催化湿式氧化法在苯酚废水预处理中的应用研究
收稿日期: 2001-09-14
网络出版日期: 2010-10-01
Study of catalytic wet air oxidation to be used in the pretreatment of phenol wastewater
Received date: 2001-09-14
Online published: 2010-10-01
与湿式空气氧化相比, 催化湿式氧化可以在温和条件下达到较好的废水处理效果。考察了CuO/η-Al2O3和活性炭两种催化剂处理苯酚废水的催化效果, 结果表明在温和条件下可以达到较高COD去除率 :在 14 0℃下, 催化湿式氧化 1h, CODCr去除率分别达到 93.2 %和 88.4 %。在 16 0℃下, 催化湿式氧化 1h, CODCr去除率分别达到 93.4 %和 90.1%。在 14 0℃下, 苯酚废水经过湿式空气氧化 1h后, BOD5/CODCr仅仅达到 0.08, 不适合后续生物法处理 ;使用活性炭催化剂, BOD5/CODCr达到了0.18, 而使用CuO/η-Al2O3催化剂,BOD5/CODCr达到了0.30, 因此, 用CuO/η-Al2O3催化剂处理苯酚废水可以在较低温度下达到预处理效果。
陈拥军, 窦和瑞, 杨民, 高希彦, 吴鸣, 崔桂林, 孙承林 . 催化湿式氧化法在苯酚废水预处理中的应用研究[J]. 工业水处理, 2002 , 22(6) : 19 -22 . DOI: 10.11894/1005-829x.2002.22(6).19
Compared with wet air oxidation, catalytic wet air oxidation has better effect on treating wastewater under mild conditions. Two kinds of catalyst are prepared:CuO/η-Al2O3and AC catalysts. Firstly, the effect of these catalysts on catalytic wet air oxidation to be used in phenol wastewater treatment under different conditions is evaluated. The results show that raising pH value in the solution has disadvantageous effect on the removal of CODCr from phenol wastewater. As to CuO/η-Al2O3 and AC catalysts, the CODCr removal rate is higher under mild conditions:after 1 h reaction time, at 140 ℃, the CODCr removal rate reaches 93. 2% and 88. 4% respectively;and at 160 ℃, the CODCr removal rate reaches 93. 4% and 90. 1% respectively. But at 140 ℃, after the phenol wastewater is treated by wet air oxidation for 1 h, the BOD5/CODCr reaches only 0. 08. The effect of different biodegradability is resulted from using different catalysts. BOD5/CODCr reaches 0. 30 by using catalyst CuO/η-Al2O3, while BOD5/CODCr reaches 0.18 by using catalyst activated carbon as catalyst. Therefore using CuO/η-Al2O3 as catalyst to treat phenol wastewater can get the pretreatment effect under lower temperature.
[1] 中国化工防治污染技术协会.化工废水处理技术[M].北京:化学工业出版社,2000:282.
[2] Vedprakash S Mishra,Vijaykumar V Mahajani,Jyeshtharaj B Joshi. Wet Air Oxidation[J]. Ind.Eng.Chem.Res.,1995,34:2-48.
[3] Yurii I Matatov-Meytal, Moshe Sheintuch. Catalytic Abatement of Water Pollutants[J]. Ind.Eng.Chem.Res.,1998,37:309-326.
[4] SeiichiroImamura. Catalytic and Noncatalytic Wet Oxidation[J].Ind.Eng.Chem.Res.,1999,38:1 743-1 753.
[5] Dionissios Mantzavinos,Anderew G Livingston, Rolf Hellenbrand,et al. Wet Air Oxidation of Polyethylene Glycols; Mechanisms,Intermediates and Implications for Integrated Chemical-biological Wastewater Treatment[J]. Chemical Engineering Science,1996,51(18):4 219-4 235.
[6] Emilia Otal,Dionissios Mantzavinos,Maris V Delgado, et al. Integrated Wet Air Oxidation and Biological Treatment of Polyethylene Glycol-containing Wastewaters[J].I.Chem.Technol.Biotechnol.,1997,70:147-156.
[7] 胡克源,李忠,王淑梅,等.湿式氧化生物氧化两步法处理有机磷农药生产废水[J].环境化学,1990,9(3):13-19.
[8] 王冶中.有机磷农药废水湿式氧化生化氧化预处理研究[J].环境化学,1993,12(5):408-414.
[9] Wilhelmi A R, Ely R B. A Two-step Process for Toxic Wastewaters[J]. Chem.Engrg., 1976,16:105-109.
[10] Hao O J,Phull K K, Chen J M. Wet Oxidation of TNT Red Water and Bacterial Toxicity of Treated Waste[J]. Water Res.,1994,28(2):283-290.
[11] Lin S H, Chuang T S. Wet Air Oxidation and Activated Sludge Treatment of Phenolic Wastewater
J].Environ. Sci. Health,1994,A29(3):547-564.
[12] 唐受印,等.废水处理工程[M].北京:化学工业出版社,1998:221.
/
〈 | 〉 |