工业水处理, 2022, 42(1): 21-28 doi: 10.19965/j.cnki.iwt.2020-1002

专论与综述

高盐工业废水资源化利用领域电渗析技术的研究进展

朱铭,1,2, 池勇志,1,2, 陈富强1,2, 王波1,2, 田素凤1,2, 刘沐之3

1.天津城建大学环境与市政工程学院, 天津市水质科学与技术重点实验室, 天津 300384

2.天津城建大学基础设施防护和环境绿色生物技术国际联合研究中心, 天津 300384

3.天津天一爱拓科技有限公司, 天津 300384

Research progress of electrodialysis technology in the field of resourceful utilization of high salt industrial wastewater

ZHU Ming,1,2, CHI Yongzhi,1,2, CHEN Fuqiang1,2, WANG Bo1,2, TIAN Sufeng1,2, LIU Muzhi3

1.Tianjin Key Laboratory of Water Quality Science and Technology,School of Environmental and Municipal Engineering,Tianjin Chengjian University,Tianjin 300384,China

2.Joint Research Centre for Protective Infrastructure Technology and Enviromental Green Bioprocess,Tianjin Chengjian University,Tianjin 300384,China

3.Tianjin Tisun Itasca Technology Co. ,Ltd. ,Tianjin 300384,China

收稿日期: 2021-11-05  

基金资助: 国家水专项.  2017ZX07107-002-03
天津市企业科技特派员项目.  19JCTPJC47000

Received: 2021-11-05  

作者简介 About authors

朱铭(1997—),硕士E-mail:942695663@qq.com , E-mail:942695663@qq.com

池勇志,教授E-mail:23733403@126.com , E-mail:23733403@126.com

摘要

随着全球工业化进程的不断加快,高盐工业废水的排放量越来越大,采用电渗析技术将高盐工业废水进行资源化利用已成为一种发展趋势。从工艺优化及耦合工艺开发两个方面对电渗析技术在高盐工业废水资源化利用领域的研究状况进行综述,并对未来电渗析技术研究重点进行展望。

关键词: 高盐工业废水 ; 电渗析 ; 资源化利用 ; 耦合工艺

Abstract

With the accelerating process of global industrialization,the discharge of high salt industrial wastewater is increasing. It has become a development trend to recycle the high salt industrial wastewater by electrodialysis process. The research status of electrodialysis technology in the field of resourceful utilization of high salt industrial wastewater were reviewed from two aspects of process optimization and coupling process development,and the research focus of electrodialysis technology in the future were prospected.

Keywords: high salt industrial wastewater ; electrodialysis ; resourceful utilization ; coupling process

PDF (924KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

朱铭, 池勇志, 陈富强, 王波, 田素凤, 刘沐之. 高盐工业废水资源化利用领域电渗析技术的研究进展. 工业水处理[J], 2022, 42(1): 21-28 doi:10.19965/j.cnki.iwt.2020-1002

ZHU Ming. Research progress of electrodialysis technology in the field of resourceful utilization of high salt industrial wastewater. Industrial Water Treatment[J], 2022, 42(1): 21-28 doi:10.19965/j.cnki.iwt.2020-1002

据国家统计局数据显示,2016—2018年我国平均工业用水量维持在3 005.5亿m3左右,占全国用水量的1/5以上,且用水效率偏低。2017年我国工业废水排放量为690亿t,高盐工业废水占5%,每年增长率为2%。同时我国工业用水重复率较低,仅为发达国家的1/21。2019年《国家节水行动方案》提出“规模以上工业用水重复利用率达到91%以上”。因此对高盐工业废水进行资源化利用已成为一种日益增长的趋势,废水资源化利用不仅可以最大限度地减少排放废水的排放量和环境风险,而且还可以减轻淡水提取对生态系统造成的压力2。通过再利用,废水不再被视为一种“纯废物”,不再对环境造成巨大危害,而是一种额外的资源,以实现水的可持续性利用3。电渗析(Electrodialysis,ED)是一种有效的资源化技术,在处理高盐有机废水领域具有操作简单、处理范围广泛、无二次污染等特点,但其存在淡水回收率低、能耗高、回收资源能力较差等缺陷,因此,需对电渗析技术进行不断地完善及改进。目前,改进途径主要为通过开发新型离子交换膜提升其选择性从而回收稀有金属离子,通过改善膜堆结构提高其淡水回收率与资源回收率,以及将ED与其他工艺进行耦合,在保持高资源回收率的同时,节省能耗,降低成本。笔者从工艺优化及耦合工艺开发两个方面对电渗析处理高盐废水的研究现状进行综述,并对未来电渗析技术研究重点进行展望,以期为高盐工业废水资源化提供参考。

1 高盐工业废水性质及其主流处理工艺

高盐工业废水所含盐类物质多由Cl-、SO42-、Na+、Ca2+等离子构成,且含有一定量有机物和至少1%的总含盐量4。这种废水污染物成分复杂,难降解有机物和有毒污染物浓度相对较高,不仅会造成环境污染,腐蚀处理设备,还会引起土壤的盐碱化5,且处理难度较大、处理成本较高。其主要来源于发电、化工、制药、印染、造纸、食品加工和海水淡化等生产工业6-7

目前处理高盐工业废水的主流方法有热浓缩技术与膜浓缩技术,其中热浓缩技术包括多级闪蒸(Multistage Flashing Systom,MSF)、多效蒸发(Multiple Effect Distillation,MED)和机械式蒸汽再压缩(Mechanical Vapor Recompression,MVR)技术等,而膜浓缩技术包括纳滤(Nanofiltration,NF)、反渗透(Reverse Osmosis,RO)、ED、膜蒸馏(Membrane Distillation,MD)以及正渗透(Forward Osmosis,FO)等8-13。与其他技术相比,ED具有操作方便、脱盐成本较低、除盐过程中不产生二次污染等优点,从而成为高盐工业废水资源化研究领域的热点之一。

2 电渗析处理高盐工业废水的研究现状

ED是一种电驱动的过程,在膜两侧电场的推动下,溶液中阳离子向阴极迁移被阴离子交换膜(Anion Exchange Membrane,AEM)所阻挡,溶液中阴离子向阳极迁移被阳离子交换膜(Cation Exchange Membrane,CEM)所阻挡,最终结果是溶液中的离子耗尽,其所在隔室称之为淡室,离子被集中到交替的隔室中,这个隔室称之为浓室,从而对料液进行脱盐、浓缩和提纯等过程14。传统的除盐工艺在一定程度上都具有局限性,如离子交换法在除盐过程中容易产生二次污染,MD操作费用高,而且能耗高,RO需要较高的操作压力,成本较高。因此,寻找环保且低能耗的除盐工艺成为了当下处理高盐工业废水的关键环节,而ED技术克服了以上传统方法的局限性,在高盐工业废水资源化中日益得到重视。目前,传统的单一ED技术已无法满足对废水和盐同时回收利用的需求,人们通过对ED工艺进行优化,或与其他工艺进行耦合,以实现对高盐工业废水的资源化利用。

2.1 电渗析工艺优化

2.1.1 新型离子交换膜的研发

随着ED技术的快速发展,常规的离子交换膜已经不能够满足工业废水处理的要求,新型离子交换膜的开发与现有离子交换膜的改性是大势所趋。新型离子交换膜开发的主要趋势包括低电阻、高选择性膜的开发,表面改性技术的进步,异形膜的开发,实施无间隔堆叠,降低制造成本15-17。M. IRFAN等18在膜研制过程中,通过调节AEM上带正电的铵基和聚合物主链的烷基间隔基的疏水性,获得了较高的阴离子选择性和较低的膜溶胀度。Xiaoyao WANG等19采用水化能效应和孔径筛分效应制备具有单价阴离子选择性的AEM,有效提高了膜的渗透选择性。Junbin LIAO等20以带正电的咪唑功能化聚芳醚砜(PAES)和带负电的磺化聚砜(SPSF)为基础,制备了单价阴离子选择性离子交换膜;通过调整SPSF的质量分数,优化后的AEM在电流密度为2.5 mA/cm2时溶胀率低至10.9%,而Cl-/SO42-阴离子选择性高达21.80。

同名离子指与膜的固定活性基所带电荷相同的离子,根据唐南(Donnan)平衡理论,离子交换膜的选择透过性不可能达到100%。再加上膜外溶液浓度过高的影响,在CEM中会进入个别阴离子,同样AEM中也会进入个别阳离子从而降低除盐效率21。通过增加离子交换膜交换容量和降低离子交换膜含水率,从而减弱同名离子迁移、渗析和渗透等非理想状态,前者提高Donnan效应静电斥力作用,后者提高膜疏水性22。Hanqing FAN等23通过改变离子交换容量来调节节能参数,在保持渗透选择性的同时降低膜的电阻,提高了整体电导率。Jiefeng PAN 等24对膜进行改性,将聚乙烯亚胺共价固定在阴离子交换膜表面,与未改性的离子交换膜相比,渗透选择性从0.79提高到4.27,SO42-泄漏率从39.6%降低到19.4%,并且具有更好的化学稳定性。

膜透选择性是获得良好性能的关键,同时外加电流密度、浓度的变化以及二价离子与一价离子的浓度比对其选择性存在着影响25。李福勤等26采用单价选择性离子交换膜ED对污酸中的二价离子进行分离,经过多次试验,污酸质量分数为5%,Zn2+、Cd2+质量浓度分别为20、5 mg/L,电流密度为25 mA/cm2,进水流量为15 L/h,运行时间为168 min的最佳条件下,淡水室中H+的透过率达到85%,Zn2+和Cd2+泄漏率均为12.86%。

2.1.2 多功能电渗析膜堆构建

在传统ED系统中,通过交替排列CEM与AEM形成极室、稀释室与浓缩室。然而传统膜堆存在能耗高、电流效率低、脱盐率低、电阻高等诸多缺陷。通过对膜堆的创新,不仅可以满足对不同废水的处理要求,而且可以降低能耗,提高工艺效率,将废料资源化。

Fuqiang CHEN等27采用自行设计的阴离子交换树脂耦合三室电渗析(RTED)去除装置(图1)对N-甲基二乙醇胺(MDEA)废水进行处理,废水中热稳定盐(Heat Stable Salts,HSS)的去除率约为93.84%,比传统三室ED高7.88%,比传统二室ED高28.57%,且RTED的MDEA损失率很低。由于在稀释室填充阴离子交换树脂,RTED造成的膜污染也很少。

图1

图1   RTED过程原理

Fig. 1   Schematic diagram of RTED process


Qingbai CHEN等28通过改变膜堆结构(树脂填充电极电池和不对称膜对设计)并且优化流入模式(电解质平行流动和稀释/浓缩逆流),降低了ED脱盐过程的能耗。该新型ED与传统ED对高盐工业废水进行脱盐的性能对比见表1

表1   新型ED与传统ED处理高盐工业废水性能对比

Table 1  Performance comparison of New ED and traditional ED in treating high salt industrial wastewater

项目新型ED传统ED
能耗/(kW·h·m-31.52.0
膜堆电阻/Ω40~10050~120
脱盐效率/%5642
Na+迁移率/(mmol·m-2·s-10.80.3
淡水回收率/%5050
操作性简易复杂

新窗口打开| 下载CSV


Yuyan CAI等29提出了一种新型镁阳极ED,阳极氧化产生的镁离子与高盐工业废水中的磷酸盐和氨氮反应生成鸟粪石沉淀,以实现资源化利用。新型镁阳极ED与镁阳极电解法从高盐工业废水中资源化回收磷酸盐效能对比见表2

表2   新型镁阳极ED与镁阳极电解法资源化回收磷酸盐的效能对比

Table 2  Comparison of efficiency of recycling phosphate between new magnesium anode ED and magnesium anode electrolysis

项目新型镁阳极ED镁阳极电解法
磷酸盐去除率/%9093
能耗/(kW·h·m-311.5
运行成本/(美元·kg-1)(以P计)31.2781.57
投资费用投资小投资大
运行效果运行稳定

膜易受污染,

影响运行效果

新窗口打开| 下载CSV


2.1.3 双极膜在电渗析中的应用

双极膜电渗析(Bipolar Membrane Electrodialysis,BMED)中使用的双极膜是一种新型离子交换膜,它通常由阴离子交换层、阳离子交换层和中间层复合而成30。BMED技术可在不引入其他组分的情况下同时实现高盐工业废水脱盐与酸碱制备,提高高盐工业废水资源化利用率31-33。同时,BMED的处理产物可部分回用于高盐工业废水处理系统,在产物利用价值等方面更具优势34。K. GHYSEL⁃BRECHT等35通过BMED转化NaCl生成HCl和NaOH,并将NaOH用作CO2的捕捉剂;A. T. K. TRAN等36通过BMED转化Na2SO4制得H2SO4和NaOH用于工业生产中;S. BUNANI等37使用均相离子交换膜通过BMED法从水溶液中同时分离和回收B和Li,在外加电压15 V和初始样品体积0.5 L的最佳条件下,Li的分离回收率分别为99.6%和88.3%,B的分离率和回收率分别为72.3%和70.8%,这表明,在Li去除与回收方面BMED大有前景。BMED与其他方法在Li去除方面的效果对比见表3

表3   BMED与其他方法去除Li的对比

Table 3  Comparison of Li removal by BMED and other methods

方法操作条件进料溶液性质Li去除率/%
NF38298 K,3.5 MPa

MgCl2·6H2O(580 mg/L);

LiCl(1 250 mg/L)

99
CDI392 V,25 ℃15.7 mg/L(以Li计)73
BMED4026 V

LiMn2O4(6 g);

LiCl(500 mg/L)

70
BMED41

10 mmol/L HCl,

10 mmol/L NaOH,

30 V,AHA BP-1E膜

340 mg/L(以Li计)97.8
BMED42

3 mmol/L HCl,

3 mmol/L NaOH,

25 V,50 L/h溶液流速

(256±33.11) mg/L(以Li计)99

新窗口打开| 下载CSV


表3可知,NF对Mg2+有很好的截留作用,电容去离子(Capacitive Deionization,CDI)与BMED在不调整各种操作参数时对Li的去除效果一般,BMED通过调整溶液pH、施加电压、膜的性质,可将Li的去除率提升至97.8%,在此基础上,改变溶液流速,可将Li的去除率提升至99%。

2.2 电渗析与其他工艺耦合处理高盐工业废水

2.2.1 电渗析与纳滤耦合处理高盐工业废水

对于同时含有一、二价离子的高盐工业废水,如何实现资源化脱盐是目前研究的热点之一。NF是一种压力驱动的膜分离过程,NF膜通过尺寸排斥和Donnan效应的机制保留多价离子,这使得NF成为从复杂进料液中选择性分离二价离子的有效工具。因此,NF与ED耦合可有效避免离子交换膜结垢并获得较高的水回收率。Wenyuan YE等43将膜作为ED中的AEM用于染料与盐的分离,通过基于松散NF的ED工艺使印染废水的染料回收率和脱盐效率分别达到99.4%和98.9%。该工艺可实现对印染废水的高效资源化处理,同时也为类似高盐工业废水的可持续处理开辟了新途径。Yufei ZHANG等44提出NF-ED集成系统,利用NF将一二价离子分离,之后NF渗透液和保留液都被送到ED进行复分解,通过ED复分解,制备了高溶解度的盐(CaCl2和Na2SO4),进而实现资源化利用,其工艺流程见图2。相比于RO处理印染废水,NF-ED具有高淡水回收率、高资源回收率、低能耗和低污染的特点。

图2

图2   NF-ED工艺流程

Fig. 2   NF-ED process flow


2.2.2 电渗析与反渗透耦合处理高盐工业废水

RO是以压力为推动力,从溶液中分离出溶剂的膜分离过程。在电渗析与反渗透耦合处理(ED-RO)过程中,原水与经RO单元处理后的浓水中的一部分作为ED单元淡室进水,部分脱盐后的淡水进入反渗透单元进行脱盐处理,得到产品水,RO单元处理后的浓水中的另一部分作为 ED 单元浓水进水,最终得到系统浓水。Yang ZHANG等45在污水处理厂采用ED系统处理RO浓缩液,使得水回收率达到95%。在ED过程中,离子迁移会夹带一定量的水进入ED浓缩室,可通过控制浓室循环水的外排量,最终实现对原水盐分的高倍率浓缩46。Y. OREN等47结合ED和RO的混合工艺可有效回收97%~98%的微咸水。ED-RO工艺高浓缩极限的特点可大幅度降低后续蒸发器的处理规模,进而降低趋零排放总体工艺的投资成本和运行成本。

2.2.3 电渗析与反向电渗析耦合处理高盐工业废水

反向电渗析(Reverse Electrodialysis,RED)技术是一种潜在的从高盐工业废水中提取盐度梯度电能的技术,通过混合两股不同盐度的水流来提取电能,使其成为公认的无污染和可持续的能源48。Fabao LUO等49将RED作为ED的发动机进行脱盐,在RED最佳运行条件即NaCl在浓缩室和稀释室的质量浓度分别为30 g/L和1 g/L,流速为67.5 mL/min时,既能保持系统脱盐效率,又可以产生最大的经济效益。Qun WANG等50提出一种RED-ED系统,工艺流程见图3,RED作为一种预脱盐过程的自然驱动力,以减少含酚废水盐度差异,同时为后阶段ED高效脱盐提供电能,从而减少总体能耗。与独立ED系统相比,RED-ED系统的电能消耗更少,并可回收更多的盐度梯度电能。在高盐工业废水处理过程中,RED-ED系统可以同时实现盐能利用、高价值资源回收和低耗脱盐三重优势。

图3

图3   RED-ED工艺流程

Fig. 3   RED-ED process flow


2.2.4 电渗析与扩散渗析耦合处理高盐工业废水

扩散渗析(Diffusion Dialysis,DD)以浓度差为推动力,使溶质从浓度高的一侧透过膜到浓度低的一侧,当膜两侧浓度达到平衡时,渗析过程即停止,具有低能耗、操作简便、对环境无污染等特点51。直接采用常规ED处理大量高盐工业废水,ED中的离子交换膜会受到废水中高价离子、蛋白质、糖等污染物的污染。采用DD与ED耦合的方法,可减少总体能耗,减少膜污染,提高膜性能。魏允等52先采用DD对赖氨酸(Lys)离子交换液进行净化,再通过ED浓缩回收其中的(NH42SO4。经DD后再进行ED浓缩,可改善ED性能,SO42-膜通量、电流效率均分别比直接ED提高了55.7%和18.3%,能耗分别降低了26.1%和42.3%。李鹏飞等53采用DD-BMED对丝素蛋白溶液进行脱盐,充分发挥DD低能耗和ED高效脱盐等优势,在最佳操作参数条件下,脱盐率可达99.93%,丝素蛋白回收率为89.30%,能耗仅为0.03 kW·h/L。

2.2.5 电渗析与萃取耦合处理高盐工业废水

与传统溶剂萃取技术相比,将萃取与电渗析相耦合,不仅能够降低溶剂萃取剂的损失和减少膜污染状况,并且能够大幅度提升对目标资源的回收率,从而节省总体成本。B. FLORIAN等54采用多阶段逆流反应萃取法,以二(2-乙基己基)磷酸酯+异十二烷为溶剂,反应萃取发酵γ-氨基丁酸(GABA)溶液,继而用BMED将GABA盐进行分离,实现GABA回收利用。Zhongwei ZHAO等55设计出一种结合液膜萃取(Liquid Membrane Permeation,LMP)和ED特点的夹层液膜电渗析系统,其原理见图4,夹层液膜由2个CEM和1个负载Li+的有机液膜组成,其中有机液膜优选为磷酸三丁酯(TBP)+ClO4-体系,这种夹层液膜电渗析法实现了从高Mg、Li质量比盐湖卤水中选择性回收Li。

图4

图4   夹层液膜电渗析系统原理

Fig. 4   Schematic diagram of sandwich liquid membrane electrodialysis system


2.2.6 电渗析与光伏耦合处理高盐工业废水

火力发电在产生电能的同时,对环境造成严重危害。在这种情况下,以光伏(Photovoltaic,PV)为发电系统实现更稳定的能源生产是非常有吸引力的,在发电能力方面具有更高的灵活性,系统布局更简单,更容易管理。C. NATASHA等56建立了一个PV-ED系统,当盐度为1 000 mg/L时,PV-ED能耗比ED降低75%,当盐度为3 000 mg/L时,其能耗比ED降低30%。与RO相比,PV-ED可节省50%的系统功耗。Haiyang XU等57提出了一种小型光伏直接驱动电渗析系统,探讨了3种典型天气对系统性能的影响,见表4,光伏组件提供的电压受天气影响,随着辐射度的减小而减小,由此导致电场驱动力减小,出水达到水质标准的时间变长。

表4   PV-ED在3种典型天气下系统性能的对比

Table 4  Comparison of PV-ED system performance under three typical weather conditions

项目晴天多云阴天
辐射度/(W·m-2900600350
电压/V302010
最小盐度/(mol·m-317.0319.1422.478
最大盐度/(mol·m-336.03238.42439.572
达到水质标准时间/min140160200

新窗口打开| 下载CSV


由于高盐工业废水中离子种类较多,ED与不同工艺耦合已成为研究热点之一。结合实际情况,ED与不同工艺进行耦合,在保证淡水回收率和资源回收率的同时,废水处理成本也有所下降。部分耦合工艺处理高盐工业废水的效能对比见表5

表5   不同耦合工艺处理高盐工业废水的效能

Table 5  Efficiency of different coupling processes in the treatment of high salt industrial wastewater

工艺类型ED操作条件效率能耗/(kW·h·m-3处理成本/(美元·m-3
NF-ED4439 A/m2,12 L/h溶液流速淡水回收率为80%7.580.61
RO-ED58pH=4,2 L/h溶液流速淡水回收率为97%7.0~8.00.68
RED-ED5030 V,2.8 L/h溶液流速淡水回收率为63%17.55.7
DD-ED5323.8 A/m2,20 L/h溶液流速脱盐率为99%0.03
LMP-ED553 V,1.25 L/h溶液流速Li回收率为60%19.16.38
PV-ED5730 V,1.1 L/h溶液流速淡水回收率为88%5.00.75

新窗口打开| 下载CSV


3 结论和展望

高盐工业废水的资源化处理已成为业界共识,ED技术在高盐工业废水资源化研究领域具有一定的优势,并已取得一定的进展,但目前大量研究仍处于实验阶段,为加快研究成果工业化应用,还需进一步提升技术性能,并降低处理成本。未来在ED技术研究方面,应着重围绕以下几个方面开展工作:

(1)ED技术的核心为离子交换膜,通过有机、无机材料的复合,集成有机膜和无机膜的优点,开发具有高渗透选择性、膜污染小、低电阻和良好化学和热稳定性的离子交换膜。

(2)通过优化ED耦合技术的系统结构和工艺参数,例如调节进水pH、溶液流速,实现高盐废水资源化和高脱盐率,进一步降低处理成本和投资成本。

(3)由于高盐工业废水中离子种类较多,废水脱盐后产生的工业盐纯度较低,如何提升这些工业盐的纯度进而提升其价值,将成为近年来研究的热点。

参考文献

周曼璐.

环境监测中地表水检测存在的问题与对策

[J]. 化工设计通讯,2020469): 190-191. doi:10.3969/j.issn.1003-6490.2020.09.101

[本文引用: 1]

ZHOU Manlu.

Problems and countermeasures of surface water detection in environmental monitoring

[J]. Chemical Engineering Design Communications,2020469): 190-191. doi:10.3969/j.issn.1003-6490.2020.09.101

[本文引用: 1]

CHEN QianLIU ChuanqiLIU Xinyinget al.

Magnetite enhances anaerobic digestion of high salinity organic wastewater

[J]. Environmental Research,2020189109884. doi:10.1016/j.envres.2020.109884

[本文引用: 1]

LIU EnyuLEE L YONG S Let al.

Treatment of industrial brine using capacitive deionization(CDI) towards zero liquid discharge⁃challenges and optimization

[J]. Water Research,2020183116059. doi:10.1016/j.watres.2020.116059

[本文引用: 1]

韦锋涛贾铭椿王晓伟.

高含盐废水浓缩处理技术研究进展

[J]. 现代化工,2019399):21-25.

[本文引用: 1]

WEI FengtaoJIA MingchunWANG Xiaoweiet al.

Research progress in concentration treatment technologies for high salinity wastewater

[J]. Modern Chemical Industry,2019399):21-25.

[本文引用: 1]

HU JintingFU WanyiNI Fanet al.

An integrated process for the advanced treatment of hypersaline petrochemical wastewater:A pilot study

[J]. Water Research,2020182116019. doi:10.1016/j.watres.2020.116019

[本文引用: 1]

SRIMUK PSU XiaoYOON Jet al.

Charge⁃transfer materials for electrochemical water desalination,ion separation and the recovery of elements

[J]. Nature Reviews Materials,202057):517-538. doi:10.1038/s41578-020-0193-1

[本文引用: 1]

IPPERSIEL DMONDOR MLAMARCHE Fet al.

Nitrogen potential recovery and concentration of ammonia from swine manure using electrodialysis coupled with air stripping

[J]. Journal of Environmental Management,201295165-169. doi:10.1016/j.jenvman.2011.05.026

[本文引用: 1]

陈富强池勇志田秉晖.

高盐工业废水零排放技术研究进展

[J]. 工业水处理, 2018388):1-5. doi:10.11894/1005-829x.2018.38(8).001

[本文引用: 1]

CHEN FuqiangCHI YongzhiTIAN Binghuiet al.

Research progress in the zero discharge technology for high⁃salt industrial wastewater

[J]. Industrial Water Treatment, 2018388):1-5. doi:10.11894/1005-829x.2018.38(8).001

[本文引用: 1]

SON H SSHAHZAD M WGHAFOUR Net al.

Pilot studies on synergetic impacts of energy utilization in hybrid desalination system:Multi⁃effect distillation and adsorption cycle(MED-AD)

[J]. Desalination,2020477114266. doi:10.1016/j.desal.2019.114266

SI ZetianHAN DongGU Jiminget al.

Exergy analysis of a vacuum membrane distillation system integrated with mechanical vapor recompression for sulfuric acid waste treatment

[J]. Applied Thermal Engineering,2020178115516. doi:10.1016/j.applthermaleng.2020.115516

LANDSMAN M RLAWLER D FKATZ L Eet al.

Application of electrodialysis pretreatment to enhance boron removal and reduce fouling during desalination by nanofiltration/reverse osmosis

[J]. Desalination,2020491114563. doi:10.1016/j.desal.2020.114563

PRAMANIK B KHAI F IRODDICK F Aet al.

Ultraviolet/persulfate pre⁃treatment for organic fouling mitigation of forward osmosis membrane:Possible application in nutrient mining from dairy wastewater

[J]. Separation and Purification Technology,2019217215-220. doi:10.1016/j.seppur.2019.02.016

JIANG LongjieCHEN LiniangZHU Lianget al.

Fouling process of membrane distillation for seawater desalination:An especial focus on the thermal⁃effect and concentrating⁃effect during biofouling

[J]. Desalination,2020485114457. doi:10.1016/j.desal.2020.114457

[本文引用: 1]

HAGESTEIJN K F LJIANG ShanxueLADEWIG B P.

A review of the synthesis and characterization of anion exchange membranes

[J]. Journal of Materials Science,20185316):11131-11150. doi:10.1007/s10853-018-2409-y

[本文引用: 1]

LIU PengZHENG YaqiLIN Shumenget al.

Reactive microporous copolymers with excellent film⁃forming ability for ion exchan⁃ge membranes

[J]. Journal of Power Sources,2020452227827. doi:10.1016/j.jpowsour.2020.227827

[本文引用: 1]

LU YaoLIU YueLI Naet al.

Sulfonated graphitic carbon nitride nanosheets as proton conductor for constructing long⁃range ionic channels proton exchange membrane

[J]. Journal of Membrane Science,2020601117908. doi:10.1016/j.memsci.2020.117908

ZHANG YuanSRIMUK PASLAN Met al.

Polymer ion⁃exchange membranes for capacitive deionization of aqueous media with low and high salt concentration

[J]. Desalination,2020479114331. doi:10.1016/j.desal.2020.114331

[本文引用: 1]

IRFAN MGE LiangWANG Yaominget al.

Hydrophobic side chains impart anion exchange membranes with high monovalent⁃divalent anion selectivity in electrodialysis

[J]. ACS Sustainable Chemistry & Engineering,201974):4429-4442. doi:10.1021/acssuschemeng.8b06426

[本文引用: 1]

WANG XiaoyaoZHANG XuWU Cuiminget al.

Anion exchange membranes with excellent monovalent anion perm⁃selectivity for electrodialysis applications

[J]. Chemical Engineering Research and Design,202015824-32. doi:10.1016/j.cherd.2020.03.021

[本文引用: 1]

LIAO JunbinCHEN QuanPAN Nengxiuet al.

Amphoteric blend ion⁃exchange membranes for separating monovalent and bivalent anions in electrodialysis

[J]. Separation and Purification Technology,2020242116793. doi:10.1016/j.seppur.2020.116793

[本文引用: 1]

TANSEL BSAGER JRECTOR Tet al.

Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes

[J]. Separation & Purification Technology,2006511):40-47. doi:10.1016/j.seppur.2005.12.020

[本文引用: 1]

STENINA IGOLUBENKO DNIKONENKO Vet al.

Selectivity of transport processes in ion⁃exchange membranes:Relationship with the structure and methods for its improvement

[J]. International Journal of Molecular Ences,20202115):5517. doi:10.3390/ijms21155517

[本文引用: 1]

FAN HanqingHUANG YuxuanYIP N Y.

Advancing the conductivity⁃permselectivity tradeoff of electrodialysis ion⁃exchange membranes with sulfonated CNT nanocomposites

[J]. Journal of Membrane Science,2020610118259. doi:10.1016/j.memsci.2020.118259

[本文引用: 1]

PAN JiefengDING JingchengTAN Ruiqinget al.

Preparation of a monovalent selective anion exchange membrane through constructing a covalently crosslinked interface by electro⁃deposition of polyethyleneimine

[J]. Journal of Membrane Science,2017539263-272. doi:10.1016/j.memsci.2017.06.017

[本文引用: 1]

DONG TingYAO JingmeiWANG Yiet al.

On the permselectivity of di- and mono⁃valent cations:Influence of applied current density and ionic species concentration

[J]. Desalination,2020488114521. doi:10.1016/j.desal.2020.114521

[本文引用: 1]

李福勤焦亚楠朱云浩.

单价选择性电渗析处理酸性重金属废水试验研究

[J]. 工业水处理,2020404):67-70. doi:10.11894/iwt.2019-0427

[本文引用: 1]

LI FuqinJIAO YananZHU Yunhaoet al.

Experimental study on treatment of acidic heavy metal wastewater by electrodialysis of monovalent selective

[J]. Industrial Water Treatment,2020404):67-70. doi:10.11894/iwt.2019-0427

[本文引用: 1]

CHEN FuqiangCHI YongzhiZHANG Mengyiet al.

Removal of heat stable salts from N-methyldiethanolamine wastewater by anion exchange resin coupled three⁃compartment electrodialysis

[J]. Separation and Purification Technology,2020242116777. doi:10.1016/j.seppur.2020.116777

[本文引用: 1]

CHEN QingbaiWANG JianyouLIU Yuet al.

Novel energy⁃efficient electrodialysis system for continuous brackish water desalination:Innovative stack configurations and optimal inflow modes

[J]. Water Research,2020179115847. doi:10.1016/j.watres.2020.115847

[本文引用: 1]

CAI YuyanHAN ZhiyingLIN Xiaochanget al.

Study on removal of phosphorus as struvite from synthetic wastewater using a pilot⁃scale electrodialysis system with magnesium anode

[J]. Ence of The Total Environment,2020726138221. doi:10.1016/j.scitotenv.2020.138221

[本文引用: 1]

CAMPIONE AGURRERI LCIOFALO Met al.

Electrodialysis for water desalination:A critical assessment of recent developments on process fundamentals,models and applications

[J]. Desalination,2018434121160. doi:10.1016/j.desal.2017.12.044

[本文引用: 1]

HERRERO⁃GONZALEZ MDIAZ⁃GURIDI PDOMINGUEZ⁃RAMOS Aet al.

Highly concentrated HCl and NaOH from brines using electrodialysis with bipolar membranes

[J]. Separation and Purification Technology,2020242116785. doi:10.1016/j.seppur.2020.116785

[本文引用: 1]

LINDEN N VBANDINU G LVERMAAS D Aet al.

Bipolar membrane electrodialysis for energetically competitive ammonium removal and dissolved ammonia production

[J]. Journal of Cleaner Production,2020259120788. doi:10.1016/j.jclepro.2020.120788

MELNIKOV S SMUGTAMOV O AZABOLOTSKY V Iet al.

Study of electrodialysis concentration process of inorganic acids and salts for the two⁃stage conversion of salts into acids utilizing bipolar electrodialysis

[J]. Separation and Purification Technology,2020235116198. doi:10.1016/j.seppur.2019.116198

[本文引用: 1]

黄灏宇叶春松.

双极膜电渗析技术在高盐废水处理中的应用

[J]. 水处理技术,2020466):4-8.

[本文引用: 1]

HUANG HaoyuYE Chunsong.

Application of bipolar membrane electrodialysis in the treatment of high⁃salinitywastewater

[J]. Technology of Water Treatment,2020466):4-8.

[本文引用: 1]

GHYSELBRECHT KSILVA AVAN Bet al.

Desalination feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis

[J]. Journal of Environmental Management,201414069-75. doi:10.1016/j.jenvman.2014.03.009

[本文引用: 1]

TRAN A T KMONDAL PLIN JIUYANGet al.

Simultaneous regeneration of inorganic acid and base from a metal washing step wastewater by bipolar membrane electrodialysis after pretreatment by crystallization in a fluidized pellet reactor

[J]. Journal of Membrane Science,2015473118-127. doi:10.1016/j.memsci.2014.09.006

[本文引用: 1]

BUNANI SARDA MKABAY Net al.

Effect of process conditions on recovery of lithium and boron from water using bipolar membrane electrodialysis(BMED)

[J]. Desalination,201741610-15. doi:10.1016/j.desal.2017.04.017

[本文引用: 1]

LI YanZHAO YoujingWANG Huaiyouet al.

The application of nanofiltration membrane for recovering lithium from salt lake brine

[J]. Desalination,2019468114081. doi:10.1016/j.desal.2019.114081

[本文引用: 1]

SIEKIERKA ATOMASZEWSKA BBRYJAK Met al.

Lithium capturing from geothermal water by hybrid capacitive deioniza⁃tion

[J]. Desalination,20184368-14. doi:10.1016/j.desal.2018.02.003

[本文引用: 1]

HWANG C WJEONG M HYIM Y Jet al.

Process design for lithium recovery using bipolar membrane electrodialysis system

[J]. Separation and Purification Technology,201616634-40. doi:10.1016/j.seppur.2016.03.013

[本文引用: 1]

İPEKÇI DALTIOK EBUNANI Set al.

Effect of acid⁃base solutions used in acid⁃base compartments for simultaneous recovery of lithium and boron from aqueous solution using bipolar membrane electrodialysis(BMED)

[J]. Desalination,201844869-75. doi:10.1016/j.desal.2018.10.001

[本文引用: 1]

İPEKI DKABAY NBUNANI Set al.

Application of heterogeneous ion exchange membranes for simultaneous separation and recovery of lithium and boron from aqueous solution with bipolar membrane electrodialysis(EDBM)

[J]. Desalination,2020479114313. doi:10.1016/j.desal.2020.114313

[本文引用: 1]

YE WenyuanLIU RiriCHEN Xiangyuet al.

Loose nanofiltration⁃based electrodialysis for highly efficient textile wastewater treatment

[J]. Journal of Membrane Science,2020608118182. doi:10.1016/j.memsci.2020.118182

[本文引用: 1]

ZHANG YufeiLIU LeiDU Juanet al.

Fracsis:Ion fractionation and metathesis by a NF-ED integrated system to improve water recovery

[J]. Journal of Membrane Science,2017523385-393. doi:10.1016/j.memsci.2016.09.052

[本文引用: 2]

ZHANG YangGHYSELBRECHT KMEESSCHAERT Bet al.

Electrodialysis on RO concentrate to improve water recovery in wastewater reclamation

[J]. Journal of Membrane Science,20113781/2):101-110. doi:10.1016/j.memsci.2010.10.036

[本文引用: 1]

郝亚超张成凯李亮.

利用电渗析和反渗透耦合处理高盐废水的研究

[J].工业水处理,2021413):44-47.

[本文引用: 1]

HAO YachaoZHUANG ChengkaiLI Lianget al.

The study on the treatment of high salt wastewater by electrodialysis coupled with reverse osmosis

[J]. Industrial Water Treatment,2021413):44-47.

[本文引用: 1]

OREN YKORNGOLD EDALTROPHE Net al.

Pilot studies on high recovery BWRO⁃EDR for near zero liquid discharge approa⁃ch

[J]. Desalination,20102613):321-330. doi:10.1016/j.desal.2010.06.010

[本文引用: 1]

HONG JingiZHANG BopengGLABMAN Set al.

Potential ion exchange membranes and system performance in reverse electrodialysis for power generation:A review

[J]. Journal of Membrane Science,201548671-88. doi:10.1016/j.memsci.2015.02.039

[本文引用: 1]

LUO FabaoWANG YaomingJIANG Chenxiaoet al.

A power free electrodialysis(PFED) for desalination

[J]. Desalination,2017404138-146. doi:10.1016/j.desal.2016.11.011

[本文引用: 1]

WANG QunGAO XueliWANG Xinyanet al.

Hybrid RED/ED system:Simultaneous osmotic energy recovery and desalination of high⁃salinity wastewater

[J]. Desalination,201740559-67. doi:10.1016/j.desal.2016.12.005

[本文引用: 2]

YAN HaiyangXUE ShuaiWU Cuiminget al.

Separation of NaOH and NaAl(OH)4 in alumina alkaline solution through diffusion dialysis and electrodialysis

[J]. Journal of Membrane Science, 2014469436-446. doi:10.1016/j.memsci.2014.07.002

[本文引用: 1]

魏允王倩丛威.

扩散渗析-电渗析回收赖氨酸离子交换废液中的盐

[J]. 过程工程学报,2019195):975-981. doi:10.12034/j.issn.1009-606X.218182

[本文引用: 1]

WEI YunWANG QianCONG Wei.

The process of salt recovery from lysine ion⁃exchange waste water by diffusion dialysis⁃electrodialysis

[J]. The Chinese Journal of Process Engineering,2019195):975-981. doi:10.12034/j.issn.1009-606X.218182

[本文引用: 1]

李鹏飞马军邓桦.

扩散渗析-电渗析集成工艺用于丝素蛋白脱盐

[J]. 膜科学与技术,2017376):90-94.

[本文引用: 2]

LI PengfeiMA JunDENG Huaet al.

New desalination process of soluble silk fibroin by diffusion dialysis⁃electrodialysis

[J]. Membrane Science and Technology,2017376):90-94.

[本文引用: 2]

FLORIAN BMARTIN W.

Efficient concentration of an amino acid using reactive extraction coupled with bipolar electrodialysis

[J]. Chemical Engineering & Technology,20184112):2298-2305. doi:10.1002/ceat.201800286

[本文引用: 1]

ZHAO ZhongweiLIU GuiJIA Hanget al.

Sandwiched liquid⁃membrane electrodialysis:Lithium selective recovery from salt lake brines with high Mg/Li ratio

[J]. Journal of Membrane Science,202059657):117685. doi:10.1016/j.memsci.2019.117685

[本文引用: 2]

NATASHA CAMOS G.

Justification for community⁃scale photovoltaic⁃powered electrodialysis desalination systems for inland rural villages in India

[J]. Desalination,201435282-91. doi:10.1016/j.desal.2014.07.035

[本文引用: 1]

XU HaiyangXU JiWANG Liulinget al.

Performance study on a small⁃scale photovoltaic electrodialysis system for desalination

[J]. Renewable Energy,20201541008-1013. doi:10.1016/j.renene.2020.03.066

[本文引用: 2]

KORNGOLD EARONOV LDALTROPHE L.

Electrodialysis of brine solutions discharged from an RO plant

[J]. Desalination,20082421):215-227. doi:10.1016/j.desal.2008.04.008

[本文引用: 1]