1 |
GRATTIERI M, MINTEER S D. Microbial fuel cells in saline and hypersaline environments: Advancements, challenges and future perspectives[J]. Bioelectrochemistry, 2018, 120: 127-137. doi: 10.1016/j.bioelechem.2017.12.004
|
2 |
PERNETTI M, PALMA L D. Experimental evaluation of inhibition effects of saline wastewater on activated sludge[J]. Environmental Technology, 2005, 26(6): 695-704. doi: 10.1080/09593330.2001.9619509
|
3 |
LEFEBVRE O, HABOUZIT F, BRU V, et al. Treatment of hypersaline industrial wastewater by a microbial consortium in a sequencing batch reactor[J]. Environmental Technology, 2004, 25(5): 543-553. doi: 10.1080/09593330.2004.9619345
|
4 |
LEFEBVRE O, MOLETTA R. Treatment of organic pollution in industrial saline wastewater: A literature review[J]. Water Research, 2006, 40(20): 3671-3682. doi: 10.1016/j.watres.2006.08.027
|
5 |
XIAO Yeyuan, ROBERTS D J. A review of anaerobic treatment of saline wastewater[J]. Environmental Technology, 2010, 31(8/9): 1025-1043. doi: 10.1080/09593331003734202
|
6 |
LIANG Yinxiu, ZHU Hui, BAÑUELOS G, et al. Constructed wetlands for saline wastewater treatment: A review[J]. Ecological Engineering, 2017, 98: 275-285. doi: 10.1016/j.ecoleng.2016.11.005
|
7 |
TAN Xu, ACQUAH I, LIU Hanzhe, et al. A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective[J]. Chemosphere, 2019, 220: 1150-1162. doi: 10.1016/j.chemosphere.2019.01.027
|
8 |
CHEN Lin, HU Qinzheng, ZHANG Xin, et al. Effects of salinity on the biological performance of anaerobic membrane bioreactor[J]. Journal of Environmental Management, 2019, 238: 263-273. doi: 10.1016/j.jenvman.2019.03.012
|
9 |
|
|
CHANG Lili, WEI Junfeng. Acclimation of salt-tolerant sludge for the biochemical treatment of salt-containing wastewater[J]. Industrial Water Treatment, 2009, 29(12): 34-37. doi: 10.3969/j.issn.1005-829X.2009.12.011
|
10 |
JOHIR M A H, VIGNESWARAN S, KANDASAMY J, et al. Effect of salt concentration on membrane bioreactor (MBR) performances: Detailed organic characterization[J]. Desalination, 2013, 322: 13-20. doi: 10.1016/j.desal.2013.04.025
|
11 |
ZHAO Yuanyuan, PARK H D, PARK J H, et al. Effect of different salinity adaptation on the performance and microbial community in a sequencing batch reactor[J]. Bioresource Technology, 2016, 216: 808-816. doi: 10.1016/j.biortech.2016.06.032
|
12 |
YU Bao, LOU Ziyang, ZHANG Dongling, et al. Variations of organic matters and microbial community in thermophilic anaerobic digestion of waste activated sludge with the addition of ferric salts[J]. Bioresource Technology, 2015, 179: 291-298. doi: 10.1016/j.biortech.2014.12.011
|
13 |
JU Feng, LI Bing, MA Liping, et al. Antibiotic resistance genes and human bacterial pathogens: Co-occurrence, removal, and enrichment in municipal sewage sludge digesters[J]. Water Research, 2016, 91: 1-10. doi: 10.1016/j.watres.2015.11.071
|
14 |
CHEN Yujuan, HE Huijun, LIU Hongyu, et al. Effect of salinity on removal performance and activated sludge characteristics in sequencing batch reactors[J]. Bioresource Technology, 2018, 249: 890-899. doi: 10.1016/j.biortech.2017.10.092
|
15 |
GUADIE A, XIA Siqing, ZHANG Zhiqiang, et al. Effect of intermittent aeration cycle on nutrient removal and microbial community in a fluidized bed reactor-membrane bioreactor combo system[J]. Bioresource Technology, 2014, 156: 195-205. doi: 10.1016/j.biortech.2014.01.008
|
16 |
王之敏, 杨铭, 王晓慧, 等. 盐度对SBR处理低碳氮比废水脱氮性能的影响[J]. 水处理技术, 2019, 45(9): 120-125.
|
|
WANG Zhimin, YANG Ming, WANG Xiaohui, et al. Effects of salinity on nitrogen removal performance of SBR for low C/N wastewater treatment[J]. Technology of Water Treatment, 2019, 45(9): 120-125.
|
17 |
谭潇, 黄靓, 杨平, 等. 盐度对EGSB反应器的运行及厌氧颗粒污泥的影响[J]. 环境科学, 2017, 38(8): 3422-3428.
|
|
TAN Xiao, HUANG Liang, YANG Ping, et al. Effects of salinity on the operation of EGSB reactors and the anaerobic granular sludge[J]. Environmental Science, 2017, 38(8): 3422-3428.
|
18 |
颜培, 杜远达, 姜爱霞, 等. 黄河三角洲土壤真菌群落结构及互作网络对盐度的响应[J]. 分子植物育种, 2021, 19(11): 3818-3828.
|
|
YAN Pei, DU Yuanda, JIANG Aixia, et al. Response of soil fungal community structures and interaction networks to salinity in the Yellow River Delta[J]. Molecular Plant Breeding, 2021, 19(11): 3818-3828.
|
19 |
张兰河, 赵倩男, 郑晶, 等. Ca2+、Mg2+共存对SBR工艺生物脱氮和微生物群落结构的影响[J]. 环境科学学报, 2019, 39(10): 3256-3264.
|
|
ZHANG Lanhe, ZHAO Qiannan, ZHENG Jing, et al. Effect of the coexistence of Ca2+ and Mg2+ on the biological denitrification and microbial community structure[J]. Acta Scientiae Circumstantiae, 2019, 39(10): 3256-3264.
|
20 |
YAO Jinchi, LI Wei, Dong OU, et al. Performance and granular characteristics of salt-tolerant aerobic granular reactors response to multiple hypersaline wastewater[J]. Chemosphere, 2021, 265: 129170. doi: 10.1016/j.chemosphere.2020.129170
|
21 |
ZHU Tongdou, GAO Jingqing, HUANG Zhenzhen, et al. Comparison of performance of two large-scale vertical-flow constructed wetlands treating wastewater treatment plant tail-water: Cont aminants removal and associated microbial community[J]. Journal of Environmental Management, 2021, 278: 111564. doi: 10.1016/j.jenvman.2020.111564
|
22 |
DING Xiangwei, WEI Dong, GUO Wenshan, et al. Biological denitrification in an anoxic sequencing batch biofilm reactor: Performance evaluation, nitrous oxide emission and microbial community[J]. Bioresource Technology, 2019, 285: 121359. doi: 10.1016/j.biortech.2019.121359
|
23 |
LI Qingmei, ZHOU Yingli, WEI Zhanfei, et al. Phylogenomic insights into distribution and adaptation of bdellovibrionota in marine waters[J]. Microorganisms, 2021, 9(4): 757. doi: 10.3390/microorganisms9040757
|
24 |
CUI He, YANG Yinchuan, DING Yu, et al. A novel pilot-scale tubular bioreactor-enhanced floating treatment wetland for efficient in situ nitrogen removal from urban landscape water: Long-term performance and microbial mechanisms[J]. Water Environment Research, 2019, 91(11): 1498-1508. doi: 10.1002/wer.1147
|
25 |
ZHANG Zhengwen, HAN Yuxing, XU Chunyan, et al. Effect of low-intensity direct current electric field on microbial nitrate removal in coal pyrolysis wastewater with low COD to nitrogen ratio[J]. Bioresource Technology, 2019, 287: 121465. doi: 10.1016/j.biortech.2019.121465
|
26 |
LI Liya, FENG Jingwei, ZHANG Liu, et al. Enhanced nitrogen and phosphorus removal by natural pyrite-based constructed wetland with intermittent aeration[J]. Environmental Science and Pollution Research International, 2021, 28(48): 69012-69028. doi: 10.1007/s11356-021-15461-6
|
27 |
LI Liya, FENG Jingwei, ZHANG Liu, et al. Enhanced nitrogen and phosphorus removal by natural pyrite-based constructed wetland with intermittent aeration[J]. Environmental Science and Pollution Research International, 2021, 28(48): 69012-69028. doi: 10.1007/s11356-021-15461-6
|
28 |
GHORI F A, CHEN Hong, YU Xin, et al. Nitrogen removal performance of continuous anoxic/oxic system using activated sludge and sludge biofilms[J]. Journal of Donghua University(English Edition), 2021, 38(4): 351-358.
|
29 |
张兰河, 郑晶, 田蕊, 等. Na+和K+共存对A2/O工艺脱氮除磷效果及污泥性质的影响[J]. 农业工程学报, 2019, 35(11): 206-213.
|
|
ZHANG Lanhe, ZHENG Jing, TIAN Rui, et al. Effect of coexistence of Na+ and K+ on sludge properties and microbial community structure in A2/O process[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(11): 206-213.
|
30 |
JI Bixiao, ZHANG Huining, ZHOU Lun, et al. Effect of the rapid increase of salinity on anoxic-oxic biofilm reactor for treatment of high-salt and high-ammonia-nitrogen wastewater[J]. Bioresource Technology, 2021, 337: 125363. doi: 10.1016/j.biortech.2021.125363
|
31 |
聂毅磊, 贾纬, 曾艳兵, 等. 两株好氧反硝化聚磷菌的筛选、鉴定及水质净化研究[J]. 生物技术通报, 2017, 33(3): 116-121.
|
|
NIE Yilei, JIA Wei, ZENG Yanbing, et al. Screening and identification of two aerobic denitrifying phosphorusaccumulating strains, and denitrifying biological phosphorus removal[J]. Biotechnology Bulletin, 2017, 33(3): 116-121.
|
32 |
赵娇, 谢慧君, 张建. 黄河三角洲盐碱土根际微环境的微生物多样性及理化性质分析[J]. 环境科学, 2020, 41(3): 1449-1455.
|
|
ZHAO Jiao, XIE Huijun, ZHANG Jian. Microbial diversity and physicochemical properties of rhizosphere microenvironment in saline-alkali soils of the Yellow River Delta[J]. Environmental Science, 2020, 41(3): 1449-1455.
|