石英棒负载TiO2膜光催化降解苯酚影响因素研究
网络出版日期: 2010-10-01
Study on the influence factors on phenol photocatalytic degradation using TiO_2 film catalyst supported on quartz rod
Online published: 2010-10-01
采用浸涂粉末沉积-焙烧法在石英光导棒的表面制备了TiO2膜,并利用该固定膜催化剂光催化降解苯酚溶液,考察了各种反应条件对苯酚降解效果的影响。结果表明,曝气状态下的处理效果要显著优于非曝气状态。在1.05 ̄8.28L/h范围内改变循环流量,苯酚的降解率随流量的增大而升高,当循环流量增大到一定程度(5.04L/h)时,外扩散不再成为反应的限制因素。以乙醇作为自由基清除剂,加入0、1mL和10mL体积分数为80%乙醇的苯酚降解率分别为94.10%、73.03%和65.83%。H2O2的投加量在0.05 ̄5mL/L之间改变,苯酚降解率随H2O2投加量的增加而提高,但是在投加量超过0.1mL/L后,降解率趋于稳定。
仇雁翎, 李田, 马俊华, 赵建夫 . 石英棒负载TiO2膜光催化降解苯酚影响因素研究[J]. 工业水处理, 2005 , 25(4) : 53 -55,58 . DOI: 10.11894/1005-829x.2005.25(4).53
Titanium dioxide photocatalytic film supported on the surface of quartz rod is made by the method of dip coating-calcination. This catalyst is used to treat phenol solution and different reaction conditions which influence the phen ol removal rate have been investigate. Results show that the phenol rate with ae ration is remarkably better than that without aeration. When the circulation flo w rate is ranged from 1.05 to 8.28 L/h, it is found that the higher the flow rat e, the higher the phenol removal rate. When the circulation flow rate reaches 5. 04 L/h, outer diffusion no longer become the reaction restriction factor. 80% of ethanol is used to eliminate radicals. When the dosage of ethanol solution are 0,1 mL and 10 mL, the phenol removal rate are 94.10%,73.03% and 65.83% respectiv ely. When the dosage of H2O2 ranged is from 0.05 to 5 mL/L, the phenol removal is improved because of higher amount of H2O2. When the H2O2 dosage reaches 0.1 mL, the phenol removal rate gets stable.
Key words: photocatalysis; quartz rod; titanium dioxide film; phenol
[1] Primet M,Pichat P,Mathieu M. Infrared study of the surface of titanium dioxides[J].Journal of Physical Chemistry,1971,(09):1216-1220.
[2] Fujishima A,Honda K. Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,(5358):37-38.
[3] Bard S J. Photoelectrochemistry and heterogeneous photocatalysis at semiconductor[J].Journal of Photochemistry and Photobiology A:Chemistry,1979,(01):59-68.
[4] Dijkstra M F J,Buwalda H,Jong A W F D. Experimental comparison of three reactor designs for photocatalytic water purification[J].Chemical Engineering Science,2001,(02):547-555.
[5] Dionysios D. Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scaleTiO2 rotating disk reactor[J].Applied Catalysis,2000,(24):139-155.
[6] Carraway E R,Hoffman A J,Hoffman M R. Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids[J].Environmental Science and Technology,1994,(05):786-793.doi:10.1021/es00054a007.
[7] Balcioglu I. Photocatalytic degradation of organic contaminants in semiconductor suspensions added H2O2[J].Journal of Environmental Science and Health Part A:Environmental Science and Engineering and Toxic and Hazardous Substance Control,1996,(01):123-138.
[8] Bullerfield I M. Water disinfection using an mobilized titanium-dioxide film in a photochemical reactor with electric-field enhancement[J].Water Research,1997,(03):675-677.
[9] Matthews R W. Photooxidative degradation of colored organics in water using supported catalysts TiO2 on sand[J].Water Research,1991,(10):1169-1176.
[10] 陈士夫,程雪丽. 空心玻璃微球附载TiO2清除水面漂浮的油层[J].中国环境科学,1999,(01):47-50.doi:10.3321/j.issn:1000-6923.1999.01.012.
[11] 戴智铭,陈爱平,陶咏. 制备条件对新颖负载型TiO2光催化剂活性的影响[J].化学世界,2002,(03):115-119.doi:10.3969/j.issn.0367-6358.2002.03.001.
/
〈 |
|
〉 |