工业水处理, 2022, 42(11): 25-31 doi: 10.19965/j.cnki.iwt.2022-0554

标识码(

厌氧氨氧化及其处理低碳氮比氨氮废水的研究进展

汪晓军,1,2,3, 陈永兴1,2, 陈振国3,4

1.华南理工大学环境与能源学院,广东 广州 510006

2.工业聚集区污染控制与生态修复教育部重点 实验室,广东 广州 510006

3.佛山市化尔铵生物科技有限公司,广东 佛山 528300

4.华南师范大学环境学院,广东 广州 510006

Anaerobic ammonia oxidation and its research progress for the treatment of low C/N ratio ammonia nitrogen wastewater

WANG Xiaojun,1,2,3, CHEN Yongxing1,2, CHEN Zhenguo3,4

1.School of Environment and Energy,South China University of Technology,Guangzhou 510006,China

2.The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters,Ministry of Education,Guangzhou 510006,China

3.Hua An Biotech Co. ,Ltd. ,Foshan 528300,China

4.School of Environment,South China Normal University,Guangzhou 510006,China

收稿日期: 2022-07-21  

基金资助: 广州市中心城区污水厂污泥资源化利用关键技术研究项目.  x2hjD9220560.  2022A1515011466

Received: 2022-07-21  

作者简介 About authors

汪晓军(1964—),博士,教授E-mail:cexjwang@scut.edu.cn , E-mail:cexjwang@scut.edu.cn

摘要

厌氧氨氧化是近20 a来逐步发展起来的一种高效、节能新型生物脱氮工艺,其无需消耗碳源且污泥产量低,是处理低碳氮比氨氮废水的较佳选择。对厌氧氨氧化工艺的基本原理、影响厌氧氨氧化细菌活性的常见因素作了简要介绍,阐述了厌氧氨氧化工艺用于污水处理的发展历程,引用部分案例对厌氧氨氧化工艺在低碳氮比废水处理中的应用状况进行了说明,指出其对于低碳氮比高浓度氨氮废水处理效果较好,但对于低碳氮比的中低浓度氨氮废水的处理存在技术瓶颈,即中低浓度氨氮废水难以实现稳定的亚硝化。在此基础上对于解决中低浓度氨氮废水厌氧氨氧化处理瓶颈所取得的技术突破进行总结,并展望了厌氧氨氧化技术在低碳氮比废水处理工程中的应用前景。

关键词: 生物脱氮 ; 低碳氮比 ; 厌氧氨氧化 ; 亚硝化

Abstract

Anaerobic ammonia oxidation is a new type of biological nitrogen removal process with high efficiency and energy saving,which has been gradually developed in recent 20 years. Anaerobic ammonia oxidation does not need to consume carbon sources and has low sludge output,so it is the better choice for treating low C/N ratio ammonia nitrogen wastewater. This paper briefly introduced the basic principle of anaerobic ammonia oxidation process and common factors affecting the activity of AnAOB,described the development history of anaerobic ammonia oxidation process for sewage treatment. Also,it expounded the application of anaerobic ammonia oxidation process in the treatment of low C/N ratio wastewater by citing some cases,and pointed out its good effect on the treatment of low C/N ratio and high concentration ammonia nitrogen wastewater. However,there was a technical bottleneck in the treatment of low carbon nitrogen ratio and middle or low concentrated ammonia nitrogen wastewater,that was,it was difficult to achieve stable nitrosation of middle or low concentrated ammonia nitrogen wastewater. On this basis,the technical breakthroughs made in solving the bottleneck of anaerobic ammonia oxidation treatment of middle or low concentrated ammonia nitrogen wastewater were summarized,and the application prospect of anaerobic ammonia oxidation technology in the engineering of low carbon nitrogen ratio wastewater treatment was prospected.

Keywords: biological nitrogen removal ; low C/N ratio ; anaerobic ammonium oxidation ; nitrification

PDF (639KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

汪晓军, 陈永兴, 陈振国. 厌氧氨氧化及其处理低碳氮比氨氮废水的研究进展. 工业水处理[J], 2022, 42(11): 25-31 doi:10.19965/j.cnki.iwt.2022-0554

WANG Xiaojun. Anaerobic ammonia oxidation and its research progress for the treatment of low C/N ratio ammonia nitrogen wastewater. Industrial Water Treatment[J], 2022, 42(11): 25-31 doi:10.19965/j.cnki.iwt.2022-0554

氨氮是废水中的主要污染物之一,其过量排放不仅会导致水体富营养化,毒害水生生物,也会对人体健康造成严重威胁1-2。据2020年中国生态环境统计年报数据显示,全国氨氮全年排放量高达98.4万t,其中生活污水源废水、农业源废水和工业源废水中氨氮排放量分别占氨氮总排放量的71.85%、25.81%和2.13%3。大部分氨氮废水,如城镇生活污水4、垃圾渗滤液5、养猪废水6-7、稀土矿山废水8等都存在碳源不足、碳氮比低的问题。低碳氮比废水的传统物理化学处理方法包括吹脱法9-10、磷酸钙镁沉淀法(MAP法)11、吸附法12-13、折点加氯法14-15、高级氧化法16-17等。这些方法在去除氨氮的同时也存在诸多问题,如药剂消耗大、运行费用高、操作复杂、易引发二次污染等,因此限制了它们的工程化应用18-19。生物脱氮技术包括硝化-反硝化工艺、亚硝化-反硝化工艺和同步硝化反硝化工艺等20-21。相比于传统物理化学法,生物脱氮法因经济高效、环境友好的特点而得到更广泛应用。

硝化-反硝化脱氮工艺是目前应用最为广泛的生物脱氮技术,如目前污水处理厂大规模使用的AO法、A2O法、氧化沟法等工艺都是基于硝化-反硝化的工艺原理来进行废水中氨氮的脱除。反硝化过程需要消耗大量的碳源,理论上硝化-反硝化工艺脱除1 g氮需要消耗约2.8 g的碳源(以COD计),实际工程上碳源的消耗量要远远大于理论值,其m(COD)/m(NH3-N)(记作C/N)往往高达5~6以上。对于碳源比较丰富、C/N大于6的污水,采用传统的硝化-反硝化工艺就能取得较好的氨氮和TN脱除效果。但对于C/N较低的废水,特别是C/N小于4的废水,若仍采用传统的硝化-反硝化工艺,则需要补充大量的碳源,相应地,处理过程中排放的二氧化碳及污泥产量也大幅增加,这些都增加了整体废水处理成本。此外,随着《合成氨工业水污染物排放标准》、《城镇污水处理厂污染物排放标准》等新的废水排放标准的实施,对于污水中TN的排放要求被进一步强化,寻找低碳降耗的新氨氮处理方法越来越重要。

厌氧氨氧化(Anaerobic ammonium oxidation,ANAMMOX)自1995年首次被发现以来,因其节能高效、低碳、污泥产量低的特点,已逐渐发展成为最受欢迎的生物脱氮工艺之一22-23。相比于硝化-反硝化工艺,ANAMMOX工艺可节省50%~60%的曝气能耗和100%的有机碳源24。结合我国在2020年提出的“双碳”目标,ANAMMOX工艺应是处理低碳氮比氨氮废水的最优工艺选择之一。

笔者对ANAMMOX工艺的基本原理作了简要介绍,回顾了ANAMMOX的发展历程,总结了ANAMMOX在低碳氮比废水处理中的研究现状和应用进展,并展望了ANAMMOX技术在我国低碳氮比废水处理中的广阔应用前景,以期为ANAMMOX技术进一步的推广应用提供参考。

1 ANAMMOX工艺概述

ANAMMOX的主要原理是在厌氧或缺氧条件下,厌氧氨氧化细菌(AnAOB)以氨氮为电子供体,亚硝氮为电子受体,将氨氮氧化为N2和少量硝态氮,其反应如式(1)所示。在这一过程中,涉及多种中间产物和功能酶。中间产物包括一氧化氮(NO)、肼(N2H4)等,功能酶包括亚硝酸还原酶(NIR)、肼合酶(HZS)、肼脱氢酶(HDH)25-26等。

NH4++1.32NO2-+0.066HCO3-+0.13H+

1.02N2+0.26NO3-+2.03H2O+0.066CH2O0.5N0.15

目前已知的AnAOB都归属于浮霉菌门(Planctomycetes)下的Brocadiales纲,主要有6个菌属,分别为Candidatus_BrocadiaCandidatus_KueneniaCandidatus_JetteniaCandidatus_ScalinduaCandidatus_AnammoxoglobusCandidatus_Anammoximicrobium27。借助现代分子生物学技术,研究人员发现AnAOB体内有一个独特的膜结合隔室(Anammoxsome),其体积占据AnAOB总体积的50%~80%,在这里可以进行能量交换和特异性ANAMMOX反应28。此外,AnAOB体内还含有大量自身产生的细胞色素,外观上呈鲜艳的红色。AnAOB繁殖速度慢,倍增周期为9~14 d左右。有研究指出,AnAOB适宜的生长温度和pH分别为30~40 ℃和7.0~8.829。当温度高于45 ℃时,AnAOB的活性被严重抑制,且这种抑制不可逆,而低温条件(˂20 ℃)对AnAOB的抑制在升温之后即可恢复24。高浓度游离氨(FA)和游离亚硝酸(FNA)会抑制AnAOB的活性,M. TOMASZEWSKI等30通过研究表明,FA、FNA分别低于20、0.01 mg/L时有利于厌氧氨氧化工艺的脱氮。如式(2)、式(3)所示,pH会影响系统的FA与FNA浓度,pH偏低时,FNA浓度随之增加,pH偏高时,FA浓度会被提高,均不利于ANAMMOX工艺的脱氮31。此外,Jinjin YU等32还发现,过高或过低的pH也会对微量营养元素的有效性产生不利影响,进而影响系统的脱氮效果。

FA=1714×[NH4+-N]×10pHexp 6 334273+T+10pH
FNA=4614×[NO2--N]exp 2 300273+T×10pH

AnAOB对环境变化较为敏感,在应用ANAMMOX工艺处理低碳氮比氨氮废水时,除上述提到的温度、pH、FA与FNA外,有机物、溶解氧(DO)、盐分等也都会影响ANAMMOX的脱氮性能。

AnAOB以无机碳为唯一碳源,废水中的有机物会对AnAOB的脱氮性能产生不同程度的影响,其主要表现在:(1)有机物的存在易引起反硝化细菌的滋生,其快速的生长使得AnAOB无法竞争获得足够的生长要素,进而削弱AnAOB的脱氮性能33;(2)有机物与氨氮竞争成为ANAMMOX反应的电子供体,以此演化出不同于ANAMMOX的代谢途径,从而减少氨氮的去除量34。不少废水虽然C/N不够高,如C/N小于4,但因废水中存在有机物仍有可能影响ANAMMOX工艺,故要通过前置处理工序,将废水中的有机物尽量脱除,以保证ANAMMOX工艺的平稳运行。目前,通常采用前置反硝化工艺脱除原水中有机物,脱除目标为m(BOD5)/m(NH3-N)<1,最好m(BOD5)/m(NH3-N)<0.5,然后再进入ANAMMOX处理单元。AnAOB对废水中FA和FNA有着不同的耐受程度,研究指出,当FA和FNA分别大于各自的某个临界值时会对AnAOB的活性产生明显的抑制35。研究表明,除先前提到的pH外,废水的温度、底物浓度等参数都会影响FA和FNA的浓度,进而影响ANAMMOX的脱氮效果36。ANAMMOX反应需要在厌氧或者缺氧条件下进行,如果水中的DO高于18%氧饱和时的氧分压就会抑制AnAOB的活性,通过降低DO可恢复其活性37-38。此外,高浓度的盐分会使得胞内外形成高渗透压,进而导致AnAOB质壁分离、休眠甚至死亡39

2 ANAMMOX工艺处理低碳氮比氨氮废水

ANAMMOX工艺包括基于亚硝化-ANAMMOX的SHARON-ANAMMOX工艺、OLAND工艺、CANON工艺和DEMON工艺等,各工艺优缺点如表1所示。付昆明等40在对连续流CANON反应器运行稳定性进行研究时,在pH为7.39~8.01,温度为35 ℃条件下,得到系统平均TN去除负荷为1.8 kg/(m3·d);Rui DU等41在上流式厌氧床反应器中采用一种新的气体混合方式运行连续流DEMON工艺,水力停留时间为0.5 h时,系统的最大TN去除负荷可达2.42 kg/(m3·d)。

表1   不同ANAMMOX工艺优缺点分析

Table 1  The advantage and disadvantage analysis of different ANAMMOX processes

工艺类型优点缺点
两段式厌氧氨氧化自养脱氮SHARON-ANAMMOX独立调节,灵活稳定;可避免有毒物质和有机物抑制厌氧氨氧化细菌;适合低浓度氨氮废水处理占地面积大、投资成本高;易产生亚硝酸盐抑制
一体式厌氧氨氧化自养脱氮OLAND占地面积小、投资成本低;适合处理高浓度氨氮废水,容积负荷大;可有效避免亚硝酸盐的抑制作用需严格控制运行参数确保多种微生物菌群共存;启动时间长
CANON
DEMOX

新窗口打开| 下载CSV


世界范围内目前已有超过200座的ANAMMOX工程投入使用。国外在21世纪初就开展了ANAMMOX的工程化应用,2002年,荷兰鹿特丹Dokhaven市政污水处理厂构建了两段式亚硝化-ANAMMOX的SHARON-ANAMMOX工艺用于处理污泥消化液,历时3.5 a成功启动反应器,从而建立了世界上第一座ANAMMOX工程化装置42。奥地利Strass污水处理厂在2003年采用DEMON工艺处理污泥脱水液,最高氮去除负荷达到0.7 kg/(m3·d)43。之后,荷兰Olburgen工业污水处理厂采用一体式亚硝化ANAMMOX的CANON工艺处理污泥脱水液44,瑞典Sjölunda污水处理厂采用ANITATM-Mox工艺处理污泥消化液45,新加坡、美国等也相继建立了自己的第一座ANAMMOX反应器。2009年,我国引进荷兰帕克公司的ANAMMOX技术用于处理味精生产废水46。在后续的十余年间,我国在多种废水处理领域建设了ANAMMOX工程,如山东省滨州市安琪酵母公司处理酵母生产废水的ANAMMOX工程、北京市政污水处理的污泥厌氧发酵液工程等。2021年,笔者所在研究团队在广东某印染纺织厂成功建设运行了世界上第一座处理印染丝光废水的ANAMMOX工程,该废水进水氨氮在1 500~5 000 mg/L波动,几乎不含有机碳源,故可以直接使用ANAMMOX处理工艺进行处理,在不投加任何有机碳源的条件下氨氮去除率大于95%,TN去除率大于85%,氨氮处理的容积负荷也达到1 kg/(m3·d)(以N计)。此外,本研究团队在2021年针对高铁列车集便器废水和垃圾填埋场老龄垃圾渗滤液,也采用ANAMMOX工艺建设运行了高氨氮废水处理示范工程项目。虽然此类废水所含氨氮为500~2 500 mg/L,但其COD为1 000~6 000 mg/L,高浓度COD必然对ANAMMOX的工艺产生重大影响,因此在设计上采用了前置亚硝化-反硝化工艺,以消耗进水中存在的有机物。系统运行中,通过亚硝化反应器,将废水中的氨氮转化为亚硝酸根,之后经处理后的废水回流到前置亚硝化-反硝化反应器中,经过反硝化脱除大部分有机物,再进入ANAMMOX反应器,在低C/N条件下脱除氨氮。采用亚硝化-反硝化工艺的优点是亚硝化的量不用严格控制,多余的亚硝酸根可作为后续ANAMMOX的反应基质。

图1简单示意了ANAMMOX工艺用于污水处理的发展历程,可以看出,ANAMMOX工艺从发现到真正大规模应用用了近7 a时间,成功解决了高氨氮废水的ANAMMOX工程化应用难题。

图1

图1   ANAMMOX工艺用于污水处理的发展历程

Fig. 1   Development history of ANAMMOX process for sewage treatment


上述提及的ANAMMOX工程案例多为处理氨氮大于300 mg/L的高浓度氨氮废水。在“双碳”目标的驱动下,随着我国研究开发能力的不断增强,采用国内自行开发的ANAMMOX工艺处理低碳氮比高浓度氨氮废水的项目将会越来越多。

3 ANAMMOX对于低碳氮比的中低浓度氨氮废水处理的应用瓶颈及突破

采用低碳节能的ANAMMOX工艺处理高浓度的氨氮废水已进入大规模工业化阶段,但用其处理中低浓度的氨氮废水仍没有大规模工程化应用。中低浓度氨氮废水水量大,相较于高浓度氨氮废水,其排放的氨氮污染物总量更高。如何将ANAMMOX工艺成功应用到低碳氮比的中低浓度氨氮废水处理中,是目前水处理领域的研究热点之一。

式(1)可知,ANAMMOX的反应底物主要为氨氮和亚硝氮,其物质的量比为1.32∶1。因此在应用ANAMMOX工艺处理氨氮废水时,需要将部分氨氮转化为亚硝氮。稳定的亚硝化是ANAMMOX进行的前提,也是中低浓度氨氮废水实现ANAMMOX处理的技术瓶颈。

高浓度氨氮废水中氮亚硝化技术已经趋于成熟,亚硝化策略包括高温47,低DO48,低污泥龄(SRT)49,对曝气量、碱度等参数的实时控制50,对FA和FNA的控制等51。罗远玲等52采用序批式反应器(SBR),以具有良好亚硝化积累的颗粒污泥为接种污泥,考察了温度变化对系统氮转换性能的影响,结果表明,相较于15、25 ℃,温度为30 ℃时,系统具有良好的短程硝化性能,出水亚硝氮积累率为93.17%。Yongyuan YANG等53利用沸石的吸附-再生性能,对污水中的氨进行有效吸附及脱附,将水中FA保持在适当的浓度范围内,实现了氮素良好的亚硝化。

对于中低浓度氨氮的ANAMMOX,必须要有稳定的亚硝态氮来源来保障ANAMMOX工艺的稳定运行。短程反硝化工艺可利用小部分有机碳源将硝态氮还原成亚硝态氮而不进一步还原成N2,以此为中低浓度氨氮废水的ANAMMOX处理提供亚硝态氮441。Lingxiao GONG等54利用饥饿法在SBR反应器中成功实现短程反硝化,NO3--N→NO2--N转化率(NTR)达71.7%。Shenbin CAO等55在USB反应器中安装了一套气体自动循环装置,减少了反应器死区,从而实现了高达81.4%的NTR。Rui DU等56采用DEAMOX工艺,构建了以醋酸盐和乙醇为有机碳源的2个反应器用于处理含氨氮、硝态氮均为50 mg/L的模拟废水,其NTR分别达到95.8%和87.0%。此外该团队采用短程反硝化-厌氧氨氧化工艺(PD-A)处理北京工业大学校园内氨氮为57.87 mg/L的生活污水,出水TN可稳定低于5 mg/L57。研究表明,碳源种类、碳氮比、温度、pH等参数均会影响短程反硝化效果58-60,实际应用中均需加以控制58-60

另外,探索中低浓度氨氮的稳定亚硝化,是另外一条解决中低浓度氨氮废水ANAMMOX处理时亚硝态氮来源短缺问题的途径。Zhenguo CHEN等61研究了采用沸石生物固定床(ZBFB)反应器处理低浓度氨氮废水(50 mg/L)的亚硝化性能,结果表明,当床层温度升至36 ℃时,系统达到稳定亚硝化效果。对于中低浓度氨氮废水,有研究通过投加少量的双氧水,利用双氧水抑制NOB能力强、抑制AOB能力弱的特性,达到中低浓度氨氮废水的稳定亚硝化62-63

城市污水处理厂的主流ANAMMOX工艺,因市场巨大,TN负荷削减明显,引起了众多研究者的关注。但是由于城市污水处理厂进水氨氮只有20~50 mg/L,其亚硝氮的获取更加困难,导致目前多数研究都限于实验室小试或中试,鲜有工程化应用的报道。2018年通过运行数据分析,研究人员发现西安第四污水处理厂出水的TN只有5 mg/L,经进一步的分析,确认处理系统中存在部分ANAMMOX。这一重大发现,表明了ANAMMOX应用于主流污水处理系统具有可行性。但市政污水的氨氮浓度低、水量巨大,要实现ANAMMOX,研究人员必须克服和解决以下几个问题:(1)氨氮与经转化形成的亚硝酸根浓度都很低,对亚硝酸氧化菌不可能形成抑制,形成的亚硝酸根很容易在水中少量溶解氧存在的条件下被氧化而形成硝酸根;(2)厌氧氨氧化菌本身增殖速度很慢,在低浓度氨氮条件下,增殖速度更慢,且在污水处理高流量的条件下,很容易流失;(3)城市污水的水温及其他水质条件存在波动,影响ANAMMOX工艺的稳定性。

4 总结与展望

ANAMMOX工艺无需投加碳源、曝气量少、能耗低、污泥产量低,是处理低碳氮比氨氮废水的最佳选择。高浓度氨氮废水的ANAMMOX工艺已经成熟,在“双碳”目标的驱动下将会得到更加广泛的应用。但在中低浓度氨氮废水处理领域,尤其是在市政污水处理领域,由于进水基质浓度低、温度随四季变化大,亚硝氮的稳定获取往往比处理高浓度氨氮废水时困难得多,采用ANAMMOX对其进行处理的工程案例鲜有报道。近年来,研究者们积极探索基于短程反硝化或稳定亚硝化的边界条件,已取得了较多的研究成果,但因在实际工程应用中该技术仍存在诸多不确定影响因素,导致其大多仍停留在实验室阶段,并未真正大规模工程化应用。因此,中低浓度氨氮废水的ANAMMOX研究,市政污水的主流ANAMMOX研究及工程化应用开发将是今后的重点研究目标。


参考文献

苏子杰左椒兰康建雄.

短程生物脱氮技术研究进展

[J]. 水处理技术,20113710):15-20.

[本文引用: 1]

SU ZijieZUO JiaolanKANG Jianxiong.

The research and development of the shortcut biological nitrogen removal technology

[J]. Technology of Water Treatment,20113710):15-20.

[本文引用: 1]

冯亮袁春燕杨超.

好氧反硝化生物脱氮技术的研究进展

[J]. 微生物学通报,20204710):3342-3354.

[本文引用: 1]

FENG LiangYUAN ChunyanYANG Chaoet al.

Research progress in nitrogen removal by aerobic denitrification

[J]. Microbiology China,20204710):3342-3354.

[本文引用: 1]

中华人民共和国生态环境部.

2020年全国生态环境统计年报

[R]. 北京中华人民共和国生态环境部2021. doi:10.1007/978-981-33-4806-6_16

[本文引用: 1]

Ministry of Ecology and Environment of The People’s Republic of China.

2020 national ecological environment statistical annual report

[R]. BeijingMinistry of Ecology and Environment of The People’s Republic of China2021. doi:10.1007/978-981-33-4806-6_16

[本文引用: 1]

杜睿彭永臻.

城市污水生物脱氮技术变革:厌氧氨氧化的研究与实践新进展

[J]. 中国科学:技术科学,2022523):389-402. doi:10.1360/sst-2020-0407

[本文引用: 2]

DU RuiPENG Yongzhen.

Technical revolution of biological nitrogen removal from municipal wastewater:Recent advances in Anammox research and application

[J]. Scientia Sinica:Technologica,2022523):389-402. doi:10.1360/sst-2020-0407

[本文引用: 2]

陈小珍汪晓军KARASUTA C.

反硝化-高效部分亚硝化-厌氧氨氧化工艺处理老龄垃圾渗滤液

[J]. 环境科学,2020411):345-352.

[本文引用: 1]

CHEN XiaozhenWANG XiaojunCHAYANGKUN Ket al.

Nitrogen removal from mature landfill leachate via denitrification-partial nitritation-ANAMMOX based on a zeolite biological aerated filter

[J]. Environmental Science,2020411):345-352.

[本文引用: 1]

杨彦飞田启平杨瑾.

楼房养猪废水处理工程实例及分析

[J]. 中国给水排水,2022386):103-106.

[本文引用: 1]

YANG YanfeiTIAN QipingYANG Jinet al.

Case and analysis of swine wastewater treatment project in building

[J]. China Water & Wastewater,2022386):103-106.

[本文引用: 1]

宋晓智.

一段式厌氧氨氧化技术处理养猪废水

[J]. 净水技术,202140S1):95-98.

[本文引用: 1]

SONG Xiaozhi.

Ammonia removal from swine wastewater by anammox

[J]. Water Purification Technology,202140S1):95-98.

[本文引用: 1]

胡锦刚肖春桥邓祥意.

稀土矿山氨氮废水生物脱氮方法研究进展

[J]. 武汉工程大学学报,2022441):1-8.

[本文引用: 1]

HU JingangXIAO ChunqiaoDENG Xiangyiet al.

Research progress in biological denitrification methods of ammonia nitrogen wastewater from rare earth mines

[J]. Journal of Wuhan Institute of Technology,2022441):1-8.

[本文引用: 1]

袁捷杨宁周艳军.

吹脱法处理高浓度氨氮废水的研究

[J]. 化学工业与工程技术,2009304):55-57. doi:10.3969/j.issn.1006-7906.2009.04.017

[本文引用: 1]

YUAN JieYANG NingZHOU Yanjun.

Research on stripping treatment of high concentrated ammonia nitrogen wastewater

[J]. Journal of Chemical Industry & Engineering,2009304):55-57. doi:10.3969/j.issn.1006-7906.2009.04.017

[本文引用: 1]

周伟博伊学农施柳.

吹脱联合MAP法处理高氨氮废水的研究

[J]. 中国给水排水,20143021):110-113.

[本文引用: 1]

ZHOU WeiboYI XuenongSHI Liuet al.

Treatment of high-concentration ammonia nitrogen paraquat wastewater by air stripping and MAP

[J]. China Water & Wastewater,20143021):110-113.

[本文引用: 1]

冯皓迪丁一珊崔梦萦.

MAP法沉淀回收尿液中氮磷的研究

[J]. 环境工程,201634S1):162-166.

[本文引用: 1]

FENG HaodiDING YishanCUI Mengyinget al.

Rocovery of nitrogen and phosphorus in urine by magnesium ammonium phosphate crystallization

[J]. Environmental Engineering,201634S1):162-166.

[本文引用: 1]

唐朝春许荣明.

吸附法处理氨氮废水研究进展

[J]. 应用化工,2019481):156-160. doi:10.3969/j.issn.1671-3206.2019.01.037

[本文引用: 1]

TANG ChaochunXU Rongming.

Progress of adsorption treatment of ammonia nitrogen wastewater

[J]. Applied Chemical Industry,2019481):156-160. doi:10.3969/j.issn.1671-3206.2019.01.037

[本文引用: 1]

杨大地谭学茭苏培生.

树脂吸附法处理焦化废水中氨氮的研究

[J]. 四川冶金,2015371):74-77. doi:10.3969/j.issn.1001-5108.2015.01.016

[本文引用: 1]

YANG DadiTAN XuejiaoSU Peishenget al.

Study on resin adsorption of ammonia nitrogen in coking waste water

[J]. Sichuan Metallurgy,2015371):74-77. doi:10.3969/j.issn.1001-5108.2015.01.016

[本文引用: 1]

敖黎鑫.

折点加氯法去除含油废水中氨氮的研究

[J]. 河南科技,202020):142-144.

[本文引用: 1]

AO Lixin.

Research on the removal of ammonia nitrogen in oily wastewater by inflection point chlorination

[J]. Henan Science and Technology,202020):142-144.

[本文引用: 1]

李婵君贺剑明.

折点加氯法处理深度处理低氨氮废水

[J]. 广东化工,20134020):43-44. doi:10.3969/j.issn.1007-1865.2013.20.023

[本文引用: 1]

LI ChanjunHE Jianming.

Break point chlorination advanced treatment of low ammonia water

[J]. Guangdong Chemical Industry,20134020):43-44. doi:10.3969/j.issn.1007-1865.2013.20.023

[本文引用: 1]

CHEN YunnenGUO LinLI Chang.

Fabrication of surfactant-enhanced metal oxides catalyst for catalytic ozonation ammonia in water

[J]. International Journal of Environmental Research and Public Health,2018158):1654. doi:10.3390/ijerph15081654

[本文引用: 1]

胡奇胡豫娟高大文.

臭氧氧化法强化处理纤维素乙醇废水研究

[J]. 工业水处理,2017372):79-83. doi:10.11894/1005-829x.2017.37(2).079

[本文引用: 1]

HU QiHU YujuanGAO Dawen.

Research on the enhanced treatment of wastewater from cellulose ethanol production by ozone oxidation process

[J]. Industrial Water Treatment,2017372):79-83. doi:10.11894/1005-829x.2017.37(2).079

[本文引用: 1]

LI X ZZHAO Qingliang.

MAP precipitation from landfill leachate and seawater bittern waste

[J]. Environmental Technology,2002239):989-1000. doi:10.1080/09593332308618348

[本文引用: 1]

MARTTINEN S KKETTUNEN R HSORMUNEN K Met al.

Screening of physical-chemical methods for removal of organic material,nitrogen and toxicity from low strength landfill leachates

[J]. Chemosphere,2002466):851-858. doi:10.1016/s0045-6535(01)00150-3

[本文引用: 1]

CHUANG HuipingOHASHI AIMACHI Het al.

Effective partial nitrification to nitrite by down-flow hanging sponge reactor under limited oxygen condition

[J]. Water Research,2007412):295-302. doi:10.1016/j.watres.2006.10.019

[本文引用: 1]

CHEN ZhenguoCHEN YongxingZHENG Xuwenet al.

Comparison of complete nitritation-denitrification and partial nitritation-anammox for iron oxide wastewater treatment

[J]. Journal of Cleaner Production,2021294126281. doi:10.1016/j.jclepro.2021.126281

[本文引用: 1]

张源.

污水生物脱氮工艺技术的研究与应用

[J]. 生物化工,202066):117-120.

[本文引用: 1]

ZHANG Yuan.

Progress of research and application of biological nitrogen removal technology in wastewater

[J]. Biological Chemical Engineering,202066):117-120.

[本文引用: 1]

CHEN YongxingCHEN HaochuanCHEN Zhenguoet al.

The benefits of autotrophic nitrogen removal from high concentration of urea wastewater through a process of urea hydrolysis and partial nitritation in sequencing batch reactor

[J]. Journal of Environmental Management,2021292112762. doi:10.1016/j.jenvman.2021.112762

[本文引用: 1]

LI XiaojinSUN ShanBADGLEY B Det al.

Nitrogen removal by granular nitritation-anammox in an upflow membrane-aerated biofilm reactor

[J]. Water Research,20169423-31. doi:10.1016/j.watres.2016.02.031

[本文引用: 2]

WANG DepengZHENG QiHUANG Kailonget al.

Metagenomic and metatranscriptomic insights into the complex nitrogen metabolic pathways in a single-stage bioreactor coupling partial denitrification with anammox

[J]. Chemical Engineering Journal,2020398125653. doi:10.1016/j.cej.2020.125653

[本文引用: 1]

WANG ZhibinLIU XiaolinNI Shouqinget al.

Nano zero-valent iron improves anammox activity by promoting the activity of quorum sensing system

[J]. Water Research,2021202117491. doi:10.1016/j.watres.2021.117491

[本文引用: 1]

KUENEN J G.

Anammox bacteria:From discovery to application

[J]. Nature Reviews Microbiology,200864):320-326. doi:10.1038/nrmicro1857

[本文引用: 1]

刘安迪.

部分亚硝化耦合厌氧氨氧化脱氮除碳性能研究

[D]. 兰州兰州交通大学2020.

[本文引用: 1]

LIU Andi.

Experimental study on nitrogen and carbon removal performance of partial nitrification coupled with anaerobic ammonia oxidation

[D]. LanzhouLanzhou Jiatong University2020.

[本文引用: 1]

VAN HULLE S WVOLCKE E ITERUEL J Let al.

Influence of temperature and pH on the kinetics of the Sharon nitritation process

[J]. Journal of Chemical Technology & Biotechnology,2007825):471-480. doi:10.1002/jctb.1692

[本文引用: 1]

TOMASZEWSKI MCEMA GZIEMBIŃSKA-BUCZYŃSKA A.

Influence of temperature and pH on the anammox process:A review and meta-analysis

[J]. Chemosphere,2017182203-214. doi:10.1016/j.chemosphere.2017.05.003

[本文引用: 1]

WANG YongfengGU Jidong.

Effects of allylthiourea,salinity,and pH on ammonia/ammonium-oxidizing prokaryotes in mangrove sediment incubated in laboratory microcosms

[J]. Applied Microbiology and Biotechnology,2014987):3257-3274. doi:10.1007/s00253-013-5399-3

[本文引用: 1]

YU JinjinJIN Rencun.

The ANAMMOX reactor under transient-state conditions:Process stability with fluctuations of the nitrogen concentration,inflow rate,pH and sodium chloride addition

[J]. Bioresource Technology,2012119166-173. doi:10.1016/j.biortech.2012.05.116

[本文引用: 1]

CAO ShenbinPENG YongzhenDU Ruiet al.

Feasibility of enhancing the DEnitrifying AMmonium OXidation(DEAMOX) process for nitrogen removal by seeding partial denitrification sludge

[J]. Chemosphere,2016148403-407. doi:10.1016/j.chemosphere.2015.09.062

[本文引用: 1]

CAO ShenbinDU RuiPENG Yongzhenet al.

Novel two stage partial denitrification(PD)-Anammox process for tertiary nitrogen removal from low carbon/nitrogen(C/N) municipal sewage

[J]. Chemical Engineering Journal,2020395124810. doi:10.1016/j.cej.2020.124810

[本文引用: 1]

NI ShouqingFESSEHAIE ALEE Pohenget al.

Interaction of anammox bacteria and inactive methanogenic granules under high nitrogen selective pressure

[J]. Bioresource Technology,201010118):6910-6915. doi:10.1016/j.biortech.2010.03.125

[本文引用: 1]

ANTHONISEN A CLOEHR R CPRAKASAM T Bet al.

Inhibition of nitrification by ammonia and nitrous acid

[J]. Journal-Water Pollution Control Federation,1976485):835-852.

[本文引用: 1]

LI WeiZHUANG JinlongZHOU Yuanyuanet al.

Metagenomics reveals microbial community differences lead to differential nitrate production in anammox reactors with differing nitrogen loading rates

[J]. Water Research,2020169115279. doi:10.1016/j.watres.2019.115279

[本文引用: 1]

JIN RencunYANG GuangfengYU Jinjinet al.

The inhibition of the Anammox process:A review

[J]. Chemical Engineering Journal,201219767-79. doi:10.1016/j.cej.2012.05.014

[本文引用: 1]

HUNIK J HMEIJER H J GTRAMPER J.

Kinetics of Nitrosomonas europaea at extreme substrate,product and salt concentrations

[J]. Applied Microbiology and Biotechnology,1992376):802-807. doi:10.1007/bf00174849

[本文引用: 1]

付昆明张杰曹相生.

CANON反应器运行稳定性及温度冲击的影响

[J]. 环境科学,20123310):3507-3512.

[本文引用: 1]

FU KunmingZHANG JieCAO Xiangshenget al.

Performance stability of CANON reactor and temperature impact

[J]. Environmental Science,20123310):3507-3512.

[本文引用: 1]

DU RuiCAO ShenbinLI Xiangchenet al.

Efficient partial-denitrification/anammox(PD/A) process through gas-mixing strategy:System evaluation and microbial analysis

[J]. Bioresource Technology,2020300122675. doi:10.1016/j.biortech.2019.122675

[本文引用: 2]

郝晓地MARKVAN L.

荷兰鹿特丹DOKHAVEN污水处理厂介绍

[J]. 给水排水,20032910):19-25. doi:10.3969/j.issn.1002-8471.2003.10.007

[本文引用: 1]

HAO XiaodiMARKVAN L.

DOKHAVEN wastewater treatment plant in Rotterdam

[J]. Water & Wastewater Engineering,20032910):19-25. doi:10.3969/j.issn.1002-8471.2003.10.007

[本文引用: 1]

WETT B.

Development and implementation of a robust deammonification process

[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research,2007567):81-88. doi:10.2166/wst.2007.611

[本文引用: 1]

GONZALEZ-MARTINEZ AOSORIO FMORILLO J Aet al.

Comparison of bacterial diversity in full scale anammox bioreactors operated under different conditions

[J]. Biotechnology Progress,2015316):1464-1472. doi:10.1002/btpr.2151

[本文引用: 1]

CHRISTENSSON MEKSTRÖM SCHAN A Aet al.

Experience from start-ups of the first ANITA Mox plants

[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research,20136712):2677-2684. doi:10.2166/wst.2013.156

[本文引用: 1]

王胤吴嘉利陈一.

主流厌氧氨氧化工艺的研究与应用进展

[J]. 净水技术,20214011):16-27.

[本文引用: 1]

WANG YinWU JialiCHEN Yiet al.

Research and application progress of mainstream anammox process

[J]. Water Purification Technology,20214011):16-27.

[本文引用: 1]

HELLINGA CSCHELLEN A A J CMULDER J Wet al.

The Sharon process:An innovative method for nitrogen removal from ammonium-rich waste water

[J]. Water Science and Technology,1998379):135-142. doi:10.2166/wst.1998.0350

[本文引用: 1]

QIAO SenKAWAKUBO YKOYAMA Tet al.

Partial nitritation of raw anaerobic sludge digester liquor by swim-bed and swim-bed activated sludge processes and comparison of their sludge characteristics

[J]. Journal of Bioscience and Bioengineering,20081065):433-441. doi:10.1263/jbb.106.433

[本文引用: 1]

GAUL TMÄRKER SKUNST S.

Start-up of moving bed biofilm reactors for deammonification:The role of hydraulic retention time,alkalinity and oxygen supply

[J]. Water Science and Technology,2005527):127-133. doi:10.2166/wst.2005.0191

[本文引用: 1]

WANG RuixinWANG XiaojunDENG Cuilanet al.

Partial nitritation performance and microbial community in sequencing batch biofilm reactor filled with zeolite under organics oppression and its recovery strategy

[J]. Bioresource Technology,2020305123031. doi:10.1016/j.biortech.2020.123031

[本文引用: 1]

钟中汪晓军秦嘉富.

连续流沸石SBR用于高氨氮废水的稳定亚硝化

[J]. 水处理技术,2022484):93-97.

[本文引用: 1]

ZHONG ZhongWANG XiaojunQIN Jiafuet al.

Continuous flow zeolite SBR reactor for the stabilization of nitrosation in high ammonia nitrogen wastewater

[J]. Technology of Water Treatment,2022484):93-97.

[本文引用: 1]

罗远玲杨朝晖徐峥勇.

亚硝化颗粒污泥对温度变化的响应特性研究

[J]. 环境科学,2012332):511-517.

[本文引用: 1]

LUO YuanlingYANG ZhaohuiXU Zhengyonget al.

Effect of temperature on the response characteristics of shortcut nitrification granular sludge

[J]. Environmental Science,2012332):511-517.

[本文引用: 1]

YANG YongyuanCHEN ZhenguoWANG Xiaojunet al.

Partial nitrification performance and mechanism of zeolite biological aerated filter for ammonium wastewater treatment

[J]. Bioresource Technology,2017241473-481. doi:10.1016/j.biortech.2017.05.151

[本文引用: 1]

GONG LingxiaoHUO MingxinYANG Qinget al.

Performance of heterotrophic partial denitrification under feast-famine condition of electron donor:A case study using acetate as external carbon source

[J]. Bioresource Technology,2013133263-269. doi:10.1016/j.biortech.2012.12.108

[本文引用: 1]

CAO ShenbinLI BaikunDU Ruiet al.

Nitrite production in a partial denitrifying upflow sludge bed(USB) reactor equipped with gas automatic circulation(GAC)

[J]. Water Research,201690309-316. doi:10.1016/j.watres.2015.12.030

[本文引用: 1]

DU RuiCAO ShenbinLI Baikunet al.

Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters

[J]. Water Research,201710846-56. doi:10.1016/j.watres.2016.10.051

[本文引用: 1]

DU RuiCAO ShenbinZHANG Hanyuet al.

Flexible nitrite supply alternative for mainstream anammox:Advances in enhancing process stability

[J]. Environmental Science & Technology,20205410):6353-6364. doi:10.1021/acs.est.9b06265

[本文引用: 1]

CAO ShenbinWANG ShuyingPENG Yongzhenet al.

Achieving partial denitrification with sludge fermentation liquid as carbon source:The effect of seeding sludge

[J]. Bioresource Technology,2013149570-574. doi:10.1016/j.biortech.2013.09.072

[本文引用: 2]

GLASS CSILVERSTEIN J.

Denitrification kinetics of high nitrate concentration water:PH effect on inhibition and nitrite accumulation

[J]. Water Research,1998323):831-839. doi:10.1016/s0043-1354(97)00260-1

DU RuiPENG YongzhenJI Jiantaoet al.

Partial denitrification providing nitrite:Opportunities of extending application for anammox

[J]. Environment International,2019131105001. doi:10.1016/j.envint.2019.105001

[本文引用: 2]

CHEN ZhenguoZHENG XuwenCHEN Yongxinget al.

Nitrite accumulation stability evaluation for low-strength ammonium wastewater by adsorption and biological desorption of zeolite under different operational temperature

[J]. Science of the Total Environment,2020704135260. doi:10.1016/j.scitotenv.2019.135260

[本文引用: 1]

汪晓军.

一种通过沸石吸附中低浓度氨氮废水后的生物再生加碱强化稳定亚硝化的方法

CN202210080152.4[P]. 2022-07-08.

[本文引用: 1]

汪晓军.

一种基于沸石曝气生物滤池实现中低浓度氨氮废水稳定亚硝化方法

CN202210800151.X[P]. 2022-07-08.

[本文引用: 1]

/