工业水处理, 2023, 43(3): 39-47 doi: 10.19965/j.cnki.iwt.2022-0079

标识码(

短程反硝化的微生物富集策略及应用研究进展

李芸,1,2, 熊星星2, 崔楠2, 黄志远2

1.东华理工大学核资源与环境国家重点实验室, 江西 南昌 330013

2.东华理工大学水资源与环境工程学院, 江西 南昌 330013

Research progress of enrichment strategy and application of partial denitrification microorganisms

LI Yun,1,2, XIONG Xingxing2, CUI Nan2, HUANG Zhiyuan2

1.State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330013,China

2.School of Water Resources and Environmental Engineering,East China University of Technology,Nanchang 330013,China

收稿日期: 2022-12-12  

基金资助: 江西省重点研发计划项目.  20202BBGL73086.  20201BBG71012

Received: 2022-12-12  

作者简介 About authors

李芸(1985—),博士,讲师E-mail:liyun_jps@163.com , E-mail:liyun_jps@163.com

摘要

污废水的高效节能脱氮技术一直以来都是研究和应用的焦点。短程反硝化-厌氧氨氧化耦合工艺因具有能耗低、产泥少、温室气体减排和脱氮效果好等优点,已成为废水脱氮领域研究和应用的热点。其中,短程反硝化被认为是厌氧氨氧化菌获取底物(NO2--N)的重要途径之一,对其进行研究具有重要的科学和工程意义。基于此,综述了短程反硝化的工艺原理,总结了硫自养短程反硝化和异养短程反硝化微生物的富集方法,并探讨了短程反硝化-厌氧氨氧化耦合工艺处理城市污水、高浓度氨氮废水和硝酸盐废水的工程应用。最后对短程反硝化及其耦合厌氧氨氧化工艺的研究和应用方向进行了展望,以期为短程反硝化-厌氧氨氧化耦合工艺处理实际污水提供参考。

关键词: 短程反硝化 ; 生物脱氮 ; 亚硝酸盐积累 ; 短程反硝化微生物

Abstract

Energy-efficient nitrogen removal technology for wastewater has always been the focus of research and application. The partial denitrification-anaerobic ammonia oxidation (PD-Anammox) coupling process has become hotspots of research and application in the field of wastewater nitrogen removal because of its advantages of low energy consumption,low sludge production,greenhouse gas emission reduction and good denitrification effect. Among them,partial denitrification is considered as one of the important ways for anaerobic ammonia oxidation bacteria to obtain substrate (NO2--N),and it is of great scientific and engineering significance to investigate it. Based on this,the process principle of partial denitrification was reviewed,the enrichment methods of sulfur-driven partial autotrophic denitrification and heterotrophic partial denitrification microorganisms were summarized. Furthermore, the engineering applications of PD-Anammox coupling process for treating municipal wastewater,high concentration ammonia wastewater and nitrate wastewater were discussed. Finally,the research and application direction of partial denitrification and its coupled anaerobic ammonia oxidation process were prospected,providing references for the subsequent application of PD-Anammox coupling process in actual sewage treatment.

Keywords: partial denitrification ; biological nitrogen removal ; nitrite accumulation ; partial denitrification microorganisms

PDF (945KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李芸, 熊星星, 崔楠, 黄志远. 短程反硝化的微生物富集策略及应用研究进展. 工业水处理[J], 2023, 43(3): 39-47 doi:10.19965/j.cnki.iwt.2022-0079

LI Yun. Research progress of enrichment strategy and application of partial denitrification microorganisms. Industrial Water Treatment[J], 2023, 43(3): 39-47 doi:10.19965/j.cnki.iwt.2022-0079

在经济快速发展的同时,也伴随着一系列水体环境污染问题的出现。水中氮的积累会严重危害饮用水源地的安全,进而威胁到人类自身。寻求污废水的高效节能脱氮技术一直以来都是研究和应用的焦点。近些年发展出的厌氧氨氧化(Anaerobic ammonium oxidation,Anammox)工艺依靠较少氧气需求量、无需外加碳源和产泥少等优点,在众多生物脱氮工艺中脱颖而出,并常与短程硝化(Partial nitrification,PN)结合成PN-Anammox工艺用于含氮废水处理1

然而PN-Anammox工艺也存在一定的局限性,如亚硝酸盐氧化菌(NOB)增殖,异养菌与自养菌相互竞争,无法处理硝酸盐废水等,尤其是其存在脱氮不完全的问题(即有部分硝氮产生)2。目前,为解决该问题,通常采取2种措施,一是在Anammox工艺后增加反硝化单元用以去除产生的硝氮,二是将短程反硝化(Partial denitrification,PD)与Anammox结合成PD-Anammox工艺,即将Anammox产生的硝氮进行短程反硝化至亚硝氮,再与氨氮一同进行厌氧氨氧化予以去除。对比来讲,第二种方法可以进一步节省碳源投加量,降低成本,在处理含硝酸盐废水方面具有极大的经济优势。

近些年已有一些关于PD及其与Anammox耦合用于多种污废水脱氮方面的研究3-5,PD作为PD-Anammox工艺的一部分,其功能微生物的特性与富集方法对耦合工艺的启动及运行起着关键作用,部分研究对此进行了报道6-7。笔者对近年来PD微生物及其工艺应用的研究进行了梳理,通过分析功能微生物的环境条件、生理代谢和微生物学特性等来探讨其富集策略,同时综述了PD在不同污废水脱氮处理中的应用进展并对其进行了展望,以期为PD与Anammox耦合处理实际污水的应用推广提供参考。

1 短程反硝化概述

反硝化是自然界氮循环中的重要环节,常规的反硝化是在反硝化微生物的作用下,NO3--N被逐步还原到N2的过程8,此过程需要在多种功能酶的协同参与下完成9。具备所有功能酶的完全反硝化菌在这一过程中会短暂积累某些中间产物,如NO2--N和N2O10-11。这是因为不同酶的合成与活性受到多种因素的影响,进而影响了反硝化过程中各种含氮化合物的还原速率,产生中间产物的积累。PD即是将NO3--N仅还原到NO2--N,实现NO2--N的积累。研究表明,环境中存在缺乏一种或多种功能酶的不完全反硝化菌12-14,通过这些不完全反硝化菌群可实现PD15。由此可见,PD可以通过以下2种方式实现:(1)调控酶的活性,即抑制常规反硝化过程中的Nir、Nor、Nos酶活性,提高Nar酶活性,将反应控制在NO2--N积累阶段;(2)驯化和富集以NO2--N为最终产物的PD菌群来实现NO2--N积累。

反硝化菌广泛分布在自然界中,根据电子供体类型可将其分为异养反硝化菌和自养反硝化菌(包括硫自养反硝化菌、氢自养反硝化菌、铁自养反硝化菌等)2大类,目前关于PD的研究主要集中在硫短程自养反硝化和异养短程反硝化2个方面。

2 短程反硝化微生物的富集

2.1 硫短程自养反硝化

硫自养反硝化(Sulfur autotrophic denitrification,SAD)是指以还原态硫作为电子供体的自养反硝化过程。研究表明,以总溶解硫化物(Total dissolved sulfide,TDS)或单质硫为电子供体的自养反硝化在特定条件下会积累大量的如NO2--N和N2O等中间产物16。例如,以硫化物为基质的硫自养反硝化的反应过程见式(1)~式(4)17,在合适的条件下,该反应过程可被限制在第一步,由此积累大量的NO2--N。这类以NO2--N为最终产物的SAD工艺就是硫短程自养反硝化工艺(Sulfur-driven partial autotrophic denitrification,SPAD)。

S2-+NO3-+2H+S0+NO2-+H2O
5S0+3NO3-+5NO2-+2OH-5SO42-+4N2+H2O
2.5S0+5NO2-2.5SO42-+2.5N2
3S2-+2NO2-+8H+3S0+N2+4H2O

2.1.1 典型反硝化脱硫微生物

反硝化脱硫细菌(NR-SOB)是一类以还原态硫为电子供体,将NO3--N还原为N2的自养型微生物,它通过氧化还原的方式来获取自身生长所需能量。目前,已报道的NR-SOB大致分为严格化能自养型菌、兼性自养型菌和巨大丝状菌3类18。此外,PseudomonasBacillusOchrobactrumRhodococcus菌属也被证明具有同步反硝化脱硫能力19。获得具有高效脱氮除硫功能的微生物对硫自养反硝化的应用与发展具有重要意义。表1列举了部分已鉴定和分离出来的反硝化脱硫微生物。

表1   部分在污废水处理领域已鉴定和分离出来的反硝化脱硫微生物

Table 1  Some identified and isolated NR-SOB in wastewater treatment

微生物来源电子供体参考文献
Thiobacillus denitrificansHS-、S0、S2O32-、FeS220
Sulfurimonas denitrificansS2-、S2O32-、FeS221
Bacillus pseudofirmus OF4、脱氮除硫反应器S2-22
Bacillus hemicellulosilytus、
Bacillus halodurans
Thiobacillus denitrificans sp. T4全混合式反应器S2-23
Pseudomonas stutzeri缺氧硫氧化生物反应器S2-24
Pseudomonas sp. C27膨胀颗粒污泥床反应器S2-25
Pseudomonas fluorescens废水脱氮与沼气脱硫耦联菌株驯化反应器S2-26
Pseudomonas aeruginosa
Paracoccus pantotrophus GB17反硝化硫氧化污水处理厂HS-、S2O32-、有机物等27
Thiobacillus sp. ADD1膨胀颗粒污泥床反应器S2-、S2O32-
Thauera sp. HDD1、膨胀颗粒污泥床反应器S2-、S2O32-、乙酸钠28
Alkaliflexus sp. HDD2、
Azoarcu sp. HDD3、
Pseudomonas sp. HDD4
Ochrobactrum sp. QZ2缺氧硫氧化生物反应器S2-29

注:—表示未提及。

新窗口打开| 下载CSV


表1所提及的反硝化脱硫微生物中,Pseudomonas fluorescens在初始NO x--N较低条件下,能迅速将NO3--N还原为NO2--N,而其将NO2--N继续还原为N2的能力较弱30,因此,对Pseudomonas fluorescens进行富集有利于SPAD的实现。另外,Thiobacillus denitrificansSulfurimonas denitrificans被认为是SPAD系统中常见的功能菌。尽管全基因组分析已经证实了这2个菌种均具有完全反硝化途径,但它们的硝酸盐还原酶属于不同类型,分别为Thiobacillus denitrificans中Nar基因编码的膜结合硝酸盐还原酶31Sulfurimonas denitrificans中Nap基因编码的周质硝酸盐还原酶21。此外,Thiobacillus denitrificansSulfurimonas denitrificans的硫氧化途径也存在着差异,Sulfurimonas denitrificans的基因组中存在SoxCD基因簇但缺失Dsr基因簇,从而导致Sulfurimonas denitrificans在反硝化过程中没有单质硫的形成2131;而Thiobacillus denitrificans在反硝化过程中产生的单质硫能被回收利用,并且与其他含硫产物相比对环境的危害较小。因此,进一步研究不同条件下各类硝酸盐还原酶和硫氧化酶系统从而实现产生单质硫的SPAD功能菌的富集对于短程反硝化的工程应用极具意义。

2.1.2 硫短程自养反硝化微生物富集方法

在SPAD工艺中,影响功能微生物的富集以及NO2--N积累的主要因素有S/N、水力停留时间(Hydraulic retention time,HRT)、污泥停留时间(Sludge retention time,SRT)、pH和温度等。Chunshuang LIU等32研究了在连续上流式厌氧污泥床反应器中处理含硝酸盐和硫化物废水时亚硝酸盐的积累,结果表明在氮负荷为0.4 kg/(m3·d)条件下,控制n(S)∶n(N)=1∶0.76可以使NO2--N积累率达到70%,系统中的主要功能微生物为Acrobacter、Azoarcus、Thauera。Fangmin CHEN等33接种了以ThiobacillusSulfurimonasThioahalobacter为主要微生物的硫自养反硝化污泥,控制pH和温度分别为8.5和35 ℃,经过50 d的运行后,可实现95%的NO2--N积累率。Shuo HUANG等34在序批式反应器中研究了以硫化物为电子供体的自养反硝化过程,结果表明,通过逐步降低S/N和HRT的方式可使NO2--N最大积累率达到55.3%,第10天和第100天反应器内污泥样本中Arenimonasuncultured_f_Chromatiaceae的相对丰度分别由11.4%、5.7%提升至28.2%、27.5%,二者作为硫自养反硝化系统中的优势菌属承担了脱氮和除硫的任务。C. POLIZZI等35向全混流式反应器中接种了富含硫氧化细菌(SOB)的悬浮污泥,在较低的S/N〔m(S)∶m(N)=0.58∶1〕和SRT(23 h)条件下,成功实现了SPAD,NO2--N转化率最高可达99.0%,同时观察到微生物优势种群由Sulfurimonas转向Thiobacillus。此外,SPAD污泥颗粒化有利于固化相关的功能菌株,Chunshuang LIU等36首次在UASB反应器中培养出以硫化物为电子供体的PD颗粒污泥,且系统最大NO2--N转化率和原位最大NO3--N还原速率分别可达92.0%、2.46 kg/(m3·d)。Thiobacillus主要负责在中等HRT(2~6 h)条件下高速积累NO2--N,而在较低的HRT(1 h)条件下,Thiobacillus会与Sulfurimonas共同作用积累NO2--N。一般来说,对于SPAD系统,应控制n(S)∶n(N)<1.31∶1,HRT在4~8 h,SRT在12~40 h,pH稳定在7.0~8.0,温度维持在30~35 ℃,此条件下可以实现SPAD微生物的富集和NO2--N的稳定积累。

2.2 异养短程反硝化

异养短程反硝化(Heterotrophic partial denitrification)是指以有机物为电子供体,积累大量NO2--N的反硝化过程。由于SPAD需要利用废水中的硫化物提供电子,局限于处理同时含氮、硫的废水,因此,能够充分利用城市污水碳源的异养PD在处理各类含氮废水方面更具有优势和潜力。

2.2.1 典型功能微生物

反硝化菌群结构对于NO2--N的积累具有很大的影响。一般认为Thauera的反硝化菌在以乙酸盐为碳源的反硝化系统微生物群落中处于主导地位37-38,Illumina高通量测序分析也证实了这一观点39。宏基因组分析表明,Thauera的Nar酶(8 098个位点,包括narG和napA)丰度高于Nir酶(2 950个位点,包括nirS)丰度40。Binbin LIU等41在研究Thauera菌株的反硝化调节表型时发现,T. aminoaromaticaT. phenylaceticaT. terpenicaThauera sp. DNT-1表现出了相同的特性,即不同反硝化基因逐步启动,NirS的转录在NO3--N耗尽后才被检测到。另外,在高NO3--N负荷条件下,Halomonas也是PD系统中的优势菌属42-43,它与Marinobacter都能适应高盐废水37。由于Marinobacter被证明具有将NO3--N转化为N2的作用,所以它的存在会影响PD中NO2--N的积累44。与上述由Thauera主导的反硝化菌一样,NO3--N的存在也抑制了HalomonasNirS转录43。Wei LI等43基于生物质浓度的生长动力学研究结果表明,每摩尔电子供体培养的PD菌和反硝化菌的生长量在统计学上是相同的,但每摩尔电子受体培养的PD菌的生长量比培养的反硝化菌的生长量高约1倍,在提供了足够的电子供体后,以培养Halomonas为主的PD菌在NO3--N消耗阶段倾向于积累聚羟基丁酸(PHB),而PHB在NO2--N积累阶段显著增加,在之后NO2--N消耗阶段开始减少。此外,Wenting QIAN等40研究了pH对PD的影响,结果表明Thauera的反硝化菌在碱性条件下具有优势。因此,根据目前的研究推断,Halomonas的反硝化菌可能是具有低底物亲和力的嗜盐菌,而Thauera的反硝化菌则可能是具有高底物亲和力的耐碱菌(非嗜碱菌)。

2.2.2 异养短程反硝化微生物富集方法

接种污泥对PD的启动极为关键,不同污泥源提供给反硝化菌的生态位及其包含的功能菌属丰度是不同的。张星星等45研究发现,实验室城市污水反硝化除磷系统排泥(S1)、城市污水厂剩余污泥(S2)及河涌底泥(S3)在相同条件下均能在短时间内快速启动PD反应器,但只有S3系统能在持续低温条件下保持良好的NO2--N积累性能,造成这一现象的原因可能是S3系统中NO2--N积累的关键功能菌属Thauera相对丰度高于在S1、S2系统中的丰度。此外也有研究人员通过接种反硝化除磷污泥46、城市污水厂活性污泥47、实验室驯化成熟的PD污泥39等实现了PD功能菌属Thauera的富集。合适的碳源种类和碳源投加量可以对PD功能菌进行筛选富集48。Rui DU等49采用DEAMOX工艺处理含氮废水,以乙酸盐作碳源时反应器〔R1,m(COD)/m(NO3--N)=2.6〕的NO2--N转化率(95.8%)高于以乙醇作碳源时反应器〔R2,m(COD)/m(NO3--N)=3.0〕的NO2--N转化率(87.0%),两反应器的优势菌属均为Thauera,但其在R1反应器中的相对丰度(61.53%)大于在R2中的相对丰度(45.17%)。Wei LI等43研究发现以甲醇为唯一碳源的培养基无法通过降低m(COD)/m(NO3--N)的方式富集Halomonas属反硝化菌,但是在m(COD)/m(NO3--N)=4.5的条件下,将唯一碳源由甲醇替换为乙酸盐后,培养基中Halomonas的相对丰度上升至11.8%,之后将m(COD)/m(NO3--N)降低至1.5培养一段时间后提升至2.5时,Halomonas的相对丰度进一步上升至82.7%。Xuefan LIU等50通过实验评估了以污泥发酵液作为碳源对废水进行PD处理的可行性,结果表明,以污泥发酵液为碳源的反硝化过程会出现明显的NO2--N积累,系统中Thauera、ParacoccusEnterobacteriaceae的PD功能菌被富集。Teng ZHANG等51在甘油为碳源驱动的PD反应器中富集了Saccharibacteria的PD功能菌,并且通过调控pH和盐度的方式定向筛选并富集了所需的PD功能菌。另外,Thauera的PD功能菌在pH=9.0的环境中能占据优势地位40,也同样可以在高盐度环境中保持优势652。因此,对于异养PD系统,可选取河涌底泥和乙酸盐分别作为接种污泥和有机碳源,将m(COD)/m(NO3--N)控制在2.5左右,进水pH调节至9.0,此条件下可富集抵抗低温影响的异养PD微生物,并实现NO2--N的稳定积累。

3 短程反硝化的应用

PD工艺常与Anammox工艺耦合,为Anammox工艺提供反应底物来对废水进行处理,其有一体式和分体式2种类型,其中分体式工艺可以根据所处理污水的类型将PD单元放置于Anammox的前或后。PD-Anammox工艺的处理对象有城市污水、高氨氮废水和工业硝酸盐废水等。

3.1 城市污水处理

PD-Anammox工艺经济价值高、处理效能高,已被逐渐开发用于城市污水脱氮处理。由于城市污水中氨氮通常较低(16~81.2 mg/L),而有机物质量浓度较高(203.5~1 589.0 mg/L)4753,所以选择异养PD工艺为Anammox提供NO2--N作反应底物较为合适。PD-Anammox处理城市污水可以通过2种方式实现。第一种方式如图1(a)所示,含有NH4+-N和COD的城市污水先流入主管线上的厌氧/缺氧池,经PD-Anammox工艺处理后再被输入好氧池进行硝化处理,硝化后的出水一部分进入下一处理单元,其余部分回流至厌氧/缺氧池进行再次循环处理。这一过程的可行性已在规模为2.5×105 m3/d的西安第四污水处理厂中得到了验证,该厂通过向A2O工艺缺氧段投加填料的方式进行升级改造,在平均进水TN为56.6 mg/L条件下,出水TN由升级改造前的(16.1±2.9) mg/L降低至(7.6±2.0) mg/L53-54。另一种实现方式如图1(b)所示,含有NH4+-N和COD的城市污水一部分先进入好氧池进行硝化处理,之后再与其余部分城市污水同时进入后续的PD-Anammox耦合反应区。Rui DU等55构建的两级SBR验证了该方案处理实际生活污水的可行性,在进水NH4+-N、COD分别为57.87、176.02 mg/L的条件下,出水TN低于5 mg/L。位于美国华盛顿特区的Blue Plains高级污水处理厂的中试规模反应器(160 L)也采取了该技术方案,在进水TN为(29±3) mg/L,m(COD)/m(TN)=2.2的条件下,出水TN低至(7±2) mg/L,并验证了主流条件下PD比PN更适合为Anammox提供基质56。值得注意的是,目前对于PD-Anammox处理城市污水的优化方式主要为调控m(COD)/m(NO3--N)和监控残留NO3--N来灵活调整与Anammox耦合的工艺(短程反硝化或全程反硝化)56-57,探究其他有效的控制策略将会是未来PD-Anammox处理城市污水的一个研究重点。

图1

图1   PD-Anammox处理城市污水

Fig. 1   The treatment of municipal wastewater by PD-Anammox


3.2 高氨氮废水处理

高氨氮废水来源广泛,不同企业产生的废水中氨氮差别也很大,如通常情况下,化肥、煤气、养殖废水中氨氮分别为(400~700)、(200~250)、(800~2 200) mg/L58。尽管PN-Anammox工艺能够处理这类废水,但其也面临着脱氮不完全的问题,PD则为该类废水的处理提供了新的解决思路。PD能够将Anammox过程产生的NO3--N原位还原,理论上PD-Anammox工艺可实现100%的TN去除率,突破了Anammox过程本身89%的TN去除率上限59。Zhiyao WANG等60在研究有机物对Anammox颗粒污泥床的影响时发现,低有机物负荷可以略微提升系统对TN的去除率。Zhengzhe ZHANG等61提出了一种在UASB反应器中实现完全Anammox脱氮(CAARON)的工艺,该工艺在m(COD)/m(NO2--N)=0.6的条件下从UASB反应器的中间进水口异步进料乙酸盐,实现反应器上、下部分进行不同反应的目的:下半部分有利于Anammox反应,上半部分以DEAMOX反应为主。研究表明,CAARON工艺在进水TN负荷为9.0 kg/(m3·d)条件下,实现了(96.2±0.4)%的TN去除率,出水TN维持在(9.3±0.9) mg/L。此外,王刚等62利用PD-Anammox工艺处理煤气化废水,在进水TN、COD平均分别为216、493 mg/L的条件下,系统对TN和COD的去除率分别可达87.0%和94.0%。目前,利用PD处理Anammox出水NO3--N已在一体式系统和实验室规模的分体式系统中得到验证6163,该工艺解决了Anammox工艺脱氮不完全的问题,为后续PD-Anammox处理高氨氮废水的工程化应用提供了理论基础。

3.3 工业硝酸盐废水处理

部分工业废水,如金属加工制造行业的废水中有机物浓度很低,甚至不含有机物,但其硝酸盐含量却很高,其质量浓度约为500~1 000 mg/L64。PD-Anammox工艺可实现在低碳氮比条件下对该类废水和城市污水的同步处理,有效去除污水中NO3--N和NH4+-N。PD工艺以城市污水中的有机物作为电子供体,因此可以有效降低有机碳源的投加量。Rui DU等65采用两级式PD-Anammox反应器同时处理高硝酸盐废水〔ρ(NO3--N)=1 000 mg/L〕和城市污水〔ρ(COD)=182.5 mg/L,ρ(NH4+-N)=58.3 mg/L〕时,通过优化废水比例和外加碳源量,使NO3--N和NH4+-N的去除率分别达到95.8%和92.8%。王超超等66提出了一种厌氧水解酸化-短程反硝化厌氧氨氧化的新工艺,采用该工艺对模拟生活污水和硝酸盐废水进行同步高效处理,在进水TN、COD分别为110、260 mg/L条件下,获得了94.78%的TN去除率,出水COD为30.15 mg/L。Rui DU等67采用一种新型反硝化氨氧化工艺首次处理含高浓度NO3--N(800 mg/L)和NH4+-N(800 mg/L)的废水,通过优化有机碳源投加方式,避免过高底物浓度对Anammox菌产生抑制作用,使得NO2--N转化率和TN去除率分别达到了99%和96.7%。此外,Xiang LI等68验证了硫驱动式DEAMOX工艺用于处理半导体废水的可行性,在进水NO3--N、NH4+-N分别为610、410 mg/L的条件下,TN去除率达到98%。

4 结语与展望

现阶段,污水脱氮处理领域愈发追求提质增效和节能减排,PD工艺因高效节能和积累亚硝氮的特点,为Anammox工艺的应用提供了新的思路。PD-Anammox耦合工艺既可以强化Anammox脱氮性能,也可以处理含氨氮和硝氮的废水。目前,关于PD功能菌富集和PD-Anammox耦合工艺的研究成果颇丰,然而在大规模走向实际工程应用的过程中依然存在诸多问题和挑战。在今后的研究和应用中,可围绕以下几个方面开展工作:

(1)对于SPAD,硫化物作为电子供体存在毒害相关功能微生物的可能性,因此需要探索合适的驯化方式,提高相关功能微生物对硫化物的耐受性和工艺运行性能。此外,SPAD会产生硫单质,如何将硫单质高效回收还应开展深入研究。

(2)对于异养短程反硝化,因实际污废水中往往含有一些具有微生物毒性的物质,如重金属、毒性有机物等,这些物质的存在会影响微生物的活性,开展抑制机理研究并总结工艺运行调控策略可以为工艺的应用提供基础。

(3)对于PD工艺,其与Anammox相耦合进行高效脱氮是其最大的应用前景,因此PD与Anammox的耦合机制及如何实现长期高效稳定运行仍然是未来研究的主要方向之一。


参考文献

张星星王昕竹印雯.

基于厌氧氨氧化技术处理市政污水的研究进展

[J]. 工业水处理,2020401):1-7. doi:10.11894/iwt.2019-0149

[本文引用: 1]

ZHANG XingxingWANG XinzhuYIN Wenet al.

Research progress on the treatment of municipal sewage by Anammox technology

[J]. Industrial Water Treatment,2020401):1-7. doi:10.11894/iwt.2019-0149

[本文引用: 1]

DU RuiPENG YongzhenJI Jiantaoet al.

Partial denitrification providing nitrite:Opportunities of extending application for anammox

[J]. Environment International,2019131105001. doi:10.1016/j.envint.2019.105001

[本文引用: 1]

CAO ShenbinDU RuiZHANG Hanyuet al.

Understanding the granulation of partial denitrification sludge for nitrite production

[J]. Chemosphere,2019236124389. doi:10.1016/j.chemosphere.2019.124389

[本文引用: 1]

CHEN HongTU ZhiWU Shaet al.

Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment

[J]. Chemosphere,2021278130436. doi:10.1016/j.chemosphere.2021.130436

WANG ZhongZHANG LiangZHANG Fangzhaiet al.

Enhanced nitrogen removal from nitrate-rich mature leachate via partial denitrification(PD)-anammox under real-time control

[J]. Bioresource Technology,2019289121615. doi:10.1016/j.biortech.2019.121615

[本文引用: 1]

BI ChunxueYU DeshuangWANG Xiaoxiaet al.

Performance and microbial structure of partial denitrification in response to salt stress:Achieving stable nitrite accumulation with municipal wastewater

[J]. Bioresource Technology,2020311123559. doi:10.1016/j.biortech.2020.123559

[本文引用: 2]

CHU GuangyuYU DeshuangWANG Xiaoxiaet al.

Comparison of nitrite accumulation performance and microbial community structure in endogenous partial denitrification process with acetate and glucose served as carbon source

[J]. Bioresource Technology,2021320124405. doi:10.1016/j.biortech.2020.124405

[本文引用: 1]

KNOWLES R.

Denitrification

[J]. Microbiological Reviews,1982461):43-70. doi:10.1128/mr.46.1.43-70.1982

[本文引用: 1]

ZUMFT W G.

Cell biology and molecular basis of denitrification

[J]. Microbiology and Molecular Biology Reviews:MMBR,1997614):533-616. doi:10.1128/.61.4.533-616.1997

[本文引用: 1]

SUN HongweiYANG QingPENG Yongzhenet al.

Nitrite accumulation during the denitrification process in SBR for the treatment of pre-treated landfill leachate

[J]. Chinese Journal of Chemical Engineering,2009176):1027-1031. doi:10.1016/s1004-9541(08)60312-2

[本文引用: 1]

TALLEC GGARNIER JBILLEN Get al.

Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants,under anoxia and low oxygenation

[J]. Bioresource Technology,2008997):2200-2209. doi:10.1016/j.biortech.2007.05.025

[本文引用: 1]

LYCUS PLOVISE BØTHUN KBERGAUST Let al.

Phenotypic and genotypic richness of denitrifiers revealed by a novel isolation strategy

[J]. The ISME Journal,20171110):2219-2232. doi:10.1038/ismej.2017.82

[本文引用: 1]

GRAF D R HJONES C MHALLIN S.

Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions

[J]. PLoS One,2014912):e114118. doi:10.1371/journal.pone.0114118

ROCO C ABERGAUST L LBAKKEN L Ret al.

Modularity of nitrogen-oxide reducing soil bacteria:Linking phenotype to genotype

[J]. Environmental Microbiology,2017196):2507-2519. doi:10.1111/1462-2920.13250

[本文引用: 1]

GAO HanMAO YanpingZHAO Xiaotianet al.

Genome-centric metagenomics resolves microbial diversity and prevalent truncated denitrification pathways in a denitrifying PAO-enriched bioprocess

[J]. Water Research,2019155275-287. doi:10.1016/j.watres.2019.02.020

[本文引用: 1]

OBEROI A SHUANG HaiqinKHANAL S Ket al.

Electron distribution in sulfur-driven autotrophic denitrification under different electron donor and acceptor feeding schemes

[J]. Chemical Engineering Journal,2021404126486. doi:10.1016/j.cej.2020.126486

[本文引用: 1]

王靓袁怡宋吟玲.

硫化物型自养反硝化中NO2 --N与S0的积累条件

[J]. 环境科学与技术,20133612):20-23.

[本文引用: 1]

WANG LiangYUAN YiSONG Yinling.

Condition of accumulating nitrite and sulfur on sulfide autotrophic denitrification

[J]. Environmental Science & Technology,20133612):20-23.

[本文引用: 1]

李文超石寒松王琦.

硫自养反硝化技术在污废水处理中应用研究进展

[J]. 水处理技术,2017438):1-6.

[本文引用: 1]

LI WenchaoSHI HansongWANG Qiet al.

Application progress of sulfur-autotrophic denitrification technology in wastewater treatment

[J]. Technology of Water Treatment,2017438):1-6.

[本文引用: 1]

方圆贺艳妮杜耀.

反硝化脱硫菌的代谢特征及其环境应用研究进展

[J]. 环境污染与防治,2015374):84-88.

[本文引用: 1]

FANG YuanHE YanniDU Yaoet al.

Review of the metabolic characteristics of nitrate-reducing,sulfide-oxidizing bacteria and its environmental application

[J]. Environmental Pollution & Control,2015374):84-88.

[本文引用: 1]

TORRENTÓ CCAMA JURMENETA Jet al.

Denitrification of groundwater with pyrite and thiobacillus denitrificans

[J]. Chemical Geology,20102781/2):80-91. doi:10.1016/j.chemgeo.2010.09.003

[本文引用: 1]

SIEVERT S MSCOTT K MKLOTZ M Get al.

Genome of the epsilonproteobacterial chemolithoautotroph sulfurimonas denitrificans

[J]. Applied and Environmental Microbiology,2008744):1145-1156. doi:10.1128/aem.01844-07

[本文引用: 3]

蔡靖郑平胡宝兰.

脱氮除硫菌株的分离鉴定和功能确认

[J]. 微生物学报,2007476):1027-1031. doi:10.3321/j.issn:0001-6209.2007.06.016

[本文引用: 1]

CAI JingZHENG PingHU Baolanet al.

Isolation,identification and characterization of nitrate-reducing and sulfide-oxidizing bacteria

[J]. Acta Microbiologica Sinica,2007476):1027-1031. doi:10.3321/j.issn:0001-6209.2007.06.016

[本文引用: 1]

WANG AijieDU DazhongREN Nanqiet al.

An innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrificans

[J]. Journal of Environmental Science and Health. Part A,Toxic/Hazardous Substances & Environmental Engineering,20054010):1939-1949. doi:10.1080/10934520500184590

[本文引用: 1]

MAHMOOD QZHENG PingHU Baolanet al.

Isolation and characterization of pseudomonas stutzeri QZ1 from an anoxic sulfide-oxidizing bioreactor

[J]. Anaerobe,2009154):108-115. doi:10.1016/j.anaerobe.2009.03.009

[本文引用: 1]

陈川.

自养菌-异养菌协同反硝化脱硫工艺的运行与调控策略

[D]. 哈尔滨哈尔滨工业大学2011.

[本文引用: 1]

CHEN Chuan.

The performance and control strategy for autotrophic and heterotrophic denitrifying sulfide removal

[D]. HarbinHarbin Institute of Technology2011.

[本文引用: 1]

陈子爱.

同步脱氮除硫菌株的筛选、分离和鉴定

[J]. 中国沼气,2008266):3-7. doi:10.3969/j.issn.1000-1166.2008.06.001

[本文引用: 1]

CHEN Ziai.

Screening,separation and identification of strains coupling nitrogen removal with sulfide removal

[J]. China Biogas,2008266):3-7. doi:10.3969/j.issn.1000-1166.2008.06.001

[本文引用: 1]

ROBERTSON L AKUENEN J G.

Thiosphaera pantotropha gen. nov. sp. nov. ,a facultatively anaerobic,facultatively autotrophic sulphur bacterium

[J]. Microbiology,19831299):2847-2855. doi:10.1099/00221287-129-9-2847

[本文引用: 1]

马晓丹.

脱硫脱氮细菌的分离筛选及其生物强化效能研究

[D]. 哈尔滨哈尔滨工业大学2015.

[本文引用: 1]

MA Xiaodan.

Isolation of efficent biodesulfurization and denitrification strains and the corresponding bioaugmentation on efficiencies

[D]. HarbinHarbin Institute of Technology2015.

[本文引用: 1]

MAHMOOD QHU BaolanCAI Jinget al.

Isolation of Ochrobactrum sp. QZ2 from sulfide and nitrite treatment system

[J]. Journal of Hazardous Materials,20091651/2/3):558-565. doi:10.1016/j.jhazmat.2008.10.021

[本文引用: 1]

陈子爱邓良伟贺莉.

硫氮比对废水脱氮与沼气脱硫耦联功能菌的影响

[J]. 环境科学,2011325):1394-1401.

[本文引用: 1]

CHEN ZiaiDENG LiangweiHE Li.

Effect of sulfide to nitrate ratios on the strains coupling nitrogen removal from wastewater and hydrogen sulfide removal from biogas

[J]. Environmental Science,2011325):1394-1401.

[本文引用: 1]

BELLER H RCHAIN P S GLETAIN T Eet al.

The genome sequence of the obligately chemolithoautotrophic,facultatively anaerobic bacterium thiobacillus denitrificans

[J]. Journal of Bacteriology,20061884):1473-1488. doi:10.1128/jb.188.4.1473-1488.2006

[本文引用: 2]

LIU ChunshuangLI WenfeiLI Xuechenet al.

Nitrite accumulation in continuous-flow partial autotrophic denitrification reactor using sulfide as electron donor

[J]. Bioresource Technology,20172431237-1240. doi:10.1016/j.biortech.2017.07.030

[本文引用: 1]

CHEN FangminLI XiangGU Chenweiet al.

Selectivity control of nitrite and nitrate with the reaction of S0 and achieved nitrite accumulation in the sulfur autotrophic denitrification process

[J]. Bioresource Technology,2018266211-219. doi:10.1016/j.biortech.2018.06.062

[本文引用: 1]

HUANG ShuoYU DeshuangCHEN Guanghuiet al.

Realization of nitrite accumulation in a sulfide-driven autotrophic denitrification process:Simultaneous nitrate and sulfur removal

[J]. Chemosphere,2021278130413. doi:10.1016/j.chemosphere.2021.130413

[本文引用: 1]

POLIZZI CGABRIEL DMUNZ G.

Successful sulphide-driven partial denitrification:Efficiency,stability and resilience in SRT-controlled conditions

[J]. Chemosphere,2022295133936. doi:10.1016/j.chemosphere.2022.133936

[本文引用: 1]

LIU ChunshuangLI YanzheGAI Jianinget al.

Cultivation of sulfide-driven partial denitrification granules for efficient nitrite generation from nitrate-sulfide-laden wastewater

[J]. Science of the Total Environment,2022804150143. doi:10.1016/j.scitotenv.2021.150143

[本文引用: 1]

LU HuijieCHANDRAN KSTENSEL D.

Microbial ecology of denitrification in biological wastewater treatment

[J]. Water Research,201464237-254. doi:10.1016/j.watres.2014.06.042

[本文引用: 2]

XU ZhongshuoDAI XiaohuCHAI Xiaoli.

Effect of different carbon sources on denitrification performance,microbial community structure and denitrification genes

[J]. Science of the Total Environment,2018634195-204. doi:10.1016/j.scitotenv.2018.03.348

[本文引用: 1]

DU RuiPENG YongzhenCAO Shenbinet al.

Mechanisms and microbial structure of partial denitrification with high nitrite accumulation

[J]. Applied Microbiology and Biotechnology,20161004):2011-2021. doi:10.1007/s00253-015-7052-9

[本文引用: 2]

QIAN WentingMA BinLI Xiyaoet al.

Long-term effect of pH on denitrification:High pH benefits achieving partial-denitrification

[J]. Bioresource Technology,2019278444-449. doi:10.1016/j.biortech.2019.01.105

[本文引用: 3]

LIU BinbinMAO YuejianBERGAUST Let al.

Strains in the genus Thauera exhibit remarkably different denitrification regulatory phenotypes

[J]. Environmental Microbiology,20131510):2816-2828.

[本文引用: 1]

LU YaofengDING ZhibinGAO Kexinet al.

The effect of hydraulic retention time on ammonia and nitrate bio-removal over nitrite process

[J]. Environmental Technology,20204110):1275-1283. doi:10.1080/09593330.2018.1530697

[本文引用: 1]

LI WeiLIN XiaoyuCHEN Junjieet al.

Enrichment of denitratating bacteria from a methylotrophic denitrifying culture

[J]. Applied Microbiology and Biotechnology,201610023):10203-10213. doi:10.1007/s00253-016-7859-z

[本文引用: 4]

YOSHIE SOGAWA TMAKINO Het al.

Characteristics of bacteria showing high denitrification activity in saline wastewater

[J]. Letters in Applied Microbiology,2006423):277-283. doi:10.1111/j.1472-765x.2005.01839.x

[本文引用: 1]

张星星王超超王垚.

基于不同废污泥源的短程反硝化快速启动及稳定性

[J]. 环境科学,2020418):3715-3724.

[本文引用: 1]

ZHANG XingxingWANG ChaochaoWANG Yaoet al.

Rapid start-up and stability of partial denitrification based on different waste sludge sources

[J]. Environmental Science,2020418):3715-3724.

[本文引用: 1]

ZHANG MiaoGAO JingLIU Quanlonget al.

Nitrite accumulation and microbial behavior by seeding denitrifying phosphorus removal sludge for partial denitrification(PD):The effect of COD/NO3 - ratio

[J]. Bioresource Technology,2021323124524. doi:10.1016/j.biortech.2020.124524

[本文引用: 1]

SHI LiangliangDU RuiPENG Yongzhen.

Achieving partial denitrification using carbon sources in domestic wastewater with waste-activated sludge as inoculum

[J]. Bioresource Technology,201928318-27. doi:10.1016/j.biortech.2019.03.063

[本文引用: 2]

WILDERER P AJONES W LDAU U.

Competition in denitrification systems affecting reduction rate and accumulation of nitrite

[J]. Water Research,1987212):239-245. doi:10.1016/0043-1354(87)90056-x

[本文引用: 1]

DU RuiCAO ShenbinLI Baikunet al.

Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters

[J]. Water Research,201710846-56. doi:10.1016/j.watres.2016.10.051

[本文引用: 1]

LIU XuefanWANG BoPENG Yongzhenet al.

A novel strategy for enhancing the partial denitrification to treat domestic wastewater by feeding sludge fermentation liquid

[J]. Bioresource Technology,2021330124936. doi:10.1016/j.biortech.2021.124936

[本文引用: 1]

ZHANG TengCAO JiashunZHANG Yileiet al.

Achieving efficient nitrite accumulation in glycerol-driven partial denitrification system:Insights of influencing factors,shift of microbial community and metabolic function

[J]. Bioresource Technology,2020315123844. doi:10.1016/j.biortech.2020.123844

[本文引用: 1]

JI JiantaoPENG YongzhenWANG Boet al.

Effects of salinity build-up on the performance and microbial community of partial-denitrification granular sludge with high nitrite accumulation

[J]. Chemosphere,201820953-60. doi:10.1016/j.chemosphere.2018.05.193

[本文引用: 1]

钱亮贺北平刘瑞东.

西安市第四污水处理厂一期工程升级改造经验总结

[J]. 中国给水排水,2016322):74-78.

[本文引用: 2]

QIAN LiangHE BeipingLIU Ruidonget al.

Summary of experience in upgrading and reconstruction of first stage project of Xi’an fourth WWTP

[J]. China Water & Wastewater,2016322):74-78.

[本文引用: 2]

LI JianweiPENG YongzhenZHANG Lianget al.

Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor

[J]. Water Research,2019160178-187. doi:10.1016/j.watres.2019.05.070

[本文引用: 1]

DU RuiCAO ShenbinZHANG Hanyuet al.

Flexible nitrite supply alternative for mainstream anammox:Advances in enhancing process stability

[J]. Environmental Science & Technology,20205410):6353-6364. doi:10.1021/acs.est.9b06265

[本文引用: 1]

LE TPENG BoSU Chunyanget al.

Nitrate residual as a key parameter to efficiently control partial denitrification coupling with anammox

[J]. Water Environment Research:A Research Publication of the Water Environment Federation,20199111):1455-1465. doi:10.1002/wer.1140

[本文引用: 2]

LE TPENG BoSU Chunyanget al.

Impact of carbon source and COD/N on the concurrent operation of partial denitrification and anammox

[J]. Water Environment Research:a Research Publication of the Water Environment Federation,2019913):185-197. doi:10.1002/wer.1016

[本文引用: 1]

闫家望.

高氨氮废水处理技术及研究现状

[J]. 中国资源综合利用,2018363):99-101. doi:10.3969/j.issn.1008-9500.2018.03.035

[本文引用: 1]

YAN Jiawang.

Treatment technology and research status of high concentrated ammonia nitrogen wastewater

[J]. China Resources Comprehensive Utilization,2018363):99-101. doi:10.3969/j.issn.1008-9500.2018.03.035

[本文引用: 1]

杜睿彭永臻.

城市污水生物脱氮技术变革:厌氧氨氧化的研究与实践新进展

[J]. 中国科学:技术科学,2022523):389-402. doi:10.1360/sst-2020-0407

[本文引用: 1]

DU RuiPENG Yongzhen.

Technical revolution of biological nitrogen removal from municipal wastewater:Recent advances in Anammox research and application

[J]. Scientia Sinica:Technologica,2022523):389-402. doi:10.1360/sst-2020-0407

[本文引用: 1]

WANG ZhiyaoSHAN XiaoyuLI Weiet al.

Robustness of ANAMMOX granule sludge bed reactor:Effect and mechanism of organic matter interference

[J]. Ecological Engineering,201691131-138. doi:10.1016/j.ecoleng.2016.02.015

[本文引用: 1]

ZHANG ZhengzheCHENG YafeiZHU Bingqianet al.

Achieving completely anaerobic ammonium removal over nitrite(CAARON) in one single UASB reactor:Synchronous and asynchronous feeding regimes of organic carbon make a difference

[J]. Science of the Total Environment,2019653342-350. doi:10.1016/j.scitotenv.2018.10.401

[本文引用: 2]

王刚高会杰郭宏山.

短程反硝化耦合厌氧氨氧化工艺处理煤气化废水

[J]. 环境科学与技术,2019429):147-151.

[本文引用: 1]

WANG GangGAO HuijieGUO Hongshan.

Treatment of coal gasification wastewater by partial denitrification coupled with ANAMMOX process

[J]. Environmental Science & Technology,2019429):147-151.

[本文引用: 1]

CAO ShenbinDU RuiNIU Menget al.

Integrated anaerobic ammonium oxidization with partial denitrification process for advanced nitrogen removal from high-strength wastewater

[J]. Bioresource Technology,201622137-46. doi:10.1016/j.biortech.2016.08.082

[本文引用: 1]

FERNÁNDEZ-NAVA YMARAÑÓN ESOONS Jet al.

Denitrification of wastewater containing high nitrate and calcium concentrations

[J]. Bioresource Technology,20089917):7976-7981. doi:10.1016/j.biortech.2008.03.048

[本文引用: 1]

DU RuiCAO ShenbinPENG Yongzhenet al.

Combined partial denitrification(PD)-anammox:A method for high nitrate wastewater treatment

[J]. Environment International,2019126707-716. doi:10.1016/j.envint.2019.03.007

[本文引用: 1]

王超超吴翼伶陈嘉巧.

新型厌氧水解酸化-短程反硝化厌氧氨氧化工艺同步处理生活污水和含硝酸盐模拟废水

[J]. 化工进展,2022417):3890-3899.

[本文引用: 1]

WANG ChaochaoWU YilingCHEN Jiaqiaoet al.

A novel anaerobic hydrolysis acidification-partial denitrification anaerobic ammonia oxidation process for advanced nitrogen removal from simulated domestic and nitrate-containing wastewater

[J]. Chemical Industry and Engineering Progress,2022417):3890-3899.

[本文引用: 1]

DU RuiCAO ShenbinLI Baikunet al.

Step-feeding organic carbon enhances high-strength nitrate and ammonia removal via DEAMOX process

[J]. Chemical Engineering Journal,2019360501-510. doi:10.1016/j.cej.2018.12.011

[本文引用: 1]

LI XiangYUAN YanHUANG Yonget al.

Simultaneous removal of ammonia and nitrate by coupled S0-driven autotrophic denitrification and Anammox process in fluorine-containing semiconductor wastewater

[J]. Science of the Total Environment,2019661235-242. doi:10.1016/j.scitotenv.2019.01.164

[本文引用: 1]

/