工业水处理, 2021, 41(8): 7-12, 46 doi: 10.19965/j.cnki.iwt.2020-0728

专论与综述

铋基光催化剂降解四环素的研究进展

邢超,, 陈悦, 汪晟, 史静,

Research progress in the tetracycline degradation by bismuthal photocatalysts

Xing Chao,, Chen Yue, Wang Sheng, Shi Jing,

通讯作者: 史静, 副教授, E-mail: shijing_cpu@163.com

收稿日期: 2021-06-20  

基金资助: 中央高校基本科研业务费专项资金资助项目.  2632019FY02
国家自然科学基金项目.  21707166
大学生创新创业训练计划项目.  202010316067S

Received: 2021-06-20  

作者简介 About authors

邢超(1996-),硕士电话:17312273960,E-mail:1821081081@stu.cpu.edu.cn , E-mail:1821081081@stu.cpu.edu.cn

Abstract

Tetracycline(TC) is a widely used bacteriostatic agent. Its metabolism in human and animal body is not complete, can be released into the environment. In recent years, TC has been detected in water environment and soil, and its pollution has gradually attracted people's attention. Photocatalysis is one of the most effective methods to remove antibiotics. The commonly used TIO2 has some defects, such as narrow photoresponse range and easy recombination of electron-hole pair. Bismuthal photocatalysts could be used in the TC degradation in water, which had the advantages of high stability, low carrier density, and long average free path. The types and improvements of bismuthal photocatalysts were summarized. The key parameters, such as pH, TC concentration, catalyst dosage, and light intensity on TC degradation were discussed. The reaction mechanisms and the common intermediate products of TC degradation were listed. Finally, the future research direction of bismuthal photocatalyst was proposed.

Keywords: bismuthal materials ; photocatalysis ; tetracycline

PDF (0KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

邢超, 陈悦, 汪晟, 史静. 铋基光催化剂降解四环素的研究进展. 工业水处理[J], 2021, 41(8): 7-12, 46 doi:10.19965/j.cnki.iwt.2020-0728

Xing Chao. Research progress in the tetracycline degradation by bismuthal photocatalysts. Industrial Water Treatment[J], 2021, 41(8): 7-12, 46 doi:10.19965/j.cnki.iwt.2020-0728

四环素(TC)是一种常见的抗生素1,在人体和动物体内代谢不完全,会不断释放到环境中2。许多地区的地下水、地表水及土壤中均检测出含TC的抗性菌3

近年来,膜技术、吸附法、高级氧化技术4等方法被应用于抗生素的去除。其中,高级氧化技术中的光催化法能够高效去除抗生素5,一般使用半导体光催化剂。目前应用最多的光催化材料为TiO2,但其禁带较宽,光响应范围存在局限6。铋基化合物较为稳定,载流子密度低、平均自由程长、光催化活性较高7,可用作光催化剂,受到越来越多学者的青睐。笔者从铋基光催化剂的种类、性能改进方式、降解影响因素、光催化TC的降解产物及降解机理等方面出发,对铋基光催化材料降解TC的研究进展进行综述。

1 铋基光催化剂的种类

铋基光催化剂按元素种类可分为氧化铋、硫化铋、铋金属氧化物和铋非金属氧化物。氧化铋主要有αβγδ几种晶型,在特定条件下可相互转化8。Bi2S3的带隙较窄,光生电子-空穴的复合率较高,光催化效果较差9。铋金属氧化物由氧化铋与金属氧化物复合而成,其中Bi2WO6、Bi2MoO6、BiVO4具有优异的光催化活性,引起研究者的关注10-12。卤氧化铋是最常见的铋非金属复合氧化物之一,呈各向异性的层状结构,其光催化效率与卤素原子序数呈正比13

铋基光催化剂根据形貌可分为片状结构14、分层结构15、空心和多孔结构16等。

2 提高铋基材料光催化性能的方法

2.1 负载

在铋基材料中掺杂元素或构成异质结结构,可增强光响应,产生等离子体效应,提高载流子分离效率等。Min Wang等17采用溶剂热合成法制备了Cu-BiVO4,Cu的掺杂使BiVO4形态发生改变,带隙变窄,光吸收增强,电子-空穴对的复合率降低。L. C. Escobar等18合成了Ag2O/BiFeO3-Ag,Ag可引起等离子体共振效应,促进光生电子-空穴对的分离,光催化活性较高。F. Opoku等19研究表明,与Bi2WO6、Bi2MoO6相比,g-C3N4/Bi2MoO6和g-C3N4/Bi2WO6的带隙均减小,载流子分离率增大。

2.2 固溶体

固溶体是在原子尺度上由2种或多种晶体杂化而成的晶态固体相。固溶体被认为是特殊的掺杂半导体,即半导体中的阴/阳离子被掺入的阴/阳离子代替。通过调节取代离子的浓度,可改变固溶体的能带结构,进而增强光催化活性。Lei Yu等20研究表明固溶体BixY1-xVO4的光催化活性受Y含量的影响。Wenqi Li等21发现微球状Bi2Mo0.4W0.6O6的光吸收率和载流子分离效率较高,其光催化活性高于Bi2 MoO6和Bi2WO6

2.3 改变元素配比

改变元素配比可调整材料的带隙、光吸收能力和载流子分离率,进而提高光催化效率。Junping Ding等22研究表明,Bi2O2(CO3)1-xSx复合材料的配比不同时,其比表面积、电子-空穴分离率及光吸收能力有所差异。Jian Yang等15合成了三维纳米结构的BiOClxBr1-x,该材料的带隙与Br-、Cl-的配比有关。Jiankui Jia等23通过改变Bi与Ti的比例合成了不同BixTiyOz/TiO2复合物,在可见光下对TC的降解效果均优于TiO2。Jian Xu等24合成了Bi6Mo2-2xV2xO15-2x(x=0.05、0.1、0.2)材料,其带隙均小于Bi6Mo2O15带隙,x为0.2时复合材料的光催化能力最强。

3 铋基光催化剂降解TC的影响因素

3.1 pH

pH与TC的电离形态(pKa为3.3、7.7、9.7、12)、光催化剂表面电荷特性(pHzpc)密切相关25。pH可改变TC与催化剂之间的静电引力或斥力,影响铋基材料的降解能力,此外,其对系统中活性物质(·OH、e-等)的产生也有一定影响。

3.2 催化剂投加量

催化剂投加量与实验成本、催化效率有关。光照稳定时,光子在一定时间内恒定。因此,光催化过程存在最佳催化剂投加量,使催化剂能够最大程度地利用光能。当催化剂投加量小于最佳量时,光子利用率不足,TC降解效率低;催化剂投加量大于最佳量时,溶液的浊度增加,透射率降低,光催化活性受到抑制。

3.3 TC含量

在光催化体系中,TC浓度较高时降解效率较低,可能是因为高浓度的TC使得催化剂的光子吸收减少;此外,中间产物随TC初始浓度的增大而增加,加剧了TC与中间产物的竞争26-27

3.4 光强

光催化反应速率很大程度上取决于光催化剂的辐射吸收情况。光催化过程中,光的性质或形式不影响反应途径28。光强对光降解速率的影响表现为29:低光强下,2个变量呈线性关系,这是由于电子-空穴对的形成对有机物降解起主导作用;中等光强下,由于涉及电子-空穴对的分离与重组竞争,降解速率与光强的平方根有关;高强度下,降解速率与光强无关。

表 1总结了各种影响因素下铋基材料对TC的降解情况。

表1   不同条件下铋基材料对TC的降解效果

Table 1  Degradation efficiencies of TC by bismuth-based materials under different conditions

反应体系催化剂光源影响因素最优条件TC降解率/%
光催化Bi2O7Sn2-Bi7O9I3太阳光pH: 2、6、11
催化剂: 0.5、1、1.5g/L
TC 35、55 mg/L
pH为6、
催化剂1 g/L、
TC35 mg/L
8030
光催化Bi2Sn2O7-C3N4/沸石400 W卤钨灯, 无滤光片pH: 3、6、9
催化剂: 0.75、1、1.25 g/L
TC: 10、20、30 mg/L
pH为6、催化剂1 g/L、
TC20 mg/L
80.431
光催化Cu/Bi2Ti2O7/氧化石墨烯100 W氙灯, λ>420 nmpH: 3~10
TC: 25、50、75、100、125 mg/L
pH为7、催化剂5 g/L、
TC25 mg/L
9232
光催化Ag3PO4/AgBr/g-C3N4300 W氙灯, λ>420nmpH: 3.0、5.4、7.0、9.0
TC: 10、20、30、40、50 mg/L
pH为9.0、催化剂0.5 g/L、
TC10 mg/L
9026
光催化Sr-Bi2O3500 W氙灯, λ>420 nmpH: 3、5、7、9、11
TC: 5、10、20、50 mg/L
pH为9、催化剂0.06 g/L、
TC5 mg/L
91.233
光催化BiOBr10 W LED灯, λ>420 nmpH: 3.1、5.1、6.2、7.3、9.1、11.0
催化剂: 0.5、1.0、1.5 g/L
pH为9.1、催化剂1.5 g/L、
TC20 mg/L
9434
光催化AgBr/Bi2WO6氙灯, λ>420 nmpH: 2、4、6、8、10
TC: 20、30、40、50、60 mg/L
pH无波动、
催化剂1 g/L、
TC20 mg/L
87.527
光催化BiOI/Ag@AgI300 W氙灯, λ>420 nm催化剂: 0.10、0.30、0.50、1.00 g/L
TC: 20、30、40、50、60 mg/L
催化剂0.30 g/L、
TC20 mg/L
86.435
光催化BimOnBrz400 W卤钨灯,
无滤光片
pH: 2、6、11
催化剂: 0.5、1、1.5、2 g/L
TC: 25、45 mg/L
pH为6、催化剂1 g/L、
TC25 mg/L
98.936
光催化BiVO4/Bi2Ti2O7/Fe3O4500 W氙灯, λ>365 nmpH: 3.00、5.00、6.00、7.00、9.00
催化剂: 0.25、0.50、1.00、2.00、3.00 g/L
TC: 10、20、30、40、50 mg/L
pH为6.00、催化剂1.00 g/L、
TC10 mg/L
97.2237
光催化Bi24O31Br101 000 W氙灯, λ>420 nm催化剂: 0.5、1.0、1.5、2.0、2.5 g/L
TC: 20、40、60、80、100 mg/L
pH为4、催化剂1.5 g/L、
TC 20 mg/L
9438

新窗口打开| 下载CSV


4 降解机理

4.1 半导体光催化

目前研究者普遍认为·OH、O2·-、h+、e-是光催化降解TC的主要活性物质。Bingxin Yin等13通过溶剂热法制备了Bi24O31Cl10纳米片,研究其降解TC的机理:催化剂受到光照时,e-由基态变为激发态,并从价带(VB)转移到导带(CB);转移到CB的激发态e-与O2反应产生O2·-,进而降解TC。同时,价带中的h+可直接降解TC。Miaomiao Wu等39采用水热法合成了BiYO3纳米棒,对TC有良好的光催化活性,降解过程的主要活性物质为·OH和h+。Jinwu Bai等16通过捕获实验证明O2·-和h+是Bi2MoO6光催化氧化TC的主要活性物质。半导体光催化的降解机理如图 1(a)所示。

图1

图1   降解机理

Fig.1   Degradation mechanisms


4.2 半导体/半导体异质结

半导体/半导体异质结一般为p-n型异质结,即光生e-从导带位置较负的半导体转移至导带位置较正的半导体导带上,而h+在价带上的流向与之相反。Ao Ren等40采用水热法合成了NiFe2O4/Bi2O3,并研究其对TC降解的光催化机理。由于NiFe2O4的CB比Bi2O3的CB更负,因此其CB中的e-会转移到Bi2O3的CB中,有利于减少电子-空穴对的复合;同时,NiFe2O4VB中的h+可直接降解TC。Juan Cheng等41制备了Bi2WO6/ZnO,对TC的降解率明显高于ZnO;捕获实验表明O2·-为光催化过程的主要活性物质。常见的半导体/半导体异质结降解TC机理如图 1(b)所示。

对于Z型异质结,光生e-从导带位置较正的半导体转移到导带位置较负的半导体价带。Yi Ma等42采用静电纺丝技术和阴离子交换法合成了Bi2S3/BiFeO3,由于形成了Z型异质结,有效提高了氧化还原效率,因此该复合材料的光催化活性远远高于Bi2S3、BiFeO3。Xiaowen Ruan等43制备了γ-Bi2MoO6/Bi12GeO20,对TC的降解速率较Bi12GeO20、Bi2MoO6分别高出约5.48、1.89倍。Z型异质结的降解机理如图 1(c)所示。

4.3 等离子体效应与导体材料掺杂

导体材料可作为e-捕获剂从而提高光催化性能。Bifu Luo等44通过光还原过程制备了Ag/Bi3TaO7等离子体光催化剂。在光照条件下,h+直接氧化OH-或H2O形成·OH,但不能形成O2·-,因为Bi3TaO7的VB电位比O2/O2·-的更正;Ag的等离子体效应可产生大量电子-空穴对,由于Bi3TaO7的CB电位比Ag的费米能级更负,因此Bi3TaO7的e-能转移到Ag并与Ag的h+结合,Ag的e-与O2产生O2·-,可氧化TC。Xingying Li等45、Enhui Jiang等46合成的Ag/Bi3.84W0.16O6.24、Ag/Bi3O4Cl复合材料光催化性能优异,得益于Ag的等离子体效应。Longfei Yue等47采用水热法合成了碳纳米管-Bi2WO6光催化剂,降解水中的TC。光生e-由Bi2WO6转移到碳纳米管中,增强了光生e-和h+的分离。与Bi2WO6相比,该复合材料的光催化活性显著提高。Jun Di等48发现多壁碳纳米管-Bi4O5Br2光催化降解TC的主要活性物质为h+和O2·-。引入导体材料降解TC的机理如图 1(d)所示。

4.4 中间产物

铋基材料降解TC过程中常见的中间产物如表 2所示。

表2   部分铋基材料降解TC过程的中间产物

Table 2  Intermediate products in TC degradation processes by some bismuth-based materials

m/z编号催化剂结构式
461A1AgBr/Bi2WO627
CdS/Bi3O4Cl49
Cu/Bi2Ti2O7/氧化石墨烯32
BiVO4/Bi2Ti2O750
碳掺杂氮化/Bi12O17Cl251
BiOI/Ag@AgI35
Bi2WO652
A2BiOBr/Bi2SiO553
AgI/Bi2Sn2O754
417B1AgI/Bi2Sn2O754
Bi2WO652
Sr-Bi2O333
BiOBr/Bi2SiO553
BiOI/Ag@AgI35
Ag3PO4/多壁碳纳米管/Bi2WO655
B2Bi2MoO656
431CAgBr/Bi2WO627
Ag3PO4/多壁碳纳米管/Bi2WO655
BiOI/Ag@AgI35
402D1Cu/Bi2Ti2O7/氧化石墨烯32
Bi5FeTi3O1557
BiVO4/Bi2Ti2O750
D2AgI/Bi2Sn2O754

新窗口打开| 下载CSV


由TC的分子结构(见图 2)可知,C11a-C12处的双键及D环的电子密度较高,易受到·OH攻击,分别形成产物A1和A2。m/z 417存在2种结构:(1)C4处的—N(CH3)2去甲基化,生成产物B1;(2)C4位置受到·OH攻击脱去—N(CH3)2,同时羟基被氧化为羰基,得到产物B2。TC分子C4处的—N(CH3)2去甲基化,脱去1个CH3生成产物C(m/z 431)。TC通过2种途径得到m/z 402:(1)脱去C4处的—N(CH3)2得到产物D1;(2)脱去C2处的—CONH2,生成产物D2。

图2

图2   TC分子结构

Fig.2   Molecular structure of TC


5 展望

采用铋基光催化剂降解水体中的TC具有稳定性高、载流子密度低、平均自由程长等优势,但也存在一些局限。未来研究应着重考虑:(1)合理设计光反应器,减少光能损失;(2)将铋基光催化剂固定在合适的载体上,实现快速分离和回收;(3)通过离子掺杂、优化异质结及构建单原子活性位点等策略,进一步增强铋基光催化剂的光降解能力;(4)对该法处理过程中的降解产物进行毒性评估,优化降解产物的生成途径,避免或减少高毒性降解产物的生成;(5)通过各表征手段进一步探究反应途径及机理,为工业化发展及应用提供理论支撑。

参考文献

闫琦, 刘培培, 张娇娇, .

畜禽粪便中残留四环素类抗生素的研究概况

[J]. 家畜生态学报, 2018, 39 (5): 80- 86.

DOI:10.3969/j.issn.1673-1182.2018.05.019      [本文引用: 1]

徐向月, 马文瑾, 安博宇, .

四环素类抗生素在环境中的风险评估研究进展

[J]. 中国畜牧兽医, 2020, 47 (3): 948- 957.

URL     [本文引用: 1]

曾萍, 刘诗月, 张俊珂, .

芬顿法深度处理生物处理排水中的四环素抗性基因

[J]. 中国环境科学, 2017, 37 (9): 3315- 3323.

DOI:10.3969/j.issn.1000-6923.2017.09.014      [本文引用: 1]

Michael I , Rizzo L , McArdell C S , et al.

Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review

[J]. Water Research, 2013, 47 (3): 957- 995.

DOI:10.1016/j.watres.2012.11.027      [本文引用: 1]

Guo Changsheng , Wang Kai , Hou Song , et al.

H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes

[J]. Journal of Hazardous Materials, 2017, 323, 710- 718.

DOI:10.1016/j.jhazmat.2016.10.041      [本文引用: 1]

刘文芳, 周汝利, 王燕子.

光催化剂TiO2改性的研究进展

[J]. 化工进展, 2016, 35 (8): 2446- 2454.

URL     [本文引用: 1]

Gong Jianyu , Lee C S , Chang Y Y , et al.

Novel self-assembled bimetallic structure of Bi/Fe0: The oxidative and reductive degradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine(RDX)

[J]. Journal of Hazardous Materials, 2015, 286, 107- 117.

DOI:10.1016/j.jhazmat.2014.10.063      [本文引用: 1]

Drache M , Roussel P , Wignacourt J P .

Structures and oxide mobility in Bi-Ln-O materials: Heritage of Bi2O3

[J]. Chemical Reviews, 2007, 107 (1): 80- 96.

DOI:10.1021/cr050977s      [本文引用: 1]

王永剑, 张亮, 赵朝成, .

MoS2/Bi2S3异质结光催化剂的制备及其光催化性能

[J]. 化工环保, 2018, 38 (3): 305- 310.

DOI:10.3969/j.issn.1006-1878.2018.03.010      [本文引用: 1]

Huang Cong , Chen Leilei , Li Haipu , et al.

Synthesis and application of Bi2WO6 for the photocatalytic degradation of two typical fluoroquinolones under visible light irradiation

[J]. RSC Advances, 2019, 9 (48): 27768- 27779.

DOI:10.1039/C9RA04445K      [本文引用: 1]

Yang Zixin , Shen Min , Dai Ke , et al.

Controllable synthesis of Bi2MoO6 nanosheets and their facet-dependent visible-light-driven photocatalytic activity

[J]. Applied Surface Science, 2018, 430, 505- 514.

DOI:10.1016/j.apsusc.2017.08.072     

Lu Yanjie , Shang Huishan , Shi Fengjuan , et al.

Preparation and efficient visible light-induced photocatalytic activity of m-BiVO4 with different morphologies

[J]. Journal of Physics and Chemistry of Solids, 2015, 85, 44- 50.

DOI:10.1016/j.jpcs.2015.04.016      [本文引用: 1]

Yin Bingxin , Fang Zhenyuan , Luo Bifu , et al.

Facile preparation of Bi24O31Cl10 nanosheets for visible-light-driven photocatalytic degradation of tetracycline hydrochloride

[J]. Catalysis Letters, 2017, 147 (8): 2167- 2172.

DOI:10.1007/s10562-017-2115-4      [本文引用: 2]

Wu Gongjuan , Zhao Yan , Li Yawen , et al.

Facile aqueous synthesis of Bi4O5Br2 nanosheets for improved visible-light photocatalytic activity

[J]. Ceramics International, 2018, 44 (5): 5392- 5401.

DOI:10.1016/j.ceramint.2017.12.168      [本文引用: 1]

Yang Jian , Liang Yujun , Li Kai , et al.

Design of 3D flowerlike BiOClxBr1-x nanostructure with high surface area for visible light photocatalytic activities

[J]. Journal of Alloys and Compounds, 2017, 725, 1144- 1157.

DOI:10.1016/j.jallcom.2017.07.213      [本文引用: 2]

Bai Jinwu , Li Yun , Liu Jiandang , et al.

3D Bi2MoO6 hollow mesoporous nanostructures with high photodegradation for tetracycline

[J]. Microporous and Mesoporous Materials, 2017, 240, 91- 95.

DOI:10.1016/j.micromeso.2016.11.008      [本文引用: 2]

Wang Min , Guo Pengyao , Chai T , et al.

Effects of Cu dopants on the structures and photocatalytic performance of cocoon-like Cu-BiVO4 prepared via ethylene glycol solvothermal method

[J]. Journal of Alloys and Compounds, 2017, 691, 8- 14.

DOI:10.1016/j.jallcom.2016.08.198      [本文引用: 1]

Camacho-Escobar L , Palma-Goyes R E , Ortiz-Landeros J , et al.

Unraveling the structural and composition properties associated with the enhancement of the photocatalytic activity under visible light of Ag2O/BiFeO3-Ag synthesized by microwave-assisted hydrothermal method

[J]. Applied Surface Science, 2020, 521, 146357.

DOI:10.1016/j.apsusc.2020.146357      [本文引用: 1]

Opoku F , Govender K K , van Sittert C G C E , et al.

Insights into the photocatalytic mechanism of mediatorfree direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study

[J]. Applied Surface Science, 2018, 427, 487- 498.

DOI:10.1016/j.apsusc.2017.09.019      [本文引用: 1]

Yu Lei , Fang Wenjian , Liu Junying , et al.

BixY1-xVO4 solid solution with porous surface synthesized by molten salt method for photocatalytic water splitting

[J]. International Journal of Hydrogen Energy, 2017, 42 (10): 6519- 6525.

DOI:10.1016/j.ijhydene.2017.01.001      [本文引用: 1]

Li Wenqi , Ding Xingeng , Wu Huating , et al.

Bi2MoxW1-xO6 solid solutions with tunable band structure and enhanced visible-light photocatalytic activities

[J]. Applied Surface Science, 2018, 447, 636- 647.

DOI:10.1016/j.apsusc.2018.04.039      [本文引用: 1]

Ding Junping , Wang Huanchun , Xu Haomin , et al.

Synthesis and broadband spectra photocatalytic properties of Bi2O2(CO3)1-xSx

[J]. Materials(Basel, Switzerland), 2018, 11 (5): E791.

URL     [本文引用: 1]

Jia Jiankui , Wang Qiong , Wang Yuping .

Synthesis of BixTiyOz/TiO2 heterojunction with enhanced visible-light photocatalytic activity and mechanism insight

[J]. Journal of Alloys and Compounds, 2019, 809, 151791.

DOI:10.1016/j.jallcom.2019.151791      [本文引用: 1]

Xu Jian , Qin Chuanxiang , Huang Yanlin , et al.

Narrow band gap and visible light-driven photocatalysis of V-doped Bi6Mo2O15 nanoparticles

[J]. Applied Surface Science, 2017, 396, 1403- 1410.

DOI:10.1016/j.apsusc.2016.11.174      [本文引用: 1]

Nezamzadeh-Ejhieh A , Shirzadi A .

Enhancement of the photocatalytic activity of Ferrous Oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline

[J]. Chemosphere, 2014, 107, 136- 144.

DOI:10.1016/j.chemosphere.2014.02.015      [本文引用: 1]

Yu Hongbin , Wang Danyang , Zhao Bin , et al.

Enhanced photocatalytic degradation of tetracycline under visible light by using a ternary photocatalyst of Ag3PO4/AgBr/g-C3N4 with dual Z-scheme heterojunction

[J]. Separation and Purification Technology, 2020, 237, 116365.

DOI:10.1016/j.seppur.2019.116365      [本文引用: 2]

Huang Danlian , Li Jing , Zeng Guangming , et al.

Facile construction of hierarchical flower-like Z-scheme AgBr/Bi2WO6 photocatalysts for effective removal of tetracycline: Degradation pathways and mechanism

[J]. Chemical Engineering Journal, 2019, 375, 121991.

DOI:10.1016/j.cej.2019.121991      [本文引用: 4]

Gaya U I , Abdullah A H .

Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems

[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008, 9 (1): 1- 12.

DOI:10.1016/j.jphotochemrev.2007.12.003      [本文引用: 1]

Ahmed S , Rasul M G , Martens W N , et al.

Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments

[J]. Desalination, 2010, 261 (1/2): 3- 18.

URL     [本文引用: 1]

Fallahi Motlagh H , Haghighi M , Shabani M .

Sono-solvothermal fabrication of ball-flowerlike Bi2O7Sn2-Bi7O9I3 nanophotocatalyst with efficient solar-light-driven activity for degradation of antibiotic tetracycline

[J]. Solar Energy, 2019, 180, 25- 38.

DOI:10.1016/j.solener.2019.01.021      [本文引用: 1]

Heidari S , Haghighi M , Shabani M .

Ultrasound assisted dispersion of Bi2Sn2O7-C3N4 nanophotocatalyst over various amount of zeolite Y for enhanced solar-light photocatalytic degradation of tetracycline in aqueous solution

[J]. Ultrasonics Sonochemistry, 2018, 43, 61- 72.

DOI:10.1016/j.ultsonch.2018.01.001      [本文引用: 1]

Shanavas S , Priyadharsan A , Gkanas E I , et al.

High efficient catalytic degradation of tetracycline and ibuprofen using visible light driven novel Cu/Bi2Ti2O7/rGO nanocomposite: Kinetics, intermediates and mechanism

[J]. Journal of Industrial and Engineering Chemistry, 2019, 72, 512- 528.

DOI:10.1016/j.jiec.2019.01.008      [本文引用: 3]

Niu Junfeng , Ding Shiyuan , Zhang Liwen , et al.

Visible-light-mediated Sr-Bi2O3 photocatalysis of tetracycline: Kinetics, mechanisms and toxicity assessment

[J]. Chemosphere, 2013, 93 (1): 1- 8.

DOI:10.1016/j.chemosphere.2013.04.043      [本文引用: 2]

Liu Jianchang , Hu Zheng , Li Zhenlu , et al.

Removal of tetracycline by BiOBr microspheres with oxygen vacancies: Combination of adsorption and photocatalysis

[J]. Journal of Physics and Chemistry of Solids, 2019, 129, 61- 70.

URL     [本文引用: 1]

Yang Yang , Zeng Zhuotong , Zhang Chen , et al.

Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: Transformation pathways and mechanism insight

[J]. Chemical Engineering Journal, 2018, 349, 808- 821.

DOI:10.1016/j.cej.2018.05.093      [本文引用: 4]

Khodaeipour M , Haghighi M , Shabani M , et al.

Influence of fuel type and microwave combustion on in situ fabrication of BimOnBrz mixed-phase nanostructured photocatalyst: Effective sun-light photo-response ability in tetracycline degradation

[J]. Journal of Hazardous Materials, 2020, 393, 122462.

DOI:10.1016/j.jhazmat.2020.122462      [本文引用: 1]

Wang Dadao , Li Jian , Xu Zhifeng , et al.

Preparation of novel flower-like BiVO4/Bi2Ti2O7/Fe3O4 for simultaneous removal of tetracycline and Cu2+: Adsorption and photocatalytic mechanisms

[J]. Journal of Colloid and Interface Science, 2019, 533, 344- 357.

DOI:10.1016/j.jcis.2018.08.089      [本文引用: 1]

Xiao Xin , Hu Ruiping , Liu Chao , et al.

Facile microwave synthesis of novel hierarchical Bi24O31Br10 nanoflakes with excellent visible light photocatalytic performance for the degradation of tetracycline hydrochloride

[J]. Chemical Engineering Journal, 2013, 225, 790- 797.

DOI:10.1016/j.cej.2013.03.103      [本文引用: 1]

Wu Miaomiao , Xu Dongbo , Luo Bifu , et al.

Synthesis of BiYO3 nanorods with visible-light photocatalytic activity for the degradation of tetracycline

[J]. Materials Letters, 2015, 161, 45- 48.

DOI:10.1016/j.matlet.2015.06.091      [本文引用: 1]

Ren Ao , Liu Chunbo , Hong Yuanzhi , et al.

Enhanced visible-light-driven photocatalytic activity for antibiotic degradation using magnetic NiFe2O4/Bi2O3 heterostructures

[J]. Chemical Engineering Journal, 2014, 258, 301- 308.

DOI:10.1016/j.cej.2014.07.071      [本文引用: 1]

Cheng Juan , Shen Yi , Chen Kuan , et al.

Flower-like Bi2WO6/ZnO composite with excellent photocatalytic capability under visible light irradiation

[J]. Chinese Journal of Catalysis, 2018, 39 (4): 810- 820.

DOI:10.1016/S1872-2067(17)63004-3      [本文引用: 1]

Ma Yi , Lv P , Duan Fang , et al.

Direct Z-scheme Bi2S3/BiFeO3 heterojunction nanofibers with enhanced photocatalytic activity

[J]. Journal of Alloys and Compounds, 2020, 834, 155158.

DOI:10.1016/j.jallcom.2020.155158      [本文引用: 1]

Ruan Xiaowen , Hu Hao , Che Guangbo , et al.

Fabrication of Z-scheme γ-Bi2MoO6/Bi12GeO20 heterostructure for visible-light-driven photocatalytic degradation of organic pollutants

[J]. Applied Surface Science, 2020, 499, 143668.

DOI:10.1016/j.apsusc.2019.143668      [本文引用: 1]

Luo Bifu , Xu Dongbo , Li Di , et al.

Fabrication of a Ag/Bi3TaO7 plasmonic photocatalyst with enhanced photocatalytic activity for degradation of tetracycline

[J]. ACS Applied Materials & Interfaces, 2015, 7 (31): 17061- 17069.

URL     [本文引用: 1]

Li Xinying , Wang Liping , Xu Dongbo , et al.

Enhanced photocatalytic degradation activity for tetracycline under visible light irradiation of Ag/Bi3.84W0.16O6.24 nanooctahedrons

[J]. CrystEngComm, 2015, 17 (11): 2421- 2428.

DOI:10.1039/C4CE02376E      [本文引用: 1]

Jiang Enhui , Liu Xiaoteng , Che Huinan , et al.

Visible-light-driven Ag/Bi3O4Cl nanocomposite photocatalyst with enhanced photocatalytic activity for degradation of tetracycline

[J]. RSC Advances, 2018, 8 (65): 37200- 37207.

DOI:10.1039/C8RA07482H      [本文引用: 1]

Yue Longfei , Wang Shanfeng , Shan Guoqiang , et al.

Novel MWNTs-Bi2WO6 composites with enhanced simulated solar photoactivity toward adsorbed and free tetracycline in water

[J]. Applied Catalysis B: Environmental, 2015, 176/177, 11- 19.

DOI:10.1016/j.apcatb.2015.03.043      [本文引用: 1]

Di Jun , Ji Mengxia , Xia Jiexiang , et al.

Bi4O5Br2 ultrasmall nanosheets in situ strong coupling to MWCNT and improved photocatalytic activity for tetracycline hydrochloride degradation

[J]. Journal of Molecular Catalysis A: Chemical, 2016, 424, 331- 341.

DOI:10.1016/j.molcata.2016.08.029      [本文引用: 1]

Che Huinan , Che Guangbo , Jiang Enhui , et al.

A novel Z-Scheme CdS/Bi3O4Cl heterostructure for photocatalytic degradation of antibiotics: Mineralization activity, degradation pathways and mechanism insight

[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 224- 234.

DOI:10.1016/j.jtice.2018.05.004      [本文引用: 1]

Li Jinhai , Han Mengshu , Guo Yang , et al.

Hydrothermal synthesis of novel flower-like BiVO4/Bi2Ti2O7 with superior photocatalytic activity toward tetracycline removal

[J]. Applied Catalysis A: General, 2016, 524, 105- 114.

DOI:10.1016/j.apcata.2016.06.025      [本文引用: 2]

Zhou Chengyun , Lai Cui , Xu Piao , et al.

Rational design of carbondoped carbon nitride/Bi12O17Cl2 composites: A promising candidate photocatalyst for boosting visible-light-driven photocatalytic degradation of tetracycline

[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (5): 6941- 6949.

URL     [本文引用: 1]

Zhong Shuang , Li Chenyang , Shen Mengnan , et al.

Synthesis of modified bismuth tungstate and the photocatalytic properties on tetracycline degradation and pathways

[J]. Journal of Materials Research and Technology, 2019, 8 (2): 1849- 1858.

DOI:10.1016/j.jmrt.2019.01.002      [本文引用: 2]

Wang Jia , Zhang Gaoke , Li Jun , et al.

Novel three-dimensional flowerlike BiOBr/Bi2SiO5 p-n heterostructured nanocomposite for degradation of tetracycline: Enhanced visible light photocatalytic activity and mechanism

[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (11): 14221- 14229.

URL     [本文引用: 2]

Guo Hai , Niu Chenggang , Zhang Lei , et al.

Construction of direct Z-scheme AgI/Bi2Sn2O7 nanojunction system with enhanced photocatalytic activity: Accelerated interfacial charge transfer induced efficient Cr(Ⅵ) reduction, tetracycline degradation and escherichia coli inactivation

[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (6): 8003- 8018.

[本文引用: 3]

Li Minfang , Lai Cui , Yi Huan , et al.

Multiple charge-carrier transfer channels of Z-scheme bismuth tungstate-based photocatalyst for tetracycline degradation: Transformation pathways and mechanism

[J]. Journal of Colloid and Interface Science, 2019, 555, 770- 782.

DOI:10.1016/j.jcis.2019.08.035      [本文引用: 2]

He Dong , Sun Yabing , Li Shunbin , et al.

Decomposition of tetracycline in aqueous solution by corona discharge plasma combined with a Bi2MoO6 nanocatalyst

[J]. Journal of Chemical Technology & Biotechnology, 2015, 90 (12): 2249- 2256.

URL     [本文引用: 1]

Hailili R , Wang Zhiqiang , Xu Meiyue , et al.

Layered nanostructured ferroelectric perovskite Bi5FeTi3O15 for visible light photodegradation of antibiotics

[J]. Journal of Materials Chemistry A, 2017, 5 (40): 21275- 21290.

DOI:10.1039/C7TA06618J      [本文引用: 1]

/