工业水处理, 2022, 42(9): 46-55 doi: 10.19965/j.cnki.iwt.2021-0698

标识码(

粉煤灰吸附废水中重金属的研究现状与进展

李文清,, 邹萍

神华准能资源综合开发有限公司,内蒙古 鄂尔多斯 010300

Research status and progress of fly ash adsorption of heavy metals in wastewater

LI Wenqing,, ZOU Ping

Shenhua Zhunneng Comprehensive Resource Development Co. ,Ltd. ,Erdos 010300,China

收稿日期: 2022-07-08  

Received: 2022-07-08  

作者简介 About authors

李文清(1986—),硕士研究生E-mail:445925887@qq.com , E-mail:445925887@qq.com

摘要

粉煤灰作为煤炭燃烧过程中产生的一种颗粒物,由于其对土壤、水、空气等环境的影响,已成为亟待解决的问题。研究人员在粉煤灰综合利用方面做了许多尝试,利用粉煤灰处理重金属废水,既能解决废水污染问题,又使粉煤灰得以有效利用。粉煤灰的外观、物相、化学成分等特性使其在重金属废水处理中具有潜在的应用前景。而粉煤灰的改性能够有效提高粉煤灰对重金属的吸附能力。归纳了改性粉煤灰吸附废水中重金属的研究进展,分别对火法改性、碱法改性、酸法改性、盐法改性以及其他方法进行了介绍,分析了各种改性手段下不同重金属离子的吸附量、去除率、吸附温度等参数。此外,还着重探讨了粉煤灰对重金属的吸附机理、吸附动力学、吸附等温线、吸附热力学等,以期为改性粉煤灰在重金属废水处理行业应用提供参考。最后,对粉煤灰在重金属废水处理中的应用现状和发展前景进行了展望。

关键词: 粉煤灰 ; 吸附 ; 重金属 ; 废水处理

Abstract

As a kind of particulate matter produced during coal combustion,fly ash has become an urgent problem to be solved due to its impact on the soil,water,air and other environments. Researchers have made many attempts in the comprehensive utilization of fly ash. Using fly ash to treat heavy metal wastewater can not only solve the problem of wastewater pollution,but also enable the effective use of fly ash. The appearance,phase,chemical composition and other characteristics of fly ash make it have potential application prospects in the treatment of heavy metal wastewater. The modification of fly ash can effectively improve the adsorption capacity of fly ash to heavy metals. This article summarized the research progress of modified fly ash to adsorb heavy metals in wastewater,respectively introduced fire modification,alkali modification,acid modification,salt modification and other methods,and analyzed various modification parameters,such as adsorption capacity,removal rate,adsorption temperature of different heavy metal ions under the method. In addition,this article also focused on the adsorption mechanism,adsorption kinetics,adsorption isotherms,adsorption thermodynamics,etc. of fly ash to heavy metals,in order to provide a reference for the application of modified fly ash in the heavy metal wastewater treatment. Finally,the application status and development direction of fly ash in the treatment of heavy metal wastewater were prospected.

Keywords: fly ash ; adsorption ; heavy metal ; wastewater treatment

PDF (2666KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李文清, 邹萍. 粉煤灰吸附废水中重金属的研究现状与进展. 工业水处理[J], 2022, 42(9): 46-55 doi:10.19965/j.cnki.iwt.2021-0698

LI Wenqing. Research status and progress of fly ash adsorption of heavy metals in wastewater. Industrial Water Treatment[J], 2022, 42(9): 46-55 doi:10.19965/j.cnki.iwt.2021-0698

粉煤灰(fly ash,FA)是煤粉经炉膛高温燃烧,煤中的矿物发生熔融、分解等物理化学变化,燃烧产生的烟气经除尘装置收集得到的粉状固体物质。其是燃煤电厂的副产品,产量巨大。据统计,美国有37%的煤炭用于发电1,印度燃煤电厂每年产生约1.31亿t粉煤灰2,中国每年产生约6亿t粉煤灰3

粉煤灰虽然是一种固体废弃物,但其也是一种有待充分利用的资源。粉煤灰的岩土性质(如密度、渗透性、固结特性)使其适合用于道路、路堤等建设。粉煤灰的火山灰性质,使其可以用于制造水泥、建筑材料混凝土和混凝土掺合料产品。粉煤灰中含有较高的氧化铝、二氧化硅,使其可以用于提取氧化铝、合成沸石等。粉煤灰其他的物理化学特性,如容重、粒度、孔隙率、持水性、表面积等,使其适合作为吸附剂使用。

粉煤灰成本低廉,作为吸附剂使用具有价格优势,但是其本身吸附能力有限,难以充分发挥作用。粉煤灰改性是一种有效提高粉煤灰对重金属吸附能力的方法。笔者综述了近年来国内外粉煤灰吸附废水中重金属的研究现状与进展,旨在为进一步研究粉煤灰在水处理领域的应用提供有用信息。

1 粉煤灰的理化性质

粉煤灰的外观、物相、成分等性质的表征是研究粉煤灰吸附材料应用的基础。

1.1 粉煤灰的外观

粉煤灰的颜色从棕褐色、灰色到黑色不等,这取决于粉煤灰中未燃炭的含量。粉煤灰由众多粉状颗粒组成,颗粒的外观多种多样。未经修饰的粉煤灰颗粒呈现出球形、椭圆形和不规则的外观,三种典型粉煤灰见图1

图1

图1   三种典型粉煤灰外观

(a)、(b) 粉煤灰球形外观;(c)、(d) 粉煤灰椭圆形外观;(e)、(f) 粉煤灰不规则外观

Fig. 1   Three typical fly ash appearances


其中,图1(a)~(b)中的粒子是最简单、常见的规则球形。图1(c)~(d)是椭圆形结构的颗粒。球形和椭圆形颗粒的表面可以是光滑的,也可以是粗糙的,这意味着一些细小的FA颗粒可能被吸附或镶嵌在较大的FA颗粒表面。因此,不能仅根据外观来评估FA粒子是否中空或致密。图1(e)~(f)是不规则的粉煤灰颗粒的外观,其具有多孔表面的共性,具有较大的比表面积4-7

1.2 粉煤灰的物相

粉煤灰的矿物组成取决于与煤的形成、沉积有关的地质因素以及燃烧条件。煤炭中的黏土类矿物在高温下(1 000 ℃以上)会生产莫来石8。通常情况下,可以通过X射线衍射来确定粉煤灰的物相组成。粉煤灰的物相主要是莫来石、石英、赤铁矿等。燃煤温度较低时,以非晶态铝硅酸盐为主。

1.3 粉煤灰的化学成分

粉煤灰的化学成分在很大程度上受到煤的性质以及燃煤条件影响。粉煤灰的主要化学成分是氧化铝、二氧化硅、氧化铁、氧化钙等,其含碳量随着燃煤温度的变化而变化。不同国家、地区的粉煤灰成分见表1

表1   不同国家、地区粉煤灰成分

Table 1  Fly ash composition in different countries and regions

地区SiO2Al2O3Fe2O3CaOK2ONa2OMgOTiO2P2O5SO3烧失量(LOI)文献
法国50.0526.147.275.281.082.402.441.810.7113.027.95
墨西哥59.6022.825.573.111.280.450.870.940.040.409
南非55.2126.856.205.530.580.101.561.640.386.2710
加拿大41.5018.96.316.410.869.123.660.710.410.411
中国34.8750.971.912.250.340.090.132.150.586.7312

新窗口打开| 下载CSV


2 粉煤灰吸附废水中重金属的应用

尽管粉煤灰对重金属具有一定的吸附能力,但未活化的粉煤灰吸附能力受到限制。可以通过改性的方法提高粉煤灰的吸附能力。改性方法主要包括:火法改性、碱法改性、酸法改性、盐法改性以及其他方法等。通过各类改性手段,粉煤灰的Al—O键和Si—O键断裂,玻璃体物相分解,粉煤灰中密闭的孔道被打开,Al和Si经溶出反应后在粉煤灰表面生成新物质,比表面积、孔隙率、表面活性均得以提高。

2.1 火法改性

火法改性是将粉煤灰与添加剂混合,在高温下焙烧,粉煤灰分解后生成多孔性物质,表面活性得以增加。同时,高温能使粉煤灰失去表面结合水和结构水,内部空间打开,有利于吸附阶段重金属离子的扩散。此外,煤粉因燃烧不充分,粉煤灰中含有少量未燃炭,再次高温焙烧能够燃尽未燃炭,进而增大粉煤灰的比表面积。但是,过高的火法改性温度易使粉煤灰中的孔道塌陷或活性成分烧结,降低粉煤灰的吸附性能。韩非等13将粉煤灰与添加剂(Na2CO3)混合在800 ℃下焙烧2 h,得到的改性粉煤灰疏松多孔,对Cr6+的去除率达到98.98%,饱和吸附量为2.39 mg/g。骆欣等14在高温条件下将添加剂(Na2CO3)和粉煤灰焙烧,改性粉煤灰对Cu2+的吸附量为42.55 mg/g。Kezhou YAN等15研究了粉煤灰与Na2CO3高温焙烧的反应机理,Na+优先通过氧空位进入莫来石晶体,与铝周围的氧原子发生相互作用,使其在低温下生成钠铝硅酸盐。随着反应温度的升高,更多的Na2CO3分解产生Na2O,并进入莫来石晶体,当温度大于800 ℃时,钠铝硅酸盐中的桥氧键在Na2O作用下被进一步打断;与此同时,反应体系中产生一系列独立的[AlO4]和[SiO4]。Na2O和NaAlSiO4之间反应的示意见图215

图2

图2   Na2O和NaAlSiO4之间反应的示意

Fig. 2   Schematic representation of the reaction between Na2O and NaAlSiO4


2.2 碱法改性

碱法改性是利用OH-解离硅酸盐玻璃网格,玻璃体中的Al—O键和Si—O键被破坏,产生分子筛结构,比表面积增大。粉煤灰表面的H+解离后,负电荷增加,进而更易吸附金属阳离子16。黄训荣等17利用NaOH、Ca(OH)2为改性剂,将粉煤灰与其混合后,在250 ℃条件下焙烧,改性后粉煤灰呈多孔结构,比表面积增大了20.6倍,对Cd2+的去除率达到97.3%。改性后粉煤灰具有一定的再生性能,但多次吸附后粉煤灰的吸附能力有所减弱。Ruifang QIU等18对循环流化床粉煤灰进行碱性水热改性,改性后粉煤灰的比表面积(113.2 m2/g)和孔容(0.143 cm3/g)有利于吸附Cd2+,吸附剂用量、Cd2+初始浓度、溶液pH、接触时间和温度对吸附行为有显著影响,吸附量达到183.7 mg/g,不同pH条件下碱改性粉煤灰对Cd2+的吸附机理见图318

图3

图3   碱改性循环流化床粉煤灰去除废水中Cd2+示意

Fig. 3   Diagrammatic sketch of the removal of Cd2+ from aqueous solution by hydrothermally modified-circulating fluidized bed-FA


2.3 酸法改性

酸法改性是用盐酸、硫酸等浸出粉煤灰中的氧化铝、氧化铁等,内部孔道被破坏,进而比表面积增大。同时,释放出的铝离子、铁离子等成分形成具有混凝作用的无机高分子絮凝剂,进一步提高吸附性能。此外,酸浸作用使粉煤灰中的未燃炭表面更加粗糙,增加了物理吸附能力19。殷福龙等20利用盐酸对粉煤灰改性,盐酸浓度为2 mol/L,投加量为5 mL/g时,粉煤灰对Cu2+去除率最高可达95.41%,吸附量为10.53 mg/g。伍昌年等21利用微波辅助混酸改性粉煤灰,其对废水中Cd2+的去除率提高了53.2%,符合Langmuir吸附模型,吸附过程属于表面均匀的单分子层吸附,吸附量为12.5 mg/g。高宏等22用硫酸改性粉煤灰微珠,对陕西某铅锌硫化矿选矿厂含Cu2+、Pb2+、Zn2+浮选尾矿浆废水进行了吸附处理,Zn2+去除率为75%,Pb2+去除率为65%,Cu2+去除率仅为20%~40%,COD的吸附率达80%以上,COD的降低很大程度上优化了浮选效果。吸附后废水回用工艺的浮选结果表明,铅精矿品位由23.8%提高至25.6%,铅中矿品位由1.93%提高至4.12%。值得注意的是,废水中重金属会与捕收剂发生反应,造成捕收剂有效含量降低,从而降低硫化矿的浮选性。

2.4 盐法改性

盐法改性是将粉煤灰浸泡在阳离子改性剂溶液中,改性剂中的阳离子会均匀分布在粉煤灰颗粒的表面及孔隙内,洗涤至中性后,烘干得到盐法改性粉煤灰。常用的阳离子改性剂有铝盐、钠盐、铁盐、钙盐等。在重金属污水处理过程中,盐法改性的粉煤灰离子交换能力增强,生成相应的氧化物或沉淀物质,从而提高对重金属的吸附能力。此外,强酸弱碱盐电离出的H+和强碱弱酸盐电离出的OH-,可以起到酸改性和碱改性作用,进一步提高粉煤灰的吸附能力23。曾经等24用Al(NO33对粉煤灰进行盐改性,对湖南某厂的含铜电镀废水进行吸附,其对Cu2+的吸附效果较好,当溶液pH>6时,去除率达99%,当Al(NO33改性粉煤灰的用量大于2.5%时,去除率与活性炭接近,当用量为3%时,处理后的水质达国家允许的排放标准(<1 mg/L)。李喜林等25用聚氯化铝改性粉煤灰处理辽宁锦州铁合金厂铬渣淋滤液,Cr(Ⅵ)去除率为80.2%,Cr(Ⅲ)去除率达到99.3%。Xinze GENG等26研究了机械化学溴化(NaBr)对粉煤灰改性的机理,认为NaBr与活性炭(AC)反应生成C-Br,而在赤铁矿(hematite)上共价键结合的Br(M-Br)也提供了一定的贡献,而锐钛矿(Anatase)和莫来石(Mullite)不进行机械化学作用,粉煤灰和NaBr反应示意见图4

图4

图4   粉煤灰和NaBr反应示意

Fig. 4   Schematic representation of the reaction between fly ash and NaBr


2.5 其他方法

微波辅助改性常用来激发粉煤灰活性,粉煤灰中的氧化铝、二氧化硅和其他氧化物可以吸收微波能量,使其处于高能状态,当Al—O键和Si—O键断裂时,它们释放活性并改善粉煤灰的吸附性能27。微波改性常与其他改性方法结合使用,可以产生良好的协同作用。

表面活性剂改性利用阳离子表面活性剂对粉煤灰表面进行修饰,是将阳离子活性基团静电吸附在粉煤灰表面,Zeta电位升高,电负性减少,改变其电位性质,进而降低废水中金属离子与粉煤灰的静电斥力,吸附能力得以提高。M. VISA等28用NaOH和十六烷基三甲基溴化铵对粉煤灰进行改性,对Cd2+的吸附量为87.7 mg/g,对Cu2+的吸附量为56.5 mg/g。

NaP分子筛由Gismondite(GIS)拓扑结构组成29,孔道结构丰富,具有良好的吸附性能。Yanan ZHANG等30利用Na2CO3、HCl、NaBr分级处理合成了NaP分子筛,单粒分散性较高,粒径最小(2.13 mm),比表面积达到80.4 m2/g,对Zn2+最大的吸附容量为39.96 mg/g。粉煤灰合成沸石的过程30图5

图5

图5   粉煤灰合成NaP沸石的过程

Fig. 5   Transformation process of CFA into NaP zeolite


此外,粉煤灰用作吸附废水中重金属后,不易与废水固液分离,通常对其进行成型处理后能够达到较好的分离效果31-32。对于吸附重金属后的粉煤灰,可以通过固化、玻璃化或烘干后燃烧的方式安全地处理33-34

粉煤灰对重金属吸附的总结见表2

表2   粉煤灰对重金属吸附的总结

Table 2  Summary of adsorption of metals on fly ash

重金属元素吸附剂吸附量/(mg·g-1温度/℃去除率/%参考文献
Cd2+碱改性粉煤灰55.7725~4597.317
碱改性粉煤灰86.962598.5535
粉煤灰/膨润土2598.3836
碱改性粉煤灰183.7259518
Hg2+粉煤灰/氧化石墨烯42.2258037
碱改性粉煤灰259538
粉煤灰2.823039
粉煤灰1130~6040
粉煤灰-c0.63~0.735~2141
粉煤灰沸石205~259042
K-粉煤灰2519.4343
K-粉煤灰沸石2592.2943
Cu2+热改性粉煤灰21.55~42.5520~4014
盐酸改性粉煤灰10.532095.4120
粉煤灰1.393044
粉煤灰207.32545
酸改性粉煤灰198.52545
粉煤灰7.03046
FA178.5~249.130~6047
FA-600126.4~214.130~6047
FA-NaOH76.7~137.130~6047
Zn2+粉煤灰分子筛39.962530
粉煤灰分子筛2597.7129
酸改性粉煤灰空心微珠257548
酸改性粉煤灰258022
Ni2+粉煤灰分子筛479449
粉煤灰分子筛/电场辅助64.442594.4950
粉煤灰9~1430~6051
Pb2+粉煤灰分子筛55.532552
碱改性粉煤灰126.552553
焙烧改性粉煤灰3097.9754
Cr3+粉煤灰沸石1.332599.6255
聚氯化铝改性粉煤灰2599.325
Cr6+草酸还原-碱改性15~2597.4856
碱洗-氧化钙煅烧粉煤灰16.062596.3857
微波碱改性0.3412558
粉煤灰-硅灰石2.9230~4059
粉煤灰23.863060
As3+粉煤灰-煤炭3.7~89.22561
粉煤灰沸石还原的石墨烯0.049259762
粉煤灰5.72563
As5+粉煤灰7.7~27.82064
粉煤灰-煤炭0.02~34.52561
粉煤灰0.752538.465
碱改性粉煤灰0.192596.465
铁-碱改性粉煤灰0.22599.865
高氧化铁粉煤灰19.46259966

新窗口打开| 下载CSV


3 吸附机理与模型

3.1 吸附机理

对于固液吸附过程,溶质转移通常表现为颗粒外传质(边界层扩散)或颗粒内扩散或两者兼而有之。粉煤灰对溶液中重金属的吸附过程可以分为4步:(1)重金属从溶液中扩散到粉煤灰表面液膜;(2)重金属克服液膜阻力穿过液膜到达粉煤灰表面;(3)重金属从粉煤灰外表面扩散到颗粒内吸附位;(4)重金属在吸附位发生吸附反应。其中,第一步和第二步是液膜扩散过程,第三步是颗粒内扩散过程,第四步吸附反应通常能够快速完成。总吸附速率会由最慢的步骤控制,即液膜扩散或孔扩散控制67

3.2 吸附动力学

吸附动力学是研究吸附最佳条件的重要工具68。动力学模型揭示了吸附机制和潜在的速率控制步骤,如质量传输或化学反应过程。

粉煤灰吸附的动力学模型有多种,常见的模型主要包括准一级动力学模型、准二级动力学模型、Elovih动力学模型和颗粒内扩散模型,各模型用公式表示,见式(1)~式(4)。

:            dqtdt=k1(qe-qt) 
:              dqtdt=k2(qe-qt)2 
:                    qt=kdt1/2+Ci 
Elovih:                  dqtdt=αexp (-βqt)

式中:qe——吸附平衡时粉煤灰对重金属的吸附量,mg/g;

qt——t时刻重金属的吸附量,mg/g;

k1——准一级吸附速率常数,min-1

k2——准二级吸附速率常数,mg/(g·min);

kd——内扩散速率常数,mg/(g·min1/2);

Ci ——截距;

αβ——动力学方程常数36

为了准确评估吸附过程的动力学行为,研究人员对煤灰吸附重金属的动力学进行了大量研究,大多数的重金属吸附遵循二级动力学。

3.3 吸附等温线

吸附等温线模型被广泛应用于研究粉煤灰对重金属离子的吸附量以及吸附剂与吸附质之间相互作用的信息。吸附等温线解释了污染物与吸附剂材料之间的相互关系,对于优化吸附、表示吸附剂的表面性质和能力以及吸附系统的生产设计都至关重要69。Langmuir等温线、Freundlich等温线、Tempkin等温线常用来描述各种金属离子在粉煤灰上的吸附现象。

Langmuir等温线适用于完全均匀表面上的单层吸附,而被吸附分子之间的相互作用可忽略不计。Langmuir等温线基于3种假设,即吸附只限于单层覆盖;所有的表面位点都是相同的,只能容纳一个被吸附的原子;一个分子在一个给定位点上的吸附能力与其相邻位点的占有无关68。Langmuir等温线可以描述大部分重金属在粉煤灰上的吸附现象。

Freundlich模型是描述水相吸附的经验模型,可用来解释金属离子在粉煤灰材料上的吸附现象42

液相中的吸附是一种比气相吸附更为复杂的现象,因为在液相中被吸附的分子并不一定是具有相同取向的紧密排列结构,溶剂分子的存在和吸附分子形成的胶束增加了液相吸附的复杂性。Temkin方程在预测气相平衡方面具有优越性,但是在液相重金属吸附中,该模型不能很好地表示平衡数据68

Langmuir线:                qe=qmKLCe1+KLCe 
Freundlich线:                qe=KFCe1/n 
Temkin线:                qe=Aln(KTCe )

式中:Ce——吸附平衡时重金属离子质量浓度,mg/L;

qe——吸附平衡时重金属离子的吸附量,mg/g;

qm——单层饱和吸附量,mg/g;

KFKT——模型参数,L/mg;

n——Freundlich模型参数;

A——Temkin模型常数,J/mol。

注:n值越大(1/n值越小)表明吸附剂与重金属的相互作用越强,一般当0.1<1/n<0.5时易于吸附,而1/n=1表示线性吸附,使得各位点吸附能相同。

3.4 吸附热力学

热力学参数提供了与吸附过程相关的内在能量变化的信息。标准自由能变化(ΔG0)、标准焓变(ΔH0)、标准熵变(ΔS0)等热力学参数的计算公式如下:

lnKc=-ΔG0RT=ΔS0R=-ΔH0RT

式中:由吸附剂上金属离子平衡浓度与溶液中金属离子平衡浓度之比求得Kc平衡常数。

当ΔG0为负值时,说明该吸附过程具有自发性。ΔH0为正时,表示该吸附是一个吸热过程,提高温度有利于吸附反应的进行,ΔS0用来描述吸附过程中固液界面的随机性。ΔS0>0时固液界面自由度增大,固液接触面的混乱程度增加。

一般而言,物理吸附的标准自由能变化范围在-20~0 kJ/mol,化学吸附的标准自由能变化范围在-400~-80 kJ/mol,物理和化学吸附标准自由能变化范围在-80~-20 kJ/mol70

表3为粉煤灰对重金属吸附动力学和等温线的总结。

表3   粉煤灰对重金属吸附动力学和等温线总结

Table 3  Summary of kinetics and isotherm of heavy metal adsorption by fly ash

重金属元素吸附剂吸附动力学吸附等温线参考文献
Cd2+碱改性粉煤灰准二级吸附模型Langmuir17
粉煤灰/膨润土准一级吸附模型Freundlich36
碱改性粉煤灰准二级吸附模型Langmuir18
Hg2+粉煤灰/氧化石墨烯Elovich方程模型Redlich-Peterson37
粉煤灰准一级吸附模型Langmuir40
粉煤灰沸石准一级吸附模型Langmuir、Freundlich42
Cu2+热改性粉煤灰准二级吸附模型Freundlich14
生活垃圾焚烧飞灰准二级吸附模型Freundlich71
Ni2+粉煤灰分子筛准二级吸附模型Langmuir34
Pb2+碱改性粉煤灰准二级吸附模型Langmuir53
焙烧改性粉煤灰准二级吸附模型Freundlich54
Cr6+草酸还原-碱改性粉煤灰准二级吸附模型Langmuir56
碱洗-氧化钙煅烧粉煤灰准二级吸附模型57
微波碱改性粉煤灰Langmuir、Freundlich58
粉煤灰准二级吸附模型Langmuir、Freundlich60

新窗口打开| 下载CSV


4 结语与展望

粉煤灰的形貌结构、比表面积、孔隙率、化学成分等理化特性,使其具有作为废水中重金属廉价吸附剂的潜力。火法改性、碱法改性、酸法改性、盐法改性以及其他改性方法使粉煤灰对Cd2+、Hg2+、Cu2+、Zn2+等重金属的吸附能力显著提高,通过优化吸附剂的制备参数和吸附条件,可以进一步提高吸附剂的性能。粉煤灰对各类重金属离子的吸附没有固定的改性方法,根据废水及重金属离子特性,不同的改性手段和吸附条件能有效提高吸附效果,其吸附过程可以用吸附动力学、吸附等温线、吸附热力学模型描述和解释。

今后对粉煤灰吸附废水中重金属的研究可以从以下三个方面开展:

(1)改性粉煤灰吸附重金属能力虽然比原粉煤灰强,但成本也会相应增加,这会给大规模应用带来挑战。因此,在设计利用粉煤灰促进重金属脱除的新方法时,应考虑在合成复杂性、吸附效率、成本之间达到适度平衡,开发更廉价的改性方法和更简单的应用工艺是未来需要解决的关键问题和发展方向。

(2)目前对粉煤灰基吸附剂大多集中在单一组分重金属的脱除,而对废水中各类重金属及其他组分之间相互作用的相关研究较少。与单独吸附某一重金属相比,同时脱除多元的污染物具有更好的发展前景。因此,根据不同重金属污染物对活性位点的不同偏好,开发同时适用于多种污染物的粉煤灰基吸附剂是一个很有价值的发展方向。

(3)现阶段的研究主要集中在粉煤灰基吸附剂的利用上,但对粉煤灰利用后造成的二次污染关注不足。在使用过程中有害物质的二次泄漏可能会对人类和环境造成新的潜在威胁。因此,在粉煤灰利用过程中应更加重视二次污染物,对吸附后粉煤灰的处置有待进一步研究。

参考文献

MUSHTAQ FZAHID MBHATTI I Aet al.

Possible applications of coal fly ash in wastewater treatment

[J]. Journal of Environmental Management,201924027-46. doi:10.1016/j.jenvman.2019.03.054

[本文引用: 1]

BANERJEE SSHARMA G CCHATTOPADHYAYA M Cet al.

Kinetic and equilibrium modeling for the adsorptive removal of methylene blue from aqueous solutions on of activated fly ash (AFSH)

[J]. Journal of Environmental Chemical Engineering,201423):1870-1880. doi:10.1016/j.jece.2014.06.020

[本文引用: 1]

姜龙.

燃煤电厂粉煤灰综合利用现状及发展建议

[J]. 洁净煤技术,2020264):31-39. doi:10.13226/j.issn.1006-6772.F19062501

[本文引用: 1]

JIANG Long.

Comprehensiveutilization situation of fly ash in coal-fired power plants and its development suggestions

[J]. Clean Coal Technology,2020264):31-39. doi:10.13226/j.issn.1006-6772.F19062501

[本文引用: 1]

ZHAO YongchunZHANG JunyingTIAN Chonget al.

Mineralogy and chemical composition of high-calcium fly ashes and density fractions from a coal-fired power plant in China

[J]. Energy & Fuels,2010242):834-843. doi:10.1021/ef900947y

[本文引用: 1]

SOW MHOT JTRIBOUT Cet al.

Characterization of Spreader Stoker Coal Fly Ashes (SSCFA) for their use in cement-based applications

[J]. Fuel,2015162224-233. doi:10.1016/j.fuel.2015.09.017

[本文引用: 1]

RUBIO BIZQUIERDO M TMAYORAL M Cet al.

Preparation and characterization of carbon-enriched coal fly ash

[J]. Journal of Environmental Management,2008884):1562-1570. doi:10.1016/j.jenvman.2007.07.027

BROWN PJONES TBÉRUBÉ K.

The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations

[J]. Environmental Pollution,201115912):3324-3333. doi:10.1016/j.envpol.2011.08.041

[本文引用: 1]

马志斌张学里郭彦霞.

循环流化床粉煤灰理化特性及元素溶出行为研究进展

[J]. 化工进展,2021406):3058-3071. doi:10.16085/j.issn.1000-6613.2020-1384

[本文引用: 1]

MA ZhibinZHANG XueliGUO Yanxiaet al.

Research progress on characteristics and element dissolution behaviors of circulating gluidized bed-derived fly ash

[J]. Chemical Industry and Engineering Progress,2021406):3058-3071. doi:10.16085/j.issn.1000-6613.2020-1384

[本文引用: 1]

MEDINA AGAMERO PQUEROL Xet al.

Fly ash from a Mexican mineral coal I:Mineralogical and chemical characterization

[J]. Journal of Hazardous Materials,20101811/2/3):82-90. doi:10.1016/j.jhazmat.2010.04.096

[本文引用: 1]

NYALE S MBABAJIDE O OBIRCH G Det al.

Synthesis and characterization of coal fly ash-based foamed geopolymer

[J]. Procedia Environmental Sciences,201318722-730. doi:10.1016/j.proenv.2013.04.098

[本文引用: 1]

YEHEYIS M BSHANG J QYANFUL E K.

Characterization and environmental evaluation of Atikokan coal fly ash for environmental applications

[J]. Journal of Environmental Engineering and Science,200875):481-498. doi:10.1139/s08-019

[本文引用: 1]

李文清邹萍池君洲.

用盐酸从循环流化床粉煤灰中浸出氧化铝

[J]. 湿法冶金,2020392):110-113. doi:10.13355/j.cnki.sfyj.2020.02.006

[本文引用: 1]

LI WenqingZOU PingCHI Junzhouet al.

Leaching of alumina from circulating fluidized bed fly ash using hydrochloric acid

[J]. Hydrometallurgy of China,2020392):110-113. doi:10.13355/j.cnki.sfyj.2020.02.006

[本文引用: 1]

韩非张彦平李敏.

热改性粉煤灰对水中Cr(Ⅵ)的吸附性能

[J]. 工业水处理,2016364):46-49.

[本文引用: 1]

HAN FeiZHANG YanpingLI Minet al.

Adsorption capacity of thermal modified fly ash for Cr(Ⅵ) from water

[J]. Industrial Water Treatment,2016364):46-49.

[本文引用: 1]

骆欣杨怡心徐东耀.

热改性粉煤灰对水中Cu(Ⅱ)的吸附研究

[J]. 应用化工,2020499):2242-2245. doi:10.3969/j.issn.1671-3206.2020.09.023

[本文引用: 3]

LUO XinYANG YixinXU Dongyao.

Study on adsorption of Cu(Ⅱ) by thermal modified fly ash

[J]. Applied Chemical Industry,2020499):2242-2245. doi:10.3969/j.issn.1671-3206.2020.09.023

[本文引用: 3]

YAN KezhouGUO YanxiaLIU Dandanet al.

Thermal decomposition and transformation mechanism of mullite with the action of sodium carbonate

[J]. Journal of Solid State Chemistry,2018265326-331. doi:10.1016/j.jssc.2018.06.014

[本文引用: 2]

WOOLARD C DSTRONG JERASMUS C R.

Evaluation of the use of modified coal ash as a potential sorbent for organic waste streams

[J]. Applied Geochemistry,2002178):1159-1164. doi:10.1016/s0883-2927(02)00057-4

[本文引用: 1]

黄训荣赵航航张贵宾.

改性粉煤灰对废水中镉的吸附作用

[J]. 应用生态学报,2019309):3215-3223. doi:10.13287/j.1001-9332.201909.040

[本文引用: 3]

HUANG XunrongZHAO HanghangZHANG Guibinet al.

Adsorption of Cd2+ from wastewater by modified fly ash

[J]. Chinese Journal of Applied Ecology,2019309):3215-3223. doi:10.13287/j.1001-9332.201909.040

[本文引用: 3]

QIU RuifangCHENG FangqinHUANG Haiming.

Removal of Cd2+ from aqueous solution using hydrothermally modified circulating fluidized bed fly ash resulting from coal gangue power plant

[J]. Journal of Cleaner Production,20181721918-1927. doi:10.1016/j.jclepro.2017.11.236

[本文引用: 4]

XU KeDENG TongLIU Juntanet al.

Study on the phosphate removal from aqueous solution using modified fly ash

[J]. Fuel,20108912):3668-3674. doi:10.1016/j.fuel.2010.07.034

[本文引用: 1]

殷福龙杜志超.

微波-酸改性粉煤灰对Cu2+的吸附性能研究

[J]. 非金属矿,2018414):96-98. doi:10.3969/j.issn.1000-8098.2018.04.030

[本文引用: 2]

YIN FulongDU Zhichao.

Research on the adsorption of Cu2+ with microwave-assisted acid modified fly ash

[J]. Non-Metallic Mines,2018414):96-98. doi:10.3969/j.issn.1000-8098.2018.04.030

[本文引用: 2]

伍昌年凌琪唐玉朝.

微波辅助酸改性粉煤灰对镉的吸附性能研究

[J]. 应用化工,2016458):1428-1430. doi:10.16581/j.cnki.issn1671-3206.20160527.023

[本文引用: 1]

WU ChangnianLING QiTANG Yuchaoet al.

Study on the adsorption performance of cadmium with microwave-assisted acid modified fly ash

[J]. Applied Chemical Industry,2016458):1428-1430. doi:10.16581/j.cnki.issn1671-3206.20160527.023

[本文引用: 1]

高宏李恒贺波.

用改性粉煤灰微珠吸附处理铅锌硫化矿选矿废水

[J]. 湿法冶金,2018371):40-44.

[本文引用: 2]

GAO HongLI HengHE Boet al.

Adsorption treatment of beneficiation wastewater of Pb-Zn sulfide ore by sulphuric acid modified fly ash

[J]. Hydrometallurgy of China,2018371):40-44.

[本文引用: 2]

许效天霍林左叶颖.

铝改性粉煤灰漂珠吸附水溶液中砷的性能研究

[J]. 中国环境科学,2011318):1300-1305.

[本文引用: 1]

XU XiaotianHUO LinZUO Yeyinget al.

Performance research on arsenic adsorption from aqueous solution by aluminum-modified fly ash cenospheres

[J]. China Environmental Science,2011318):1300-1305.

[本文引用: 1]

曾经刘春华.

火电厂粉煤灰改性物对Cu(Ⅱ)的吸附性能及应用研究

[J]. 材料保护,2007406):55-57. doi:10.3969/j.issn.1001-1560.2007.06.020

[本文引用: 1]

ZENG JingLIU Chunhua.

Adsorption of copper(Ⅱ) ions by modified fly ash from power plant and application of the modified fly ash in wastewater treatment for copper electroplating

[J]. Materials Protection,2007406):55-57. doi:10.3969/j.issn.1001-1560.2007.06.020

[本文引用: 1]

李喜林赵雪项莹雪.

改性粉煤灰吸附含铬废水中Cr(Ⅵ)和Cr(Ⅲ)试验研究

[J]. 非金属矿,2015384):75-77. doi:10.3969/j.issn.1000-8098.2015.04.023

[本文引用: 2]

LI XilinZHAO XueXIANG Yingxueet al.

Experimental study on adsorption Cr(Ⅵ) and Cr(Ⅲ) of chromium-containing wastewater by modified fly ash

[J]. Non-Metallic Mines,2015384):75-77. doi:10.3969/j.issn.1000-8098.2015.04.023

[本文引用: 2]

GENG XinzeDUAN YufengZHAO Shilinet al.

Mechanism study of mechanochemical bromination on fly ash mercury removal adsorbent

[J]. Chemosphere,2021274129637. doi:10.1016/j.chemosphere.2021.129637

[本文引用: 1]

欧阳平范洪勇张贤明.

基于吸附的粉煤灰改性机理研究进展

[J]. 材料科学与工程学报,2014324):619-624.

[本文引用: 1]

OUYANG PingFAN HongyongZHANG Xianminget al.

Research progress of the modification mechanism of flyash based on adsorption

[J]. Journal of Materials Science and Engineering,2014324):619-624.

[本文引用: 1]

VISA MCHELARU A M.

Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment

[J]. Applied Surface Science,201430314-22. doi:10.1016/j.apsusc.2014.02.025

[本文引用: 1]

张亚男韩洪晶张梅.

Ti掺杂NaP分子筛的合成及其吸附性能

[J]. 硅酸盐学报,20204812):1966-1975.

[本文引用: 2]

ZHANG YananHAN HongjingZHANG Meiet al.

Synthesis of NaP zeolite doped with titanium and its adsorption performance

[J]. Journal of the Chinese Ceramic Society,20204812):1966-1975.

[本文引用: 2]

ZHANG YananCHEN YanguangKANG Weiet al.

Excellent adsorption of Zn(Ⅱ) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment

[J]. Journal of Cleaner Production,2020258120736. doi:10.1016/j.jclepro.2020.120736

[本文引用: 3]

PAPANDREOU ASTOURNARAS C JPANIAS D.

Copper and cadmium adsorption on pellets made from fired coal fly ash

[J]. Journal of Hazardous Materials,20071483):538-547. doi:10.1016/j.jhazmat.2007.03.020

[本文引用: 1]

POLOWCZYK IBASTRZYK AKOŹLECKI Tet al.

Use of fly ash agglomerates for removal of arsenic

[J]. Environmental Geochemistry and Health,2010324):361-366. doi:10.1007/s10653-010-9306-x

[本文引用: 1]

JUNG C HMATSUTO TTANAKA N.

Behavior of metals in ash melting and gasification-melting of municipal solid waste(MSW)

[J]. Waste Management,2005253):301-310. doi:10.1016/j.wasman.2004.08.012

[本文引用: 1]

RAO MPARWATE A VBHOLE A G.

Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash

[J]. Waste Management,2002227):821-830. doi:10.1016/s0956-053x(02)00011-9

[本文引用: 2]

LI XianboYE JunjianLIU Zhihonget al.

Microwave digestion and alkali fusion assisted hydrothermal synthesis of zeolite from coal fly ash for enhanced adsorption of Cd(Ⅱ) in aqueous solution

[J]. Journal of Central South University,2018251):9-20. doi:10.1007/s11771-018-3712-0

[本文引用: 1]

黄琴琴刘国文梅燕.

粉煤灰-膨润土阻隔墙控制地下水中镉污染

[J]. 环境工程学报,2019133):652-663. doi:10.12030/j.cjee.201808136

[本文引用: 3]

HUANG QinqinLIU GuoWEN Meiyanet al.

Controlling cadmium pollution with fly ash-bentonite cut-off wall

[J]. Chinese Journal of Environmental Engineering,2019133):652-663. doi:10.12030/j.cjee.201808136

[本文引用: 3]

朱双盛广宏王铖铖.

粉煤灰/氧化石墨烯复合材料吸附Hg(Ⅱ)

[J]. 环境工程学报,2017113):1857-1864.

[本文引用: 2]

ZHU ShuangSHENG GuanghongWANG Chengchenget al.

Adsorption of Hg(Ⅱ) ions on fly ash/graphene oxide composite

[J]. Chinese Journal of Environmental Engineering,2017113):1857-1864.

[本文引用: 2]

燕可翀李子鹏李杨敏.

粉煤灰碱熔-水热合成沸石用于水溶液中汞的吸附

[J]. 硅酸盐通报,20203912):3939-3944.

[本文引用: 1]

YAN KechongLI ZipengLI Yangminet al.

Adsorption of mercury in aqueous solution by zeolite prepared from coal fly ash using alkali fusion-hydrothermal method

[J]. Bulletin of the Chinese Ceramic Society,20203912):3939-3944.

[本文引用: 1]

SEN A KDE A K.

Adsorption of mercury(Ⅱ) by coal fly ash

[J]. Water Research,1987218):885-888. doi:10.1016/s0043-1354(87)80003-9

[本文引用: 1]

BANERJEE S SJOSHI M VJAYARAM R V.

Removal of Cr(Ⅵ) and Hg(Ⅱ) from aqueous solutions using fly ash and impregnated fly ash

[J]. Separation Science and Technology,2005397):1611-1629. doi:10.1081/ss-120030778

[本文引用: 2]

KAPOOR AVIRARAGHAVAN T.

Adsorption of mercury from wastewater by fly ash

[J]. Adsorption Science & Technology,199293):130-147. doi:10.1177/026361749200900302

[本文引用: 1]

LIU MinminHOU LianXI Beidouet al.

Synthesis,characterization,and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

[J]. Applied Surface Science,2013273706-716. doi:10.1016/j.apsusc.2013.02.116

[本文引用: 3]

TAUANOV ZSHAH DITSKOS Get al.

Optimized production of coal fly ash derived synthetic zeolites for mercury removal from wastewater

[J]. IOP Conference Series:Materials Science and Engineering,2017230012044. doi:10.1088/1757-899x/230/1/012044

[本文引用: 2]

PANDAY K KPRASAD GSINGH V N.

Copper(Ⅱ) removal from aqueous solutions by fly ash

[J]. Water Research,1985197):869-873. doi:10.1016/0043-1354(85)90145-9

[本文引用: 1]

APAK RTÜTEM EHÜGÜL Met al.

Heavy metal cation retention by unconventional sorbents (red muds and fly ashes)

[J]. Water Research,1998322):430-440. doi:10.1016/s0043-1354(97)00204-2

[本文引用: 2]

WANG ShaobinTERDKIATBURANA TTADÉ M O.

Single and co-adsorption of heavy metals and humic acid on fly ash

[J]. Separation and Purification Technology,2008583):353-358. doi:10.1016/j.seppur.2007.05.009

[本文引用: 1]

HSU T CYU C CYEH C M.

Adsorption of Cu2+ from water using raw and modified coal fly ashes

[J]. Fuel,2008877):1355-1359. doi:10.1016/j.fuel.2007.05.055

[本文引用: 3]

张晓民李瑾李恒.

弱酸改性粉煤灰空心微珠用于处理铅锌选矿废水吸附试验研究

[J]. 有色金属工程,2020103):101-108. doi:10.3969/j.issn.2095-1744.2020.03.016

[本文引用: 1]

ZHANG XiaominLI JinLI Henget al.

Weak acid treatment of coal fly ash cenospheres and the adsorptive removal of impurities in wastewaters of A beneficiation plant of lead-zinc sulphide ores

[J]. Nonferrous Metals Engineering,2020103):101-108. doi:10.3969/j.issn.2095-1744.2020.03.016

[本文引用: 1]

HE XinpingYAO BingXIA Yanget al.

Coal fly ash derived zeolite for highly efficient removal of Ni2+ inwaste water

[J]. Powder Technology,202036740-46. doi:10.1016/j.powtec.2019.11.037

[本文引用: 1]

甘永平姚兵贺馨平.

煤灰基沸石电场辅助吸附Ni2+研究

[J]. 水处理技术,2021471):32-36.

[本文引用: 1]

GAN YongpingYAO BingHE Xinpinget al.

Study on electric field assisted adsorption of Ni2+ by coal ash-based zeolite

[J]. Technology of Water Treatment,2021471):32-36.

[本文引用: 1]

BANERJEE S SJAYARAM R VJOSHI M V.

Removal of nickel(Ⅱ) and zinc(Ⅱ) from wastewater using fly ash and impregnated fly ash

[J]. Separation Science and Technology,2003385):1015-1032. doi:10.1081/ss-120018121

[本文引用: 1]

KOBAYASHI YOGATA FSAENJUM Cet al.

Removal of Pb2+ from aqueous solutions using K-type zeolite synthesized from coal fly ash

[J]. Water,2020129):2375. doi:10.3390/w12092375

[本文引用: 1]

HUANG XunrongZHAO HanghangZHANG Guibinet al.

Potential of removing Cd(Ⅱ) and Pb(Ⅱ) from contaminated water using a newly modified fly ash

[J]. Chemosphere,2020242125148. doi:10.1016/j.chemosphere.2019.125148

[本文引用: 2]

骆欣敖燕环徐东耀.

粉煤灰改性及其吸附废水中Pb(Ⅱ)的研究

[J]. 应用化工,2019485):1020-1023. doi:10.3969/j.issn.1671-3206.2019.05.007

[本文引用: 2]

LUO XinAO YanhuanXU Dongyaoet al.

Study on modification of fly ash and its adsorption of Pb(Ⅱ) from wastewater

[J]. Applied Chemical Industry,2019485):1020-1023. doi:10.3969/j.issn.1671-3206.2019.05.007

[本文引用: 2]

李喜林张颖赵雪.

粉煤灰合成沸石吸附含铬废水中三价铬的研究

[J]. 非金属矿,2017405):93-95.

[本文引用: 1]

LI XilinZHANG YingZHAO Xueet al.

Study on adsorption of trivalent chromium-containing wastewater by zeolite synthesized from coal fly ash

[J]. Non-Metallic Mines,2017405):93-95.

[本文引用: 1]

JIANG XiaolingFAN WenqiangLI Chunqinget al.

Removal of Cr(Ⅵ) from wastewater by a two-step method of oxalic acid reduction-modified fly ash adsorption

[J]. RSC Advances,2019958):33949-33956. doi:10.1039/c9ra05980f

[本文引用: 2]

程俊伟黄明琴蔡深文.

碱洗—氧化钙煅烧两段法改性粉煤灰脱除废水中Cr(Ⅵ)的性能研究

[J]. 矿产综合利用,20221):184-189. doi:10.3969/j.issn.1000-6532.2022.01.026

[本文引用: 2]

CHENG JunweiHUANG MingqinCAI Shenwen.

Research on removal of chromium(Ⅵ) from waste water on fly ash modified with alkali washing and calcium oxide calcining method

[J]. Multipurpose Utilization of Mineral Resources,20221):184-189. doi:10.3969/j.issn.1000-6532.2022.01.026

[本文引用: 2]

滕菲张海燕齐立强.

微波联合碱改性粉煤灰对铬(Ⅵ)的吸附性能

[J]. 矿产保护与利用,2019394):26-31.

[本文引用: 2]

TENG FeiZHANG HaiyanQI Liqiang.

Research on the adsorption performance of microwave combined with alkali modified fly ash for Cr(Ⅵ)

[J]. Conservation and Utilization of Mineral Resources,2019394):26-31.

[本文引用: 2]

PANDAY K KPRASAD GSINGH V N.

Removal of Cr(Ⅵ) from aqueous solutions by adsorption on fly ash-wollastonite

[J]. Journal of Chemical Technology and Biotechnology Chemical Technology,2007347):367-374. doi:10.1002/jctb.5040340703

[本文引用: 1]

BHATTACHARYA A KNAIYA T KMANDAL S Net al.

Adsorption,kinetics and equilibrium studies on removal of Cr(Ⅵ) from aqueous solutions using different low-cost adsorbents

[J]. Chemical Engineering Journal,20081373):529-541.

[本文引用: 2]

PATTANAYAK JMONDAL KMATHEW Set al.

A parametric evaluation of the removal of As(Ⅴ) and As(Ⅲ) by carbon-based adsorbents

[J]. Carbon,2000384):589-596. doi:10.1016/s0008-6223(99)00144-x

[本文引用: 2]

SONI RSHUKLA D P.

Synthesis of fly ash based zeolite-reduced graphene oxide composite and its evaluation as an adsorbent for arsenic removal

[J]. Chemosphere,2019219504-509. doi:10.1016/j.chemosphere.2018.11.203

[本文引用: 1]

ULATOWSKA JPOLOWCZYK ISAWIŃSKI Wet al.

Use of fly ash and fly ash agglomerates for As(Ⅲ) adsorption from aqueous solution

[J]. Polish Journal of Chemical Technology,2014161):21-27. doi:10.2478/pjct-2014-0004

[本文引用: 1]

DIAMADOPOULOS EIOANNIDIS SSAKELLAROPOULOS G P.

As(Ⅴ) removal from aqueous solutions by fly ash

[J]. Water Research,19932712):1773-1777. doi:10.1016/0043-1354(93)90116-y

[本文引用: 1]

ZHANG KaihuaZHANG DongxueZHANG Kai.

Arsenic removal from water using a novel amorphous adsorbent developed from coal fly ash

[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research,2016738):1954-1962. doi:10.2166/wst.2016.028

[本文引用: 3]

LI YiZHANG FushenXIU Furong.

Arsenic(Ⅴ) removal from aqueous system using adsorbent developed from a high iron-containing fly ash

[J]. Science of the Total Environment,200940721):5780-5786. doi:10.1016/j.scitotenv.2009.07.017

[本文引用: 1]

AHMARUZZAMAN M.

A review on the utilization of fly ash

[J]. Progress in Energy and Combustion Science,2010363):327-363. doi:10.1016/j.pecs.2009.11.003

[本文引用: 1]

FEBRIANTO JKOSASIH A NSUNARSO Jet al.

Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent:A summary of recent studies

[J]. Journal of Hazardous Materials,20091622/3):616-645. doi:10.1016/j.jhazmat.2008.06.042

[本文引用: 3]

EL-KHAIARY M I.

Least-squares regression of adsorption equilibrium data:Comparing the options

[J]. Journal of Hazardous Materials,20081581):73-87. doi:10.1016/j.jhazmat.2008.01.052

[本文引用: 1]

ANASTOPOULOS IKYZAS G Z.

Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena?

[J]. Journal of Molecular Liquids,2016218174-185. doi:10.1016/j.molliq.2016.02.059

[本文引用: 1]

QIU QiliJIANG XuguangGuojun et al.

Adsorption of copper ions by fly ash modified through microwave-assisted hydrothermal process

[J]. Journal of Material Cycles and Waste Management,2019213):469-477. doi:10.1007/s10163-018-0806-6

[本文引用: 1]

/