B Det al.

Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams

[J]. Chemical Engineering Journal, 20101621):1-20. doi:10.1016/j.cej.2010.05.037

[本文引用: 1]

GE ShijianWANG ShanyunYANG Xionget al.

Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment:A review

[J]. Chemosphere, 201514085-98. doi:10.1016/j.chemosphere.2015.02.004

[本文引用: 2]

彭永臻孙洪伟杨庆.

短程硝化的生化机理及其动力学

[J]. 环境科学学报,2008285):817-824. doi:10.3321/j.issn:0253-2468.2008.05.001

[本文引用: 1]

PENG YongzhenSUN HongweiYANG Qing.

The biochemical reaction mechanism and kinetics of partial nitrification

[J]. Acta Scientiae Circumstantiae, 2008285):817-824. doi:10.3321/j.issn:0253-2468.2008.05.001

[本文引用: 1]

ZART DSCHMIDT IBOCK E.

Significance of gaseous NO for ammonia oxidation by nitrosomonas eutropha

[J]. Antonie Van Leeuwenhoek, 2000771):49-55. doi:10.1023/a:1002077726100

[本文引用: 1]

何园胡文革马得草.

艾比湖湿地盐节木根际土壤氨氧化微生物多样性和丰度及其与环境因子的相关性分析

[J]. 环境科学学报,2017375):1967-1975.

[本文引用: 1]

HE YuanHU WengeMA Decaoet al.

Diversity and abundance of ammonia‑oxidizing microorganisms in relation to soil environment in rhizosphere soil of Halocnemum strobilaceum in Ebinur Lake wetland

[J]. Acta Scientiae Circumstantiae, 2017375):1967-1975.

[本文引用: 1]

Koops HPurkhold UPommerening⁃Roser Aet al.

The lithoautotrophic ammonia‑oxidizing bacteria

[C]//The prokaryotes: An evolving electronic resource for the microbiological community. New YorkSpringer‑Verlag2003.

[本文引用: 2]

KÖNNEKE MBERNHARD A EDE LA TORRE J Ret al.

Isolation of an autotrophic ammonia‑oxidizing marine archaeon

[J]. Nature, 20054377058):543-546. doi:10.1038/nature03911

[本文引用: 1]

BROCHIER⁃ARMANET CBOUSSAU BGRIBALDO Set al.

Mesophilic crenarchaeota:Proposal for a third archaeal Phylum, the Thaumarchaeota

[J]. Nature Reviews Microbiology,20086245-252. doi:10.1038/nrmicro1852

[本文引用: 1]

PESTER MSCHLEPER CWAGNER M.

The Thaumarchaeota:An emerging view of their phylogeny and ecophysiology

[J]. Current Opinion in Microbiology, 2011143):300-306. doi:10.1016/j.mib.2011.04.007

[本文引用: 1]

SINTHUSITH NTERADA AHAHN Met al.

Identification and quantification of bacteria and Archaea responsible for ammonia oxidation in different activated sludge of full‑scale wastewater treatment plants

[J]. Journal of Environmental Science and Heal⁃th, Part A, 2015502):169-175. doi:10.1080/10934529.2014.975535

[本文引用: 1]

GAO JingfengLUO XinWU Guixiaet al.

Quantitative analyses of the composition and abundance of ammonia‑oxidizing Archaea and ammonia‑oxidizing bacteria in eight full‑scale biological wastewater treatment plants

[J]. Bioresource Technology, 2013138285-296. doi:10.1016/j.biortech.2013.03.176

[本文引用: 1]

PENG YongzhenZHU Guibing.

Biological nitrogen removal with nitrification and denitrification via nitrite pathway

[J]. Applied Microbiology and Biotechnology, 2006731):15-26. doi:10.1007/s00253-006-0534-z

[本文引用: 3]

CHAKRABORTY PRAGHUNADH BABU P VVUDAMALA Ket al.

Mercury speciation in coastal sediments from the central east coast of India by modified BCR method

[J]. Marine Pollution Bulletin, 2014811):282-288. doi:10.1016/j.marpolbul.2013.12.054

[本文引用: 1]

TESSIER ACAMPBELL P G CBISSON M.

Sequential extraction procedure for the speciation of particulate trace metals

[J]. Analytical Chemistry, 1979517):844-851. doi:10.1021/ac50043a017

[本文引用: 1]

HELLINGA CSCHELLEN A A J CMULDER J Wet al.

The Sharon process:An innovative method for nitrogen removal from ammonium‑rich waste water

[J]. Water Science and Technology, 1998379):135-142. doi:10.2166/wst.1998.0350

[本文引用: 2]

LÓPEZ⁃PALAU SSANCHO IPINTO Aet al.

Influence of temperature on the partial nitritation of reject water in a granular sequencing batch reactor

[J]. Environmental Technology, 20133417/18/19/20):2625-2632. doi:10.1080/09593330.2013.781230

[本文引用: 1]

巩有奎彭永臻.

温度变化对短程生物脱氮及N2O释放影响

[J]. 水处理技术,2020468):110-115. doi:10.16796/j.cnki.1000-3770.2020.08.022

[本文引用: 2]

GONG YoukuiPENG Yongzhen.

Effect of temperature variation on short‑cut biological nitrogen removal and nitrous oxide release

[J]. Technology of Water Treatment, 2020468):110-115. doi:10.16796/j.cnki.1000-3770.2020.08.022

[本文引用: 2]

王丽媛李行李军.

降温和曝气时长对序批式活性污泥反应器部分亚硝化效能的影响研究

[J]. 环境污染与防治,20204211):1355-1358.

[本文引用: 3]

WANG LiyuanLI HangLI Jun.

Effects of cooling and aeration time on partial nitritation efficiency of sequential batch activated sludge reactor

[J]. Environmental Pollution & Control, 20204211):1355-1358.

[本文引用: 3]

GUO JianhuaPENG YongzhenHUANG Huijunet al.

Short‑ and long‑term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater

[J]. Journal of Hazardous Materials, 20101791/2/3):471-479. doi:10.1016/j.jhazmat.2010.03.027

[本文引用: 2]

PICULELL MWELANDER PJÖNSSON Ket al.

Evaluating the effect of biofilm thickness on nitrification in moving bed biofilm reactors

[J]. Environmental Technology, 2016376):732-743. doi:10.1080/09593330.2015.1080308

[本文引用: 1]

KOWALSKI M SDEVLIN T RDI BIASE Aet al.

Controlling cold temperature partial nitritation in moving bed biofilm reactor

[J]. Chemosphere, 2019227216-224. doi:10.1016/j.chemosphere.2019.04.025

[本文引用: 1]

LAURENI MFALÅS PROBIN Oet al.

Mainstream partial nitritation and anammox:Long‑term process stability and effluent quality at low temperatures

[J]. Water Research, 2016101628-639. doi:10.1016/j.watres.2016.05.005

[本文引用: 3]

BIAN WeiZHANG ShuyanZHANG Yanzhuoet al.

Achieving nitritation in a continuous moving bed biofilm reactor at different temperatures through ratio control

[J]. Bioresource Technology, 201722673-79. doi:10.1016/j.biortech.2016.12.014

[本文引用: 1]

PARK SBAE WCHUNG Jet al.

Empirical model of the pH dependence of the maximum specific nitrification rate

[J]. Process Biochemistry, 20074212):1671-1676. doi:10.1016/j.procbio.2007.09.010

[本文引用: 2]

PARK SBAE W.

Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid

[J]. Process Biochemistry, 2009446):631-640. doi:10.1016/j.procbio.2009.02.002

[本文引用: 1]

HE YulingTAO WendongWANG Ziyuanet al.

Effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in free‑water surface wetlands

[J]. Journal of Environmental Management, 2012110103-109. doi:10.1016/j.jenvman.2012.06.009

[本文引用: 1]

SINHA BANNACHHATRE A P.

Partial nitrification—Operational parameters and microorganisms involved

[J]. Reviews in Environmental Science and Bio/Technology, 200764):285-313. doi:10.1007/s11157-006-9116-x

[本文引用: 1]

ANTHONISEN A CLOEHR R CPRAKASAM T Bet al.

Inhibition of nitrification by ammonia and nitrous acid

[J]. Water Pollution Control Federation, 1976485):835-852.

[本文引用: 1]

BAE WBAEK SCHUNG Jet al.

Optimal operational factors for nitrite accumulation in batch reactors

[J]. Biodegradation, 2001125):359-366. doi:10.1023/a:1014308229656

[本文引用: 1]

WANG QilinYE LiuJIANG Guangminget al.

Side‑stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway

[J]. Water Research, 201455245-255. doi:10.1016/j.watres.2014.02.029

[本文引用: 2]

MA BinWANG ShanyunCAO Shenbinet al.

Biological nitrogen removal from sewage via anammox:Recent advances

[J]. Bioresource Technology, 2016200981-990. doi:10.1016/j.biortech.2015.10.074

[本文引用: 2]

BLACKBURNE RYUAN ZhiguoKELLER J.

Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor

[J]. Biodegradation, 2008192):303-312. doi:10.1007/s10532-007-9136-4

[本文引用: 1]

TOKUTOMI T.

Operation of a nitrite‑type airlift reactor at low DO concentration

[J]. Water Science and Technology, 2004495/6):81-88. doi:10.2166/wst.2004.0740

[本文引用: 1]

HANAKI KWANTAWIN COHGAKI S.

Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended‑growth reactor

[J]. Water Research, 1990243):297-302. doi:10.1016/0043-1354(90)90004-p

[本文引用: 1]

XU GuangjingZHOU YanYANG Qinet al.

The challenges of mainstream deammonification process for municipal used water treatment

[J]. Applied Microbiology and Biotechnology, 2015996):2485-2490. doi:10.1007/s00253-015-6423-6

[本文引用: 1]

LIU GuoqiangWANG Jianmin.

Long‑term low DO enriches and shifts nitrifier community in activated sludge

[J]. Environmental Science & Technology, 20134710):5109-5117. doi:10.1021/es304647y

[本文引用: 1]

FITZGERALD C MCAMEJO POSHLAG J Zet al.

Ammonia⁃oxidizing microbial communities in reactors with efficient nitrification at low‑dissolved oxygen

[J]. Water Research, 20157038-51. doi:10.1016/j.watres.2014.11.041

[本文引用: 1]

BLACKBURNE RVADIVELU V MYUAN Zhiguoet al.

Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter

[J]. Water Research, 20074114):3033-3042. doi:10.1016/j.watres.2007.01.043

[本文引用: 1]

HUANG ZhonghuaGEDALANGA P BASVAPATHANAGUL Pet al.

Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor

[J]. Water Research, 20104415):4351-4358. doi:10.1016/j.watres.2010.05.037

[本文引用: 1]

PARK H DNOGUERA D R.

Nitrospira community composition in nitrifying reactors operated with two different dissolved oxygen levels

[J]. Journal of Microbiology and Biotechnology, 2008188):1470-1474.

[本文引用: 1]

PICIOREANU CPÉREZ JLOOSDRECHT M C M VAN.

Impact of cell cluster size on apparent half‑saturation coefficients for oxygen in nitrifying sludge and biofilms

[J]. Water Research, 2016106371-382. doi:10.1016/j.watres.2016.10.017

[本文引用: 1]

MIAO YuanyuanPENG YongzhenZHANG Lianget al.

Partial nitrification‑anammox(PNA) treating sewage with intermittent aeration mode:Effect of influent C/N ratios

[J]. Chemical Engineering Journal, 2018334664-672. doi:10.1016/j.cej.2017.10.072

[本文引用: 2]

IANNACONE FDI CAPUA FGRANATA Fet al.

Effect of carbon‑to‑nitrogen ratio on simultaneous nitrification denitrification and phosphorus removal in a microaerobic moving bed biofilm reactor

[J]. Journal of Environmental Management, 2019250109518. doi:10.1016/j.jenvman.2019.109518

[本文引用: 1]

LI JialinZHANG LiangPENG Yongzhenet al.

Effect of low COD/N ratios on stability of single‑stage partial nitritation/anammox(SPN/A) process in a long‑term operation

[J]. Bioresource Technology, 2017244192-197. doi:10.1016/j.biortech.2017.07.127

[本文引用: 1]

MOUSAVI S AIBRAHIM SAROUA M K.

Effect of carbon source on acclimatization of nitrifying bacteria to achieve high‑rate partial nitrification of wastewater with high ammonium concentration

[J]. Applied Water Science, 201771):165-173. doi:10.1007/s13201-014-0229-z

[本文引用: 1]

孙艺齐卞伟李军.

15 ℃ SBBR短程硝化快速启动和稳定运行性能

[J]. 环境科学, 2019405):2326-2332.

[本文引用: 1]

SUN YiqiBIAN WeiLI Junet al.

Partial nitrification fast start⁃up and stable performance of 15 ℃ SBBR

[J]. Environmental Science, 2019405): 2326-2332.

[本文引用: 1]

DING FanLIANG DongboWU Yaodonget al.

Effect of C/N on partial nitrification in an MBBR at low temperature

[J]. Environmental Science:Water Research & Technology, 2020612):3391-3399. doi:10.1039/d0ew00654h

[本文引用: 1]

JIA LiGUO JinsongFANG Fanget al.

Effect of organic carbon on nitrogen conversion and microbial communities in the completely autotrophic nitrogen removal process

[J]. Environmental Technology, 20123310):1141-1149. doi:10.1080/09593330.2011.610363

[本文引用: 1]

HAN MDE CLIPPELEIR HAL‑OMARI Aet al.

Impact of carbon to nitrogen ratio and aeration regime on mainstream deammonification

[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2016742):375-384. doi:10.2166/wst.2016.202

[本文引用: 1]

ERGUDER T HBOON NVLAEMINCK S Eet al.

Partial nitrification achieved by pulse sulfide doses in a sequential batch reactor

[J]. Environmental Science & Technology, 20084223):8715-8720. doi:10.1021/es801391u

[本文引用: 1]

ORTIZ D I BTHALASSO FDE MARÍA CUERVO LÓPEZ Fet al.

Inhibitory effect of sulfide on the nitrifying respiratory process

[J]. Journal of Chemical Technology & Biotechnology, 2013887):1344-1349. doi:10.1002/jctb.3982

[本文引用: 1]

常赜孙宁李召旭.

硫化物抑制亚硝酸氧化菌推动短程硝化反硝化生物脱氮技术

[J]. 环境工程学报,2018125):1416-1423. doi:10.12030/j.cjee.201710144

[本文引用: 1]

CHANG ZeSUN NingLI Zhaoxuet al.

Sulfide‑driven and nitrite‑oxidizing bacteria (NOB) inhibition shortcut nitrification and denitrification biological nitrogen removal technology

[J]. Chinese Journal of Environmental Engineering, 2018125):1416-1423. doi:10.12030/j.cjee.201710144

[本文引用: 1]

STAR W R L VAN DERDE GRAAF M J VANKARTAL Bet al.

Response of anaerobic ammonium‑oxidizing bacteria to hydroxylamine

[J]. Applied and Environmental Microbiology, 20087414):4417-4426. doi:10.1128/aem.00042-08

[本文引用: 1]

GONZALEZ‑SILVA B MJONASSEN K RBAKKE Iet al.

Nitrification at different salinities:Biofilm community composition and physiological plasticity

[J]. Water Research, 20169548-58. doi:10.1016/j.watres.2016.02.050

[本文引用: 1]

MOUSSA M SSUMANASEKERA D UIBRAHIM S Het al.

Long term effects of salt on activity, population structure and floc characteristics in enriched bacterial cultures of nitrifiers

[J]. Water Research, 2006407):1377-1388. doi:10.1016/j.watres.2006.01.029

[本文引用: 1]

CUI Y WPENG Y ZPENG C Yet al.

Achieving biological nitrogen removal via nitrite by salt inhibition

[J]. Water Science and Technology, 2006536):115-122. doi:10.2166/wst.2006.183

[本文引用: 1]

RANDALL C WBUTH D.

Nitrite build⁃up in activated sludge resulting from combined temperature and toxicity effects

[J]. Journal of Water Pollution Control Federation, 1984561045-1049.

[本文引用: 1]

HU ZhiqiangCHANDRAN KGRASSO Det al.

Comparison of nitrification inhibition by metals in batch and continuous flow reactors

[J]. Water Research, 20043818):3949-3959. doi:10.1016/j.watres.2004.06.025

[本文引用: 1]

LIU XiaoguangCHOWDHURY M M IZAMAN Met al.

Acute and chronic toxicity of nickel to nitrifiers at different temperatures

[J]. Journal of Environmental Sciences, 201982169-178. doi:10.1016/j.jes.2019.03.009

[本文引用: 1]

OUYANG FanZHAI HongyanJI Minet al.

Physiological and transcriptional responses of nitrifying bacteria exposed to copper in activated sludge

[J]. Journal of Hazardous Materials, 2016301172-178. doi:10.1016/j.jhazmat.2015.08.039

[本文引用: 1]

SHODA MISHIKAWA Y.

Heterotrophic nitrification and aerobic denitrification of high‑strength ammonium in anaerobically digested sludge by Alcaligenes faecalis strain No. 4

[J]. Journal of Bioscience and Bioengineering, 20141176):737-741. doi:10.1016/j.jbiosc.2013.11.018

[本文引用: 1]

JIANG CancanXU ShengjunWANG Ruiet al.

Achieving efficient nitrogen removal from real sewage via nitrite pathway in a continuous nitrogen removal process by combining free nitrous acid sludge treatment and DO control

[J]. Water Research, 2019161590-600. doi:10.1016/j.watres.2019.06.040

[本文引用: 2]

GUO YuanyuanPENG YongzhenWANG Boet al.

Achieving simultaneous nitrogen removal of low C/N wastewater and external sludge reutilization in a sequencing batch reactor

[J]. Chemical Engineering Journal, 2016306925-932. doi:10.1016/j.cej.2016.07.097

[本文引用: 2]

LI JiayiDU QingpingPENG Huangqianget al.

Optimization of biochemical oxygen demand to total nitrogen ratio for treating landfill leachate in a single‑stage partial nitrification-denitrification system

[J]. Journal of Cleaner Production, 2020266121809. doi:10.1016/j.jclepro.2020.121809

[本文引用: 2]

SHENG BinbinWANG DepengLIU Xianronget al.

Taxonomic and functional variations in the microbial community during the upgrade process of a full‑scale landfill leachate treatment plant—From conventional to partial nitrification-denitrification

[J]. Frontiers of Environmental Science & Engineering, 2020146):1-12. doi:10.1007/s11783-020-1272-7

[本文引用: 2]

SHE ZonglianZHAO LintingZHANG Xiaolinget al.

Partial nitrification and denitrification in a sequencing batch reactor treating high‑salinity wastewater

[J]. Chemical Engineering Journal, 2016288207-215. doi:10.1016/j.cej.2015.11.102

[本文引用: 2]

GILBERT E MAGRAWAL SKARST S Met al.

Low temperature partial nitritation/anammox in a moving bed biofilm reactor treating low strength wastewater

[J]. Environmental Science & Technology, 20144815):8784-8792. doi:10.1021/es501649m

[本文引用: 1]

GILBERT E MAGRAWAL SSCHWARTZ Tet al.

Comparing different reactor configurations for partial nitritation/Anammox at low temperatures

[J]. Water Research, 20158192-100. doi:10.1016/j.watres.2015.05.022

[本文引用: 1]

LI BolinWANG YueLI Jiangtaoet al.

The symbiosis of anaerobic ammonium oxidation bacteria and heterotrophic denitrification bacteria in a size‑fractioned single‑stage partial nitrification/anammox reactor

[J]. Biochemical Engineering Journal, 2019151107353. doi:10.1016/j.bej.2019.107353

[本文引用: 1]

LUO JinghuanCHEN HuiHAN Xiaoyuet al.

Microbial community structure and biodiversity of size‑fractionated granules in a partial nitritation‑anammox process

[J]. FEMS Microbiology Ecology, 2017936):21-56. doi:10.1093/femsec/fix021

[本文引用: 1]

狄斐隋倩雯陈彦霖.

部分亚硝化-厌氧氨氧化处理磁混凝生活污水

[J]. 中国环境科学,20204011):4712-4720. doi:10.3969/j.issn.1000-6923.2020.11.009

[本文引用: 1]

DI FeiSUI QianwenCHEN Yanlinet al.

Partial nitritation⁃Anammox process treating magnetic coagulation domestic sewage

[J]. China Environmental Science, 20204011):4712-4720. doi:10.3969/j.issn.1000-6923.2020.11.009

[本文引用: 1]

张蕾孙宏佶牟英东.

短程硝化-厌氧氨氧化组合工艺对氨淋洗液的处理效果

[J]. 环境工程学报,20201411):2989-2998. doi:10.12030/j.cjee.201911113

[本文引用: 1]

ZHANG LeiSUN HongjiMU Yingdonget al.

Treatment of ammonia percolate by a combined process of shortcut nitrification and anaerobic ammonium oxidation

[J]. Chinese Journal of Environmental Engineering, 20201411):2989-2998. doi:10.12030/j.cjee.201911113

[本文引用: 1]

ZHANG JianhuaZHANG QiongLI Xiyaoet al.

Rapid start‑up of partial nitritation and simultaneously phosphorus removal (PNSPR) granular sludge reactor treating low‑strength domestic sewage

[J]. Bioresource Technology, 2017243660-666. doi:10.1016/j.biortech.2017.06.129

[本文引用: 2]

YUAN ChuanshengWANG BoPENG Yongzhenet al.

Enhanced nutrient removal of simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) in a single‑stage anaerobic/micro‑aerobic sequencing batch reactor for treating real sewage with low carbon/nitrogen

[J]. Chemosphere, 2020257127097. doi:10.1016/j.chemosphere.2020.127097

[本文引用: 2]

CAI JianmingLIANG PengQIU Yonget al.

A mass balance framework to evaluate the new pathways of biological nutrient removal in wastewater treatment

[J]. Journal of Water Process Engineering, 202037101523. doi:10.1016/j.jwpe.2020.101523

[本文引用: 1]

ZHANG MiaoZHU ChenjieGAO Jinget al.

Deep‑level nutrient removal and denitrifying phosphorus removal (DPR) potential assessment in a continuous two‑sludge system treating low⁃streng⁃th wastewater:The transition from nitration to nitritation

[J]. Science of the Total Environment, 2020744140940. doi:10.1016/j.scitotenv.2020.140940

[本文引用: 2]

吕亮.

基于短程反硝化除磷的ABR-MBR工艺处理生活污水效能研究

[D]. 苏州苏州科技大学2017.

[本文引用: 1]

Liang .

Study on the efficiency of ABR‑MBR process treating domestic wastewater based on short‑cut denitrifying phosphorus removal

[D]. SuzhouSuzhou University of Science and Technology2017.

[本文引用: 1]

缪新年汪倩郭凯成.

ABR‑MBR耦合工艺启动及优化反硝化除磷性能

[J]. 环境科学,2020419):4150-4160.

[本文引用: 2]

MIAO XinnianWANG QianGUO Kaichenget al.

Start‑up and optimization of denitrifying phosphorus removal in ABR‑MBR coupling process

[J]. Environmental Science, 2020419):4150-4160.

[本文引用: 2]

LACKNER SGILBERT E MVLAEMINCK S Eet al.

Full⁃scale partial nitritation/anammox experiences: An application survey

[J]. Water Research, 201455292-303. doi:10.1016/j.watres.2014.02.032

[本文引用: 1]

THIRD K ASLIEKERS A OKUENEN J Get al.

The CANON system(completely autotrophic nitrogen‑removal over nitrite) under ammonium limitation:Interaction and competition between three groups of bacteria

[J]. Systematic and Applied Microbiology, 2001244):588-596. doi:10.1078/0723-2020-00077

[本文引用: 1]

TOMAR SGUPTA S K.

Symbiosis of denitrification, anammox and anaerobic pathways: An innovative approach for confiscating the major bottlenecks of anammox process

[J]. Chemical Engineering Journal, 2017313355-363. doi:10.1016/j.cej.2016.12.053

[本文引用: 1]

DU RuiPENG YongzhenCAO Shenbinet al.

Advanced nitrogen removal with simultaneous Anammox and denitrification in sequencing batch reactor

[J]. Bioresource Technology, 2014162316-322. doi:10.1016/j.biortech.2014.03.041

[本文引用: 2]

DOWNING L SBIBBY KESPOSITO Ket al.

Pilot‑scale testing of the hybrid membrane biofilm process (HMBP) for total nitrogen removal from municipal wastewater

[J]. Proceedings of the Water Environment Federation, 2008, 2008(9):6236-6244. doi:10.2175/193864708790893440

[本文引用: 1]

WETT BPODMIRSEG S MGÓMEZ‑BRANDÓN Met al.

Expanding DEMON sidestream deammonification technology towards mainstream application

[J]. Water Environment Research:a Research Publication of the Water Environment Federation, 20158712):2084-2089. doi:10.2175/106143015x14362865227319

[本文引用: 1]

Cao YeshiBee Hong KwokYan Zhou.

新加坡最大回用水处理厂污水短程硝化厌氧氨氧化脱氮工艺

[J]. 北京工业大学学报,20154110):1441-1454.

[本文引用: 1]

Cao YeshiHong k bYan zhouet al.

Mainstream partial nitritation/anammox nitrogen removal process in the largest water reclamation plant in Singapore

[J]. Journal of Beijing University of Technology, 20154110):1441-1454.

[本文引用: 1]

OEHMEN ALEMOS P CCARVALHO Get al.

Advances in enhanced biological phosphorus removal:From micro to macro scale

[J]. Water Research, 20074111):2271-2300. doi:10.1016/j.watres.2007.02.030

[本文引用: 1]

MEINHOLD JARNOLD EISAACS S.

Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge

[J]. Water Research, 1999338):1871-1883. doi:10.1016/s0043-1354(98)00411-4

[本文引用: 1]

BARNARD J LDUNLAP PSTEICHEN M.

Rethinking the mechanisms of biological phosphorus removal

[J]. Water Environment Research, 20178911):2043-2054. doi:10.2175/106143017x15051465919010

[本文引用: 1]

RUBIO-RINCÓN F JLOPEZ‑VAZQUEZ C MWELLES Let al.

Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes

[J]. Water Research, 2017120156-164. doi:10.1016/j.watres.2017.05.001

[本文引用: 1]

BORTONE GMALASPINA FSTANTE Let al.

Biological nitrogen and phosphorus removal in an anaerobic/anoxic sequencing batch reactor with separated biofilm nitrification

[J]. Water Science and Technology, 1994306):303-313. doi:10.2166/wst.1994.0281

[本文引用: 1]

令云芳王淑莹王亚宜.

A2N反硝化除磷脱氮工艺的影响因素分析

[J]. 工业用水与废水,2006372):7-11. doi:10.3969/j.issn.1009-2455.2006.02.002

[本文引用: 1]

LING YunfangWANG ShuyingWANG Yayiet al.

Analysis on influencing factors of A2N denitrifying phosphorus and nitrogen removal process

[J]. Industrial Water & Wastewater, 2006372):7-11. doi:10.3969/j.issn.1009-2455.2006.02.002

[本文引用: 1]

GOPALA KRISHNA G V TKUMAR PKUMAR P.

Treatment of low‑strength soluble wastewater using an anaerobic baffled reactor(ABR)

[J]. Journal of Environmental Management, 2009901):166-176. doi:10.1016/j.jenvman.2007.08.017

[本文引用: 1]

沈耀良王宝贞. 废水生物处理新技术:理论与应用[M]. 2版. 北京中国环境科学出版社2006.

[本文引用: 1]

潘家成缪新年程诚.

ABR相分离条件下耦合MBR工艺反硝化除磷可行性研究

[J]. 环境工程,2020383):63-68.

[本文引用: 1]

PAN JiachengMIAO XinnianCHENG Chenget al.

Feasibility of phosphorus removal by denitrifying by ABR phase separation and mbr coupling process

[J]. Environmental Engineering, 2020383):63-68.

[本文引用: 1]

/