工业水处理, 2022, 42(6): 125-132 doi: 10.19965/j.cnki.iwt.2021-0370

标识码(

铁基石墨相氮化碳复合材料在水处理中的研究进展

刘晨,1,2, 杜永娟1, 焦钰珠1, 孙迎雪,1,3,4

1.北京工商大学生态环境学院,北京 100048

2.北京恩菲环保股份有限公司,北京 100038

3.北京工商大学国家环境保护食品链污染防治重点实验室,北京 100048

4.北京工商 大学中国轻工业清洁生产与资源综合利用重点实验室,北京 100048

Research progress on iron-based graphitic carbon nitride composites in water treatment

LIU Chen,1,2, DU Yongjuan1, JIAO Yuzhu1, SUN Yingxue,1,3,4

1.School of Ecology and Environment,Beijing Technology and Business University,Beijing 100048,China

2.Beijing ENFI Environmental Protection Co. ,Ltd. ,Beijing 100038,China

3.State Environmental Protection Key Laboratory of Food Chain Pollution Control,Beijing Technology and Business University,Beijing 100048,China

4.Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry,Beijing Technology and Business University,Beijing 100048,China

收稿日期: 2022-02-28  

Received: 2022-02-28  

作者简介 About authors

刘晨(1995—),硕士研究生电话:18600549517,E-mail:liuchenliuchen95@qq.com , E-mail:liuchenliuchen95@qq.com

孙迎雪,博士,教授E-mail:sunyx@th.btbu.edu.cn , E-mail:sunyx@th.btbu.edu.cn

摘要

铁基石墨相氮化碳复合材料结合了铁基材料、石墨相氮化碳(g-C3N4)以及异质结结构的优点,在促进复合材料光生电子-空穴的分离、扩大可见光响应能力、提高材料光催化性能等方面有着显著的优势。综述了铁基石墨相氮化碳异质结体系的基本分类、结构特点及其研究进展,包括Ⅱ型异质结体系(n-n结、p-n结)、Z型异质结体系(全固态Z结、直接Z结)以及典型非异质结体系(铁离子掺杂、核壳结构)中光生载流子的转移机制,总结了铁基材料在不同异质结体系中光催化降解有机物过程的氧化机理与增强机制。

关键词: 石墨相氮化碳 ; 铁物种 ; 异质结 ; 光催化机制 ; 水处理

Abstract

Iron-based graphitic carbon nitride integrates the advantages of iron-based materials,graphitic carbon nitride(g-C3N4) and heterojunction to accelerate the separation of photo-induced charges,extend the visible light absorption range and enhance the photocatalytic performance of composites. This review aimed to give a comprehensive introduction in basic classifications,structural features and research progress of iron-based graphitic carbon nitride heterojunction,including the photogenerated charges transfer mechanism of type-Ⅱ heterojunction(n-n heterojunction and p-n heterojunction),Z-scheme heterojunction(all-solid-state Z-scheme and direct Z-scheme) and typical non-heterojunction (iron ion doping,core-shell structure). The oxidation and activity-enhanced mechanisms of iron-based materials in the photocatalytic degradation of organic pollutants in different heterojunction systems were summarized.

Keywords: graphitic carbon nitride ; iron species ; heterojunction ; photocatalytic mechanism ; water treatment

PDF (1261KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘晨, 杜永娟, 焦钰珠, 孙迎雪. 铁基石墨相氮化碳复合材料在水处理中的研究进展. 工业水处理[J], 2022, 42(6): 125-132 doi:10.19965/j.cnki.iwt.2021-0370

LIU Chen. Research progress on iron-based graphitic carbon nitride composites in water treatment. Industrial Water Treatment[J], 2022, 42(6): 125-132 doi:10.19965/j.cnki.iwt.2021-0370

近年来水环境中不断被检出新兴微量有机污染物,如持久性有机污染物、农药、抗生素、雌激素等1。由太阳能驱动的半导体光催化材料不仅可以高效降解有机污染物,还可降低能源消耗2-3,在处理有毒微量有机物方面具有明显优势。

石墨相氮化碳(g-C3N4)作为一种新兴的可见光响应型催化剂4,由于具有可响应可见光5-6、易制备、稳定性好7以及能够快速降解有机污染物8等优点,正成为光催化领域的研究热点。但g-C3N4也存在光生载流子复合率较高9-10、可见光利用率较低等缺点911。在针对g-C3N4的各种改性方法中,与其他半导体共同构筑半导体异质结的方法被广泛研究12-13。异质结是指具有不同能带结构的半导体材料接触后在交界处形成的特殊界面14,有利于促进光生载流子的分离。而铁基半导体中的铁物种可作为光生电子的捕获剂15,对光生电子-空穴对(e--h+)的分离起促进作用;铁物种的引入还可拓宽g-C3N4对可见光的响应范围15-16,提高材料的光催化性能。因此,g-C3N4常与铁基半导体结合构筑不同的异质结体系,而具有交错能带结构的异质结体系才是分离光生电子-空穴最有效的结构17

笔者综述了铁基g-C3N4异质结的分类及特点,重点评述了Ⅱ型异质结体系(n-n结、p-n结),Z型异质结体系(全固态Z结、直接Z结)以及部分非异质结体系中铁基g-C3N4的结构特性及其对水中难降解有机物的去除效果与机制,以期为铁基g-C3N4光催化氧化技术的发展与实际应用提供参考。

1 铁基g-C3N4异质结基本分类

铁基g-C3N4异质结是指g-C3N4与不同铁基半导体光催化材料经紧密接触后以特殊的方式结合形成的界面2,并产生界面能带对准。根据半导体的能带排列位置不同,异质结可分为跨隙结(Ⅰ型)、交错隙结(Ⅱ型)以及断隙结(Ⅲ型)18-19,结构如图 1所示。

图1

图1   半导体异质结类型

(a)I型;(b)Ⅱ型;(c)Ⅲ型

Fig. 1   Types of heterojunction


跨隙结如图1(a)所示,半导体A的光生电子与空穴皆会向半导体B迁移,导致光生载流子在半导体B上聚集,光生电子-空穴对的复合率依旧很高19-20。交错隙结(Ⅱ型异质结)中g-C3N4与铁基半导体具有交错的能带结构,是分离光生电子-空穴最有效的结构〔图1(b)〕。断隙结如图1(c)所示,光生电子或空穴无法通过界面传送到另一个半导体,可以被视为2个单独的半导体1418,很难实现光生载流子的有效分离。

一般来说,未经改性的g-C3N4是典型的n型半导体21,而铁基半导体分为p型(空穴为多数载流子)与n型(电子为多数载流子)2种。根据电荷的转移和分离机理,Ⅱ型异质结可划分为p-n结、n-n结14以及Z结构3种结构18。根据载流子介体的引入类型,Z结构分为3类22-23:(1)传统Z结构,以可逆的氧化还原离子对(如Fe3+/Fe2+)作为载流子的转移介质24;(2)全固态Z结构,以电子导体(如Au、Ag等)作为载流子转移的桥梁25;(3)直接Z结构,2个半导体在没有载流子转移介质的情况下紧密接触1217

2 铁基石墨相氮化碳Ⅱ型异质结体系

2.1 n-n结体系

n-n异质结是由g-C3N4与n型铁基半导体组合而成。根据g-C3N4与铁基半导体导带的位置关系,光生电子向具有更高电势半导体的导带迁移,同时光生空穴以相反路线转移12,有效地驱动了光生载流子的分离26。但是,载流子在此迁移方式下会削弱光生电子的还原能力与光生空穴的氧化能力17

铁酸锌(ZnFe2O4)作为一种典型含铁二元金属氧化物,属于n型半导体27,其价带与导带分别由O的2p轨道与Fe的3d轨道组成28,较窄的带隙宽度(1.9 eV)赋予其更强的可见光响应能力29,因此常被用于与g-C3N4构筑异质结。B. PALANIVEL等30构建了ZnFe2O4/g-C3N4复合物,通过高分辨率透射电子显微镜(HRTEM)证实了ZnFe2O4与g-C3N4之间异质结的形成;ZnFe2O4/g-C3N4光吸收边缘(670 nm)较原始g-C3N4出现明显红移;光致发光(PL)光谱中荧光强度的急剧下降说明光生电子-空穴的复合率明显降低;X射线光电子能谱(XPS)显示,283.65 eV处峰对应的结合能可以归结为Zn—C键与氧空位的耦合,它可以缩小带隙、增强复合材料的可见光响应。在太阳光辐射60 min后,ZnFe2O4/g-C3N4对亚甲基蓝(MB)的降解率可达90%以上,明显高于单独ZnFe2O4或g-C3N4光催化的降解率,且在该过程中,羟基自由基(·OH)是MB逐步降解的主要活性物种,而·OH是通过ZnFe2O4导带产生的超氧自由基(O2·-)与H2O2反应生成的。S. BORTHAKUR等29在采用ZnFe2O4/g-C3N4对罗丹明B(RhB)的降解过程中也得出了类似结果。这表明,异质结的形成可提高复合材料的光响应能力,促进光生载流子的分离,从而提高光催化性能。K. K. DAS等31采用导电聚合物聚吡咯(PPY)对ZnFe2O4/g-C3N4复合物进一步修饰改性,O—H基团的存在(XPS结果证实)表明ZnFe2O4和g-C3N4之间形成了异质结;PPY的低带隙起到了光敏化剂的作用,有助于减缓光生电子-空穴对的复合过程,加速系统内电子的迁移。PPY和g-C3N4中产生的光生电子聚集在ZnFe2O4中Fe的3d轨道上,易被O2捕获,促进O2·-的产生,实现对环丙沙星(CIP)的高效降解。

2.2 p-n结体系

p-n异质结是指p型铁基材料与g-C3N4在接触后形成的特殊界面,如图2所示。

图2

图2   p-n结

Fig. 2   p-n heterojunction


p-n异质结的特点为界面处发生了能带弯曲,形成了内建电场32。这是由于p型与n型半导体的费米能级分别接近各自的价带与导带19,为使复合材料的费米能级达到新的平衡,两半导体之间发生自由电子的转移(由n至p),最终造成p型半导体一侧带负电荷,n型半导体一侧带正电荷33。虽然额外的电场进一步提高了载流子分离能力,但光生电子-空穴氧化还原能力较低的问题依然存在。

铁酸铜(CuFe2O4)具有1.4 eV的相对窄的带隙34,可与g-C3N4构成p-n结,CuFe2O4结构内存在的≡Cu/≡Cu0与≡Fe/≡Fe氧化还原循环对通过利用光生电子促进了载流子的分离35-36,且≡Fe可由≡Cu0还原进一步强化了·OH的产生。Ruobai LI等37发现在可见光催化下,与g-C3N4或CuFe2O4相比,CuFe2O4/g-C3N4复合材料对普萘洛尔(PRO)具有更优异的光催化降解能力。p-n异质结的存在可促进光生电子由CuFe2O4向g-C3N4转移,有利于硫酸根自由基(SO4·-)的产生;进一步地,SO4·-通过与H2O反应产生·OH,实现了对PRO的高效降解。Xiangyu WANG等38发现MnFe2O4与CuFe2O4性质相似,且同为p型半导体。≡Mn/≡Mn不仅表现出≡Cu/≡Cu的特点,≡Mn还可由≡Fe还原,从而促进Mn、Fe元素之间的氧化还原循环,使得MnFe2O4/g-C3N4对不同难降解有机物有着高效的降解能力38-39

LaFeO3、BiFeO3作为典型的p型半导体,可与g-C3N4形成p-n结40-41。Yan WU等40构建了LaFeO3/g-C3N4复合材料,透射电子显微镜(TEM)显示LaFeO3和g-C3N4之间存在相互连接的晶格条纹,证实了异质结结构的形成;且XPS结果显示,由N—La—O和N—Fe—O组成的p-n结界面能够产生更多活性物种(·OH、O2·-),从而提高电荷转移能力和光催化性能,实现对典型染料亮蓝(BB)的高效降解。Yuhuan XU等42同样制备了LaFeO3/g-C3N4复合材料,紫外-可见漫反射光谱(UV-vis DRS)显示复合材料的吸收带边可达700 nm,可见光利用率进一步提升。Xingfu WANG等43制备了g-C3N4/BiFeO3复合材料用于甲基橙(MO)的降解,TEM显示g-C3N4的引入导致BiFeO3的形貌从立方体变为纺锤状,且纺锤状的BiFeO3纳米颗粒随机附着在g-C3N4表面,适量的BiFeO3有利于g-C3N4/BiFeO3中异质结的形成。

3 铁基石墨相氮化碳Z型异质结体系

3.1 全固态Z结构体系

全固态Z结构最大的特点是以贵金属(Ag、Pt等)或石墨烯材料(GO、rGO)作为g-C3N4与铁基半导体之间光生载流子的传递介质44,结构图见图3

图3

图3   全固态Z结

Fig. 3   All-solid-state Z-scheme


图3所示,半导体A中的光生空穴与半导体B中的光生电子发生迁移,并在电子介质上发生重组25,这不仅提高了光生载流子的分离效率,还保存了半导体A中强还原性的光生电子以及半导体B中强氧化性的光生空穴,强化了光催化性能。

G. GEBRESLASSIE等45通过在铁酸镍(NiFe2O4)/g-C3N4复合物的基础上引入了rGO,构造出含全固态Z结构的复合材料,在rGO的作用下,g-C3N4/rGO/NiFe2O4中光生载流子的迁移路径发生改变,光生电子从NiFe2O4向g-C3N4迁移,且电子向NiFe2O4的反向迁移受到抑制,因此NiFe2O4价带(+2.13 V)产生的强氧化性的h+被保留下来,有利于促进·OH的产生E(·OH/OH-)=+1.99 eV,并成为MO光催化降解过程中的主要活性物种。钨酸铁(FeWO4)的带隙宽度相对较窄,对可见光响应能力更强46。Cong WANG等47研究发现,在对RhB的去除过程中,rGO/g-C3N4-FeWO4(rGO先与g-C3N4结合)的光催化能力明显低于rGO/FeWO4-g-C3N4(rGO先与FeWO4结合),PL光谱也证实rGO/g-C3N4-FeWO4的光生载流子分离效率较低,这表明材料的接触顺序会对全固态Z型催化剂性能造成影响。K. RABÉ等48通过原位沉积的方法将Fe0颗粒引入TiO2与g-C3N4之间形成Z结构,Fe0通过转移光生电子保存了TiO2价带强氧化性的h+,促进了·OH的产生,提高了对RhB的降解率。Xiangyu WANG等49还发现,在rGO的作用下,光生电子可以迅速转移到Fe0上,促进了类Fenton反应的发生,该过程对RhB的降解有着重要作用。Fe0被氧化为Fe2+后,与H2O2反应产生·OH;而Fe2+被氧化变为Fe3+后,得到光生电子再次被还原为Fe0,这不仅避免了Fe0被O2氧化,还促进了光生载流子的分离。

3.2 直接Z结构体系

直接Z结构是由g-C3N4与铁基半导体直接接触后形成,虽然避免了电子介体的引入,但光生电子的迁移途径依旧呈现Z型22,结构见图4

图4

图4   直接Z结

Fig. 4   Direct Z-scheme


图4所示,为使复合材料费米能级达到平衡,两个半导体之间发生自由电子的转移12,最终半导体A侧带正电荷,半导体B侧带负电荷24。受内建电场的影响,在光激发下,半导体B中的光生电子与半导体A中的光生空穴复合1724;而能带弯曲与库仑排斥所引发的内建电场和额外势垒阻碍了光生电子从半导体A的导带向半导体B的导带迁移2444,相应地,也抑制光生空穴由半导体B的价带向半导体A的价带迁移。直接Z结构最大的特点是保留了两半导体中具有强还原能力的光生电子以及强氧化能力的光生空穴。

P. MISHRA等50在磷掺杂g-C3N4的基础上引入NiFe2O4后构筑出NiFe2O4/P-g-C3N4复合材料,从TEM图像可以观察到NiFe2O4附着在P-g-C3N4上,为复合材料中存在异质结提供了佐证;进一步地,NiFe2O4与g-C3N4的能带结构以及·OH在苯酚降解过程中起主要作用这一猝灭实验结果表明复合材料光生载流子的迁移机制符合直接Z结。NiFe2O4的引入增强了P-g-C3N4的表面电荷,提高了NiFe2O4/P-g-C3N4在可见光区的响应能力,在模拟太阳光下,NiFe2O4/P-g-C3N4对苯酚的降解率可达96%,比磷掺杂g-C3N4高2倍。在此基础上P. MISHRA等51又引入Fe3O4,·OH作为主要活性物种在NiFe2O4的价带(+2.1 V)产生,证实复合材料NiFe2O4/P-g-C3N4-Fe3O4具有双Z结构。虽然Fe3O4自身具有很强的光致发光性,但g-C3N4可将Fe3O4产生的光生电子捕获在其π骨架上,抑制光生电子-空穴对的复合,进一步提高材料的光催化性能和可回收能力。Guanshu ZHAO等52通过向BiVO4/g-C3N4中引入具有磁性的NiFe2O4,提高了BiVO4/g-C3N4/NiFe2O4复合材料的回收再利用能力,O2·-与h+为主要活性物种证明了拥有直接Z结构的三元复合材料的成功合成,且可见光响应范围拓展到600 nm;在降解氧氟沙星(OFL)的过程中,哌嗪环的C—C键极易受到O2·-的攻击而断裂。

金属有机骨架(MOFs)作为一类多孔晶体材料53,是光生电子的优良载体,可有效地分离光生载流子。部分铁基MOFs具有半导体的特性,也常被用于光催化剂的合成,如MIL-88A54、MIL-10155以及MIL-5356等。Feiping ZHAO等55在g-C3N4表面原位生长MIL-101(Fe),构建了含Z型异质结的MIL-101(Fe)/g-C3N4,异质结的生成强化了材料间的相互作用,相较于单独的g-C3N4,MIL-101(Fe)/g-C3N4的带隙变窄,可利用更多的可见光。MIL-101(Fe)/g-C3N4催化能力的提升直接体现在对铬(Ⅵ)的还原与双酚A的降解上,且O2·-、h+为光催化氧化过程中的主要活性物种。较弱的DMPO—·OH信号表明,MIL-101(Fe)/g-C3N4中具有较强氧化能力的h+仍保留于MIL-101(Fe)的价带(+2.50 V)上,为Z结构的生成提供了证明。Zhuwang SHAO等54采用MIL-88A也合成出含Z结构的复合材料MIL-88A(Fe)/g-C3N4,XPS显示复合材料Fe的2p峰位置与纯MIL-88A(Fe)相比出现正位移,证实二者之间存在强相互作用,且MIL-88A(Fe)/g-C3N4在可见光下对RhB的降解效率是单独g-C3N4的4.7倍。Yuqi CUI等56采用MIL-53、α-Bi2O3以及g-C3N4构筑出三元直接Z结构的复合物MIL-53(Fe)/α-Bi2O3/g-C3N4,TEM图像显示g-C3N4片状结构和MIL-53(Fe)棒状结构均嵌入在α-Bi2O3中。O2·-作为主要活性物种在α-Bi2O3和MIL-53(Fe)的导带产生,同时α-Bi2O3价带保留了强氧化性的h+,证明三者之间形成了直接Z结构。MIL-53(Fe)/α-Bi2O3/g-C3N4在45 min内即可对染料分子氨基黑10B达到100%的降解率,而二元材料Bi2O3/g-C3N4在120 min时对氨基黑10B的降解率仅有50%,光催化性能的提升主要是源于三元材料光生电子-空穴对分离效率的提高与可见光吸收范围的扩大。

4 铁基石墨相氮化碳非异质结体系

4.1 铁离子掺杂石墨相氮化碳

g-C3N4的“六重腔”中填充了6个N的孤对电子,可以和Fe3+或Fe2+络合57,而Fe3+/Fe2+的存在有助于光生电子-空穴的分离58。g-C3N4的基本单元结构七嗪环中的吡啶N可与Fe3+形成σ—π配位键59,使得Fe3+被牢固地固定在g-C3N4的骨架上60。此外,E(Fe3+/Fe2+)=0.77 eV,位于g-C3N4的价带和导带之间,导致部分光生电子被Fe3+捕获61

Jinshan HU等60在N2氛围下将Fe3+引入g-C3N4的结构中,该材料在模拟可见光下对苯酚的降解率可达100%。UV-vis DRS显示,相较g-C3N4,改性后材料出现明显红移,对可见光的利用率得到提高。此外,π键能够加速g-C3N4与Fe3+之间的光生电子转移,使光生电子迅速迁移到Fe3+上,提高光催化性能。Xunhe WANG等59运用电化学阻抗谱(EIS)发现Fe3+掺杂增强了光生电子的传输;UV-vis DRS分析表明,Fe和N之间的反馈积累使得改性复合材料的禁带变窄,光响应范围增加59-60。Jinshan HU等62在Fe3+掺杂改性g-C3N4基础上又引入rGO,进一步提高了光生载流子的分离效率,分离的光生电子强化了·OH的产生。Wei MIAO等63还发现,通过改变热解时间可以很好地改变Fe3+掺杂改性g-C3N4的光学性质,随着热解时间的增加,材料的表面由光滑的厚层逐渐出现裂纹与气孔,最终导致光吸收红移。

4.2 核壳结构

核壳结构可将催化材料的比表面积最大化,促进光生电子的转移。纳米零价铁(nZVI)不仅具有表面积大、还原性强等优点,还可提高光催化剂的可见光响应能力,故受到了广泛研究。Wenyan WANG等64合成了具有核壳结构的碳掺杂nZVI@g-C3N4,该复合材料的优异性能可归功于碳掺杂g-C3N4的外壳与nZVI的协同作用。Wenjia KONG等65在nZVI@g-C3N4的基础上引入导电聚合物聚丙烯酸(PAA),有效地促进了光生电子的转移;均匀分布的nZVI明显改善了g-C3N4表面光生电子的转移,促进了活性自由基O2·-和·OH的产生,从而实现在可见光下PAA/nZVI@g-C3N4核壳材料对磺胺二甲嘧啶的高效降解。

5 结语与展望

g-C3N4因具有可见光响应能力而被认为是极具应用前景的光催化材料,然而较高的光生电子-空穴对复合率削弱了其光催化性能。在针对g-C3N4的改性方法中,构筑半导体异质结因可结合各单组分的优点而得到广泛研究。其中,铁基材料因具有促进光生载流子分离、拓宽可见光响应范围等优点常被应用于异质结的构筑。虽然铁基g-C3N4复合材料对不同难降解有机物的光催化降解有着优异的效果,但距离实际工程应用还有一定距离。因此,未来还需从以下几个方面加强研究:

(1)不同铁基g-C3N4异质结体系的详细形成过程有待进一步阐明。例如,可采用原位表征技术、密度泛函理论(DFT)计算等方法进一步研究。

(2)光催化材料降解有机物过程中结构和活性的关系及分子机制还需深入探讨。目前多数研究集中于通过电子顺磁共振、猝灭实验等方法验证光催化过程中的活性物种及其贡献程度,并推断异质结类型;或是利用气相或液相色谱鉴定反应中间体,推断有机物降解过程。

(3)开发多结体系,例如开发三元复合材料,结合多种材料的优势。

(4)将铁基g-C3N4复合材料与其他技术耦合(如电催化、膜分离等),结合多体系优势,提高对污染物的去除率。

(5) 目前铁基g-C3N4复合材料的研究大多停留在实验室阶段,距离工程应用还有不少挑战。如何降低成本、提高催化材料的重复利用能力也是研究的方向之一。


参考文献

王文龙吴乾元杜烨.

城市污水再生处理中微量有机污染物控制的关键难题与解决思路

[J]. 环境科学,2021426):2573-2582.

[本文引用: 1]

WANG WenlongWU QianyuanDU Yeet al.

Key problems and novel strategy of controlling emerging trace organic contaminants during municipal wastewater reclamation

[J]. Environmental Science,2021426):2573-2582.

[本文引用: 1]

AKERDI A GBAHRAMI S H.

Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds:A review

[J]. Journal of Environmental Chemical Engineering,201975):103283. doi:10.1016/j.jece.2019.103283

[本文引用: 2]

HUANG DanlianCHEN ShaZENG Guangminget al.

Artificial Z-scheme photocatalytic system:What have been done and where to go?

[J]. Coordination Chemistry Reviews,201938544-80. doi:10.1016/j.ccr.2018.12.013

[本文引用: 1]

CHANG XuemingYAO XiaolongDING Ninget al.

Photocatalytic degradation of trihalomethanes and haloacetonitriles on graphitic carbon nitride under visible light irradiation

[J]. Science of the Total Environment,2019682200-207. doi:10.1016/j.scitotenv.2019.05.075

[本文引用: 1]

MAMBA GMISHRA A K.

Graphitic carbon nitride(g-C3N4) nanocomposites:A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation

[J]. Applied Catalysis B:Environmental,2016198347-377. doi:10.1016/j.apcatb.2016.05.052

[本文引用: 1]

XU BENTUOAHMED M BZHOU J Let al.

Graphitic carbon nitride based nanocomposites for the photocatalysis of organic contaminants under visible irradiation:Progress,limitations and future directions

[J]. Science of the Total Environment,2018633546-559. doi:10.1016/j.scitotenv.2018.03.206

[本文引用: 1]

赵福友金泽睿曹帅杰.

超声协同g-C3N4光催化降解罗丹明B的研究

[J]. 工业水处理,2021411):113-117.

[本文引用: 1]

ZHAO FuyouJIN ZeruiCAO Shuaijieet al.

Degradation Rhodamine B by ultrasond coupled with g-C3N4 photocatalysis

[J]. Industrial Water Treatment,2021411):113-117.

[本文引用: 1]

王丽娟张海潇张锐.

石墨相氮化碳活化过硫酸钠暗反应降解亚甲基蓝

[J]. 工业水处理,2020408):75-79. doi:10.1088/1757-899x/397/1/012094

[本文引用: 1]

WANG LijuanZHANG HaixiaoZHANG Ruiet al.

Degradation of methylene blue by sodium persulfate dark reaction activated with graphitic carbon nitride

[J]. Industrial Water Treatment,2020408):75-79. doi:10.1088/1757-899x/397/1/012094

[本文引用: 1]

DONG GuopingZHANG YuanhaoPAN Qiwenet al.

A fantastic graphitic carbon nitride(g-C3N4) material:Electronic structure,photocatalytic and photoelectronic properties

[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,20142033-50. doi:10.1016/j.jphotochemrev.2014.04.002

[本文引用: 2]

WANG ChongchenYI XiaohongWANG Peng.

Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance

[J]. Applied Catalysis B:Environmental,201924724-48. doi:10.1016/j.apcatb.2019.01.091

[本文引用: 1]

ZHENG QinminSHEN HongchenSHUAI Danmeng.

Emerging investigators series:Advances and challenges of graphitic carbon nitride as a visible-light-responsive photocatalyst for sustainable water purification

[J]. Environmental Science:Water Research & Technology,201736):982-1001. doi:10.1039/c7ew00159b

[本文引用: 1]

LI YunfengZHOU MinghuaCHENG Beiet al.

Recent advances in g-C3N4-based heterojunction photocatalysts

[J]. Journal of Materials Science & Technology,2020561-17. doi:10.1016/j.jmst.2020.04.028

[本文引用: 4]

刘莛予宫懿桐赵锦.

Co3O4/g-C3N4复合光催化剂降解罗丹明B的研究

[J]. 工业水处理,2020402):92-95. doi:10.11894/iwt.2019-0002

[本文引用: 1]

LIU TingyuGONG YitongZHAO Jinet al.

Study on the degradation of Rhodamine B by Co3O4/g-C3N4 composite photocatalyst

[J]. Industrial Water Treatment,2020402):92-95. doi:10.11894/iwt.2019-0002

[本文引用: 1]

AROTIBA O AORIMOLADE B OKOIKI B A.

Visible light-driven photoelectrocatalytic semiconductor heterojunction anodes for water treatment applications

[J]. Current Opinion in Electrochemistry,20202225-34. doi:10.1016/j.coelec.2020.03.018

[本文引用: 3]

WANG DengjunSALEH N BSUN Wenjieet al.

Next-generation multifunctional carbon-metal nanohybrids for energy and environmental applications

[J]. Environmental Science & Technology,20195313):7265-7287. doi:10.1021/acs.est.9b01453

[本文引用: 2]

TAO QingqingBI JingtaoHUANG Xinet al.

Fabrication,application,optimization and working mechanism of Fe2O3 and its composites for contaminants elimination from wastewater

[J]. Chemosphere,2021263127889. doi:10.1016/j.chemosphere.2020.127889

[本文引用: 1]

WANG SongcanYUN J HLUO Binet al.

Recent progress on visible light responsive heterojunctions for photocatalytic applications

[J]. Journal of Materials Science & Technology,2017331):1-22. doi:10.1016/j.jmst.2016.11.017

[本文引用: 4]

ZHANG LipingJARONIEC M.

Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications

[J]. Applied Surface Science,20184302-17. doi:10.1016/j.apsusc.2017.07.192

[本文引用: 3]

REN YijieZENG DeqianONG W J.

Interfacial engineering of graphitic carbon nitride(g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion:A review

[J]. Chinese Journal of Catalysis,2019403):289-319. doi:10.1016/s1872-2067(19)63293-6

[本文引用: 3]

FU JunweiYU JiaguoJIANG Chuanjiaet al.

g-C3N4-based heterostructured photocatalysts

[J]. Advanced Energy Materials,201883):1701503. doi:10.1002/aenm.201701503

[本文引用: 1]

HUA ShixinQU DanAN Liet al.

Highly efficient p-type Cu3P/n-type g-C3N4 photocatalyst through Z-scheme charge transfer route

[J]. Applied Catalysis B:Environmental,2019240253-261. doi:10.1016/j.apcatb.2018.09.010

[本文引用: 1]

Jinxiang LOWJIANG ChuanjiaCHENG Beiet al.

A review of direct Z-scheme photocatalysts

[J]. Small Methods,201715):1700080. doi:10.1002/smtd.201700080

[本文引用: 2]

KUMAR ARAIZADA PSINGH Pet al.

Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification

[J]. Chemical Engineering Journal,2020391123496. doi:10.1016/j.cej.2019.123496

[本文引用: 1]

XU QuanlongZHANG LiuyangYU Jiaguoet al.

Direct Z-scheme photocatalysts:Principles,synthesis,and applications

[J]. Materials Today,20182110):1042-1063. doi:10.1016/j.mattod.2018.04.008

[本文引用: 4]

ZHOU PengYU JiaguoJARONIEC M.

All-solid-state Z-scheme photocatalytic systems

[J]. Advanced Materials,20142629):4920-4935. doi:10.1002/adma.201400288

[本文引用: 2]

MARSCHALL R.

Semiconductor composites:Strategies for enhancing charge carrier separation to improve photocatalytic activity

[J]. Advanced Functional Materials,20142417):2421-2440. doi:10.1002/adfm.201303214

[本文引用: 1]

LAN YayaoLIU ZhifengGUO Zhenganget al.

A promising p-type Co-ZnFe2O4 nanorod film as a photocathode for photoelectrochemical water splitting

[J]. Chemical Communications,20205639):5279-5282. doi:10.1039/d0cc00273a

[本文引用: 1]

LIU ShouqingZHU XiaoleiZHOU Yanget al.

Smart photocatalytic removal of ammonia through molecular recognition of zinc ferrite/reduced graphene oxide hybrid catalyst under visible-light irradiation

[J]. Catalysis Science & Technology,2017715):3210-3219. doi:10.1039/c7cy00797c

[本文引用: 1]

BORTHAKUR SSAIKIA L.

ZnFe2O4@g-C3N4 nanocomposites:An efficient catalyst for Fenton-like photodegradation of environmentally pollutant Rhodamine B

[J]. Journal of Environmental Chemical Engineering,201972):103035. doi:10.1016/j.jece.2019.103035

[本文引用: 2]

PALANIVEL BPERUMAL S D MMAIYALAGAN Tet al.

Rational design of ZnFe2O4/g-C3N4 nanocomposite for enhanced photo-Fenton reaction and supercapacitor performance

[J]. Applied Surface Science,2019498143807. doi:10.1016/j.apsusc.2019.143807

[本文引用: 1]

DAS K KPATNAIK SMANSINGH Set al.

Enhanced photocatalytic activities of polypyrrole sensitized zinc ferrite/graphitic carbon nitride n-n heterojunction towards ciprofloxacin degradation,hydrogen evolution and antibacterial studies

[J]. Journal of Colloid and Interface Science,2020561551-567. doi:10.1016/j.jcis.2019.11.030

[本文引用: 1]

MAJDOUB MANFAR ZAMEDLOUS A.

Emerging chemical functionalization of g-C3N4:Covalent/noncovalent modifications and applications

[J]. ACS Nano,20201410):12390-12469. doi:10.1021/acsnano.0c06116

[本文引用: 1]

PUTRI L KNG B JONG W Jet al.

Engineering nanoscale p-n junction via the synergetic dual-doping of p-type boron-doped graphene hybridized with n-type oxygen-doped carbon nitride for enhanced photocatalytic hydrogen evolution

[J]. Journal of Materials Chemistry A,201867):3181-3194. doi:10.1039/c7ta09723a

[本文引用: 1]

ZHANG WangQUAN BoLEE Cet al.

One-step facile solvothermal synthesis of copper ferrite-graphene composite as a high-performance supercapacitor material

[J]. ACS Applied Materials & Interfaces,201574):2404-2414. doi:10.1021/am507014w

[本文引用: 1]

YAO YunjinLU FangZHU Yanpinget al.

Magnetic core-shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of orange Ⅱ

[J]. Journal of Hazardous Materials,2015297224-233. doi:10.1016/j.jhazmat.2015.04.046

[本文引用: 1]

曹宇宋思扬吴丹.

CuFe2O4/g-C3N4非均相光Fenton降解罗丹明B的研究

[J].工业水处理,2021416):221-226.

[本文引用: 1]

CAO YuSONG SiyangWU Danet al.

Heterogeneous photo-Fenton processes using CuFe2O4/g-C3N4 for the degradation of Rhodamine B

[J]. Industrial Water Treatment,2020402):92-95.

[本文引用: 1]

LI RuobaiCAI MeixuanXIE Zhijieet al.

Construction of heterostructured CuFe2O4/g-C3N4 nanocomposite as an efficient visible light photocatalyst with peroxydisulfate for the organic oxidation

[J]. Applied Catalysis B:Environmental,2019244974-982. doi:10.1016/j.apcatb.2018.12.043

[本文引用: 1]

WANG XiangyuWANG AnqiMA Jun.

Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites

[J]. Journal of Hazardous Materials,201733681-92. doi:10.1016/j.jhazmat.2017.04.012

[本文引用: 2]

WANG JingYUE MinHAN Yuzeet al.

Highly-efficient degradation of triclosan attributed to peroxymonosulfate activation by heterogeneous catalyst g-C3N4/MnFe2O4

[J]. Chemical Engineering Journal,2020391123554. doi:10.1016/j.cej.2019.123554

[本文引用: 1]

WU YanWANG HouTU Wenguanget al.

Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect

[J]. Journal of Hazardous Materials,2018347412-422. doi:10.1016/j.jhazmat.2018.01.025

[本文引用: 2]

南峰.

二维材料/氧化物半导体异质结制备及其光电化学与光催化性能的研究

[D]. 苏州苏州大学2018.

[本文引用: 1]

Feng NAN.

Preparation of two-dimensional materials/oxide semiconductor heterojunctions and their photoelectrochemical/photocatalytic properties

[D]. SuzhouSoochow University2018.

[本文引用: 1]

XU YuhuanDING LijunWEN Zuoruiet al.

Core-shell LaFeO3@g-C3N4 p-n heterostructure with improved photoelectrochemical performance for fabricating streptomycin aptasensor

[J]. Applied Surface Science,2020511145571. doi:10.1016/j.apsusc.2020.145571

[本文引用: 1]

WANG XingfuMAO WeiweiZHANG Jianet al.

Facile fabrication of highly efficient g-C3N4/BiFeO3 nanocomposites with enhanced visible light photocatalytic activities

[J]. Journal of Colloid and Interface Science,201544817-23. doi:10.1016/j.jcis.2015.01.090

[本文引用: 1]

LI HaijinTU WenguangZHOU Yonget al.

Z-scheme photocatalytic systems for promoting photocatalytic performance:Recent progress and future challenges

[J]. Advanced Science,2016311):1500389. doi:10.1002/advs.201500389

[本文引用: 2]

GEBRESLASSIE GBHARALI PCHANDRA Uet al.

Novel g-C3N4/graphene/NiFe2O4 nanocomposites as magnetically separable visible light driven photocatalysts

[J]. Journal of Photochemistry and Photobiology A:Chemistry,2019382111960. doi:10.1016/j.jphotochem.2019.111960

[本文引用: 1]

LIU ChangHuihong YU Changlinet al.

Novel FeWO4/WO3 nanoplate with p-n heterostructure and its enhanced mechanism for organic pollutants removal under visible-light illumination

[J]. Journal of Environmental Chemical Engineering,202085):104044. doi:10.1016/j.jece.2020.104044

[本文引用: 1]

WANG CongWANG GuanlongZHANG Xiufanget al.

Construction of g-C3N4 and FeWO4 Z-scheme photocatalyst:Effect of contact ways on the photocatalytic performance

[J]. RSC Advances,2018833):18419-18426. doi:10.1039/c8ra02882f

[本文引用: 1]

RABÉ KLIU LifenNAHYOON N Aet al.

Fabrication of high efficiency visible light Z-scheme heterostructure photocatalyst g-C3N4/Fe0(1%)/TiO2 and degradation of Rhodamine B and antibiotics

[J]. Journal of the Taiwan Institute of Chemical Engineers,201996463-472. doi:10.1016/j.jtice.2018.12.016

[本文引用: 1]

WANG XiangyuLU MengyangMA Junet al.

Preparation of air-stable magnetic g-C3N4@Fe0-graphene composite by new reduction method for simultaneous and synergistic conversion of organic dyes and heavy metal ions in aqueous solution

[J]. Separation and Purification Technology,2019212586-596. doi:10.1016/j.seppur.2018.11.052

[本文引用: 1]

MISHRA PBEHERA AKANDI Det al.

Facile construction of a novel NiFe2O4@P-doped g-C3N4 nanocomposite with enhanced visible-light-driven photocatalytic activity

[J]. Nanoscale Advances,201915):1864-1879. doi:10.1039/c9na00018f

[本文引用: 1]

MISHRA PBEHERA AKANDI Det al.

Novel magnetic retrievable visible-light-driven ternary Fe3O4@NiFe2O4/phosphorus-doped g-C3N4 nanocomposite photocatalyst with significantly enhanced activity through a double-Z-scheme system

[J]. Inorganic Chemistry,2020597):4255-4272. doi:10.1021/acs.inorgchem.9b02996

[本文引用: 1]

ZHAO GuanshuDING JingZHOU Fanyanget al.

Construction of a visible-light-driven magnetic dual Z-scheme BiVO4/g-C3N4/NiFe2O4 photocatalyst for effective removal of ofloxacin:Mechanisms and degradation pathway

[J]. Chemical Engineering Journal,2021405126704. doi:10.1016/j.cej.2020.126704

[本文引用: 1]

王崇臣王恂.

金属-有机骨架在水处理中的应用研究进展

[J]. 工业水处理,20204011):1-9.

[本文引用: 1]

WANG ChongchenWANG Xun.

The application of metal-organic frameworks in the wastewater treatment:A state-of-the-art review

[J]. Industrial Water Treatment,20204011):1-9.

[本文引用: 1]

SHAO ZhuwangZHANG DafengLI Honget al.

Fabrication of MIL-88A/g-C3N4 direct Z-scheme heterojunction with enhanced visible-light photocatalytic activity

[J]. Separation and Purification Technology,201922016-24. doi:10.1016/j.seppur.2019.03.040

[本文引用: 2]

ZHAO FeipingLIU YongpengHAMMOUDA S Bet al.

MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr(Ⅵ) and oxidation of bisphenol A in aqueous media

[J]. Applied Catalysis B:Environmental,2020272119033. doi:10.1016/j.apcatb.2020.119033

[本文引用: 2]

CUI YuqiNENGZI LichaoGOU Jianfenget al.

Fabrication of dual Z-scheme MIL-53(Fe)/α-Bi2O3/g-C3N4 ternary composite with enhanced visible light photocatalytic performance

[J]. Separation and Purification Technology,2020232115959. doi:10.1016/j.seppur.2019.115959

[本文引用: 2]

AN SufengZHANG GuanghuiWANG Tingwenet al.

High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride(g-C3N4) for highly efficient catalytic advanced oxidation processes

[J]. ACS Nano,2018129):9441-9450. doi:10.1021/acsnano.8b04693

[本文引用: 1]

PAN TaoCHEN DongdongFANG Jianzhanget al.

Facile synthesis of iron and cerium co-doped g-C3N4 with synergistic effect to enhance visible-light photocatalytic performance

[J]. Materials Research Bulletin,2020125110812. doi:10.1016/j.materresbull.2020.110812

[本文引用: 1]

WANG XunheZhaodong NAN.

Highly efficient Fenton-like catalyst Fe-g-C3N4 porous nanosheets formation and catalytic mechanism

[J]. Separation and Purification Technology,2020233116023. doi:10.1016/j.seppur.2019.116023

[本文引用: 3]

HU JinshanZHANG PengfeiAN Weijiaet al.

In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater

[J]. Applied Catalysis B:Environmental,2019245130-142. doi:10.1016/j.apcatb.2018.12.029

[本文引用: 3]

MA TaoSHEN QianqianZHAO Binet al.

Facile synthesis of Fe-doped g-C3N4 for enhanced visible-light photocatalytic activity

[J]. Inorganic Chemistry Communications,2019107107451. doi:10.1016/j.inoche.2019.107451

[本文引用: 1]

HU JinshanZHANG PengfeiCUI Jifanget al.

High-efficiency removal of phenol and coking wastewater via photocatalysis-Fenton synergy over a Fe-g-C3N4 graphene hydrogel 3D structure

[J]. Journal of Industrial and Engineering Chemistry,202084305-314. doi:10.1016/j.jiec.2020.01.012

[本文引用: 1]

MIAO WeiLIU YingCHEN Xiaoyanet al.

Tuning layered Fe-doped g-C3N4 structure through pyrolysis for enhanced Fenton and photo-Fenton activities

[J]. Carbon,2020159461-470. doi:10.1016/j.carbon.2019.12.056

[本文引用: 1]

WANG WenyanXU YunlanZHONG Dengjieet al.

Electron utilization efficiency of ZVI core activating PMS enhanced by C-N/g-C3N4 shell

[J]. Applied Catalysis A:General,2020608117828. doi:10.1016/j.apcata.2020.117828

[本文引用: 1]

KONG WenjiaYUE QinyanGAO Yueet al.

Enhanced photodegradation of sulfadimidine via PAA/g-C3N4-Fe0 polymeric catalysts under visible light

[J]. Chemical Engineering Journal,2021413127456. doi:10.1016/j.cej.2020.127456

[本文引用: 1]

/