| 1 | 闫琦, 刘培培, 张娇娇, 等.  畜禽粪便中残留四环素类抗生素的研究概况[J]. 家畜生态学报, 2018, 39 (5): 80- 86. doi: 10.3969/j.issn.1673-1182.2018.05.019
 | 
																													
																						| 2 | 徐向月, 马文瑾, 安博宇, 等.  四环素类抗生素在环境中的风险评估研究进展[J]. 中国畜牧兽医, 2020, 47 (3): 948- 957. URL
 | 
																													
																						| 3 | 曾萍, 刘诗月, 张俊珂, 等.  芬顿法深度处理生物处理排水中的四环素抗性基因[J]. 中国环境科学, 2017, 37 (9): 3315- 3323. doi: 10.3969/j.issn.1000-6923.2017.09.014
 | 
																													
																						| 4 | Michael I ,  Rizzo L ,  McArdell C S , et al.  Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review[J]. Water Research, 2013, 47 (3): 957- 995. doi: 10.1016/j.watres.2012.11.027
 | 
																													
																						| 5 | Guo Changsheng ,  Wang Kai ,  Hou Song , et al.  H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes[J]. Journal of Hazardous Materials, 2017, 323, 710- 718. doi: 10.1016/j.jhazmat.2016.10.041
 | 
																													
																						| 6 | 刘文芳, 周汝利, 王燕子.  光催化剂TiO2改性的研究进展[J]. 化工进展, 2016, 35 (8): 2446- 2454. URL
 | 
																													
																						| 7 | Gong Jianyu ,  Lee C S ,  Chang Y Y , et al.  Novel self-assembled bimetallic structure of Bi/Fe0: The oxidative and reductive degradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine(RDX)[J]. Journal of Hazardous Materials, 2015, 286, 107- 117. doi: 10.1016/j.jhazmat.2014.10.063
 | 
																													
																						| 8 | Drache M ,  Roussel P ,  Wignacourt J P .  Structures and oxide mobility in Bi-Ln-O materials: Heritage of Bi2O3[J]. Chemical Reviews, 2007, 107 (1): 80- 96. doi: 10.1021/cr050977s
 | 
																													
																						| 9 | 王永剑, 张亮, 赵朝成, 等.  MoS2/Bi2S3异质结光催化剂的制备及其光催化性能[J]. 化工环保, 2018, 38 (3): 305- 310. doi: 10.3969/j.issn.1006-1878.2018.03.010
 | 
																													
																						| 10 | Huang Cong ,  Chen Leilei ,  Li Haipu , et al.  Synthesis and application of Bi2WO6 for the photocatalytic degradation of two typical fluoroquinolones under visible light irradiation[J]. RSC Advances, 2019, 9 (48): 27768- 27779. doi: 10.1039/C9RA04445K
 | 
																													
																						| 11 | Yang Zixin ,  Shen Min ,  Dai Ke , et al.  Controllable synthesis of Bi2MoO6 nanosheets and their facet-dependent visible-light-driven photocatalytic activity[J]. Applied Surface Science, 2018, 430, 505- 514. doi: 10.1016/j.apsusc.2017.08.072
 | 
																													
																						| 12 | Lu Yanjie ,  Shang Huishan ,  Shi Fengjuan , et al.  Preparation and efficient visible light-induced photocatalytic activity of m-BiVO4 with different morphologies[J]. Journal of Physics and Chemistry of Solids, 2015, 85, 44- 50. doi: 10.1016/j.jpcs.2015.04.016
 | 
																													
																						| 13 | Yin Bingxin ,  Fang Zhenyuan ,  Luo Bifu , et al.  Facile preparation of Bi24O31Cl10 nanosheets for visible-light-driven photocatalytic degradation of tetracycline hydrochloride[J]. Catalysis Letters, 2017, 147 (8): 2167- 2172. doi: 10.1007/s10562-017-2115-4
 | 
																													
																						| 14 | Wu Gongjuan ,  Zhao Yan ,  Li Yawen , et al.  Facile aqueous synthesis of Bi4O5Br2 nanosheets for improved visible-light photocatalytic activity[J]. Ceramics International, 2018, 44 (5): 5392- 5401. doi: 10.1016/j.ceramint.2017.12.168
 | 
																													
																						| 15 | Yang Jian ,  Liang Yujun ,  Li Kai , et al.  Design of 3D flowerlike BiOClxBr1-x nanostructure with high surface area for visible light photocatalytic activities[J]. Journal of Alloys and Compounds, 2017, 725, 1144- 1157. doi: 10.1016/j.jallcom.2017.07.213
 | 
																													
																						| 16 | Bai Jinwu ,  Li Yun ,  Liu Jiandang , et al.  3D Bi2MoO6 hollow mesoporous nanostructures with high photodegradation for tetracycline[J]. Microporous and Mesoporous Materials, 2017, 240, 91- 95. doi: 10.1016/j.micromeso.2016.11.008
 | 
																													
																						| 17 | Wang Min ,  Guo Pengyao ,  Chai T , et al.  Effects of Cu dopants on the structures and photocatalytic performance of cocoon-like Cu-BiVO4 prepared via ethylene glycol solvothermal method[J]. Journal of Alloys and Compounds, 2017, 691, 8- 14. doi: 10.1016/j.jallcom.2016.08.198
 | 
																													
																						| 18 | Camacho-Escobar L ,  Palma-Goyes R E ,  Ortiz-Landeros J , et al.  Unraveling the structural and composition properties associated with the enhancement of the photocatalytic activity under visible light of Ag2O/BiFeO3-Ag synthesized by microwave-assisted hydrothermal method[J]. Applied Surface Science, 2020, 521, 146357. doi: 10.1016/j.apsusc.2020.146357
 | 
																													
																						| 19 | Opoku F ,  Govender K K ,  van Sittert C G C E , et al.  Insights into the photocatalytic mechanism of mediatorfree direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study[J]. Applied Surface Science, 2018, 427, 487- 498. doi: 10.1016/j.apsusc.2017.09.019
 | 
																													
																						| 20 | Yu Lei ,  Fang Wenjian ,  Liu Junying , et al.  BixY1-xVO4 solid solution with porous surface synthesized by molten salt method for photocatalytic water splitting[J]. International Journal of Hydrogen Energy, 2017, 42 (10): 6519- 6525. doi: 10.1016/j.ijhydene.2017.01.001
 | 
																													
																						| 21 | Li Wenqi ,  Ding Xingeng ,  Wu Huating , et al.  Bi2MoxW1-xO6 solid solutions with tunable band structure and enhanced visible-light photocatalytic activities[J]. Applied Surface Science, 2018, 447, 636- 647. doi: 10.1016/j.apsusc.2018.04.039
 | 
																													
																						| 22 | Ding Junping ,  Wang Huanchun ,  Xu Haomin , et al.  Synthesis and broadband spectra photocatalytic properties of Bi2O2(CO3)1-xSx[J]. Materials(Basel, Switzerland), 2018, 11 (5): E791. URL
 | 
																													
																						| 23 | Jia Jiankui ,  Wang Qiong ,  Wang Yuping .  Synthesis of BixTiyOz/TiO2 heterojunction with enhanced visible-light photocatalytic activity and mechanism insight[J]. Journal of Alloys and Compounds, 2019, 809, 151791. doi: 10.1016/j.jallcom.2019.151791
 | 
																													
																						| 24 | Xu Jian ,  Qin Chuanxiang ,  Huang Yanlin , et al.  Narrow band gap and visible light-driven photocatalysis of V-doped Bi6Mo2O15 nanoparticles[J]. Applied Surface Science, 2017, 396, 1403- 1410. doi: 10.1016/j.apsusc.2016.11.174
 | 
																													
																						| 25 | Nezamzadeh-Ejhieh A ,  Shirzadi A .  Enhancement of the photocatalytic activity of Ferrous Oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline[J]. Chemosphere, 2014, 107, 136- 144. doi: 10.1016/j.chemosphere.2014.02.015
 | 
																													
																						| 26 | Yu Hongbin ,  Wang Danyang ,  Zhao Bin , et al.  Enhanced photocatalytic degradation of tetracycline under visible light by using a ternary photocatalyst of Ag3PO4/AgBr/g-C3N4 with dual Z-scheme heterojunction[J]. Separation and Purification Technology, 2020, 237, 116365. doi: 10.1016/j.seppur.2019.116365
 | 
																													
																						| 27 | Huang Danlian ,  Li Jing ,  Zeng Guangming , et al.  Facile construction of hierarchical flower-like Z-scheme AgBr/Bi2WO6 photocatalysts for effective removal of tetracycline: Degradation pathways and mechanism[J]. Chemical Engineering Journal, 2019, 375, 121991. doi: 10.1016/j.cej.2019.121991
 | 
																													
																						| 28 | Gaya U I ,  Abdullah A H .  Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008, 9 (1): 1- 12. doi: 10.1016/j.jphotochemrev.2007.12.003
 | 
																													
																						| 29 | Ahmed S ,  Rasul M G ,  Martens W N , et al.  Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments[J]. Desalination, 2010, 261 (1/2): 3- 18. URL
 | 
																													
																						| 30 | Fallahi Motlagh H ,  Haghighi M ,  Shabani M .  Sono-solvothermal fabrication of ball-flowerlike Bi2O7Sn2-Bi7O9I3 nanophotocatalyst with efficient solar-light-driven activity for degradation of antibiotic tetracycline[J]. Solar Energy, 2019, 180, 25- 38. doi: 10.1016/j.solener.2019.01.021
 | 
																													
																						| 31 | Heidari S ,  Haghighi M ,  Shabani M .  Ultrasound assisted dispersion of Bi2Sn2O7-C3N4 nanophotocatalyst over various amount of zeolite Y for enhanced solar-light photocatalytic degradation of tetracycline in aqueous solution[J]. Ultrasonics Sonochemistry, 2018, 43, 61- 72. doi: 10.1016/j.ultsonch.2018.01.001
 | 
																													
																						| 32 | Shanavas S ,  Priyadharsan A ,  Gkanas E I , et al.  High efficient catalytic degradation of tetracycline and ibuprofen using visible light driven novel Cu/Bi2Ti2O7/rGO nanocomposite: Kinetics, intermediates and mechanism[J]. Journal of Industrial and Engineering Chemistry, 2019, 72, 512- 528. doi: 10.1016/j.jiec.2019.01.008
 | 
																													
																						| 33 | Niu Junfeng ,  Ding Shiyuan ,  Zhang Liwen , et al.  Visible-light-mediated Sr-Bi2O3 photocatalysis of tetracycline: Kinetics, mechanisms and toxicity assessment[J]. Chemosphere, 2013, 93 (1): 1- 8. doi: 10.1016/j.chemosphere.2013.04.043
 | 
																													
																						| 34 | Liu Jianchang ,  Hu Zheng ,  Li Zhenlu , et al.  Removal of tetracycline by BiOBr microspheres with oxygen vacancies: Combination of adsorption and photocatalysis[J]. Journal of Physics and Chemistry of Solids, 2019, 129, 61- 70. URL
 | 
																													
																						| 35 | Yang Yang ,  Zeng Zhuotong ,  Zhang Chen , et al.  Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: Transformation pathways and mechanism insight[J]. Chemical Engineering Journal, 2018, 349, 808- 821. doi: 10.1016/j.cej.2018.05.093
 | 
																													
																						| 36 | Khodaeipour M ,  Haghighi M ,  Shabani M , et al.  Influence of fuel type and microwave combustion on in situ fabrication of BimOnBrz mixed-phase nanostructured photocatalyst: Effective sun-light photo-response ability in tetracycline degradation[J]. Journal of Hazardous Materials, 2020, 393, 122462. doi: 10.1016/j.jhazmat.2020.122462
 | 
																													
																						| 37 | Wang Dadao ,  Li Jian ,  Xu Zhifeng , et al.  Preparation of novel flower-like BiVO4/Bi2Ti2O7/Fe3O4 for simultaneous removal of tetracycline and Cu2+: Adsorption and photocatalytic mechanisms[J]. Journal of Colloid and Interface Science, 2019, 533, 344- 357. doi: 10.1016/j.jcis.2018.08.089
 | 
																													
																						| 38 | Xiao Xin ,  Hu Ruiping ,  Liu Chao , et al.  Facile microwave synthesis of novel hierarchical Bi24O31Br10 nanoflakes with excellent visible light photocatalytic performance for the degradation of tetracycline hydrochloride[J]. Chemical Engineering Journal, 2013, 225, 790- 797. doi: 10.1016/j.cej.2013.03.103
 | 
																													
																						| 39 | Wu Miaomiao ,  Xu Dongbo ,  Luo Bifu , et al.  Synthesis of BiYO3 nanorods with visible-light photocatalytic activity for the degradation of tetracycline[J]. Materials Letters, 2015, 161, 45- 48. doi: 10.1016/j.matlet.2015.06.091
 | 
																													
																						| 40 | Ren Ao ,  Liu Chunbo ,  Hong Yuanzhi , et al.  Enhanced visible-light-driven photocatalytic activity for antibiotic degradation using magnetic NiFe2O4/Bi2O3 heterostructures[J]. Chemical Engineering Journal, 2014, 258, 301- 308. doi: 10.1016/j.cej.2014.07.071
 | 
																													
																						| 41 | Cheng Juan ,  Shen Yi ,  Chen Kuan , et al.  Flower-like Bi2WO6/ZnO composite with excellent photocatalytic capability under visible light irradiation[J]. Chinese Journal of Catalysis, 2018, 39 (4): 810- 820. doi: 10.1016/S1872-2067(17)63004-3
 | 
																													
																						| 42 | Ma Yi ,  Lv P ,  Duan Fang , et al.  Direct Z-scheme Bi2S3/BiFeO3 heterojunction nanofibers with enhanced photocatalytic activity[J]. Journal of Alloys and Compounds, 2020, 834, 155158. doi: 10.1016/j.jallcom.2020.155158
 | 
																													
																						| 43 | Ruan Xiaowen ,  Hu Hao ,  Che Guangbo , et al.  Fabrication of Z-scheme γ-Bi2MoO6/Bi12GeO20 heterostructure for visible-light-driven photocatalytic degradation of organic pollutants[J]. Applied Surface Science, 2020, 499, 143668. doi: 10.1016/j.apsusc.2019.143668
 | 
																													
																						| 44 | Luo Bifu ,  Xu Dongbo ,  Li Di , et al.  Fabrication of a Ag/Bi3TaO7 plasmonic photocatalyst with enhanced photocatalytic activity for degradation of tetracycline[J]. ACS Applied Materials & Interfaces, 2015, 7 (31): 17061- 17069. URL
 | 
																													
																						| 45 | Li Xinying ,  Wang Liping ,  Xu Dongbo , et al.  Enhanced photocatalytic degradation activity for tetracycline under visible light irradiation of Ag/Bi3.84W0.16O6.24 nanooctahedrons[J]. CrystEngComm, 2015, 17 (11): 2421- 2428. doi: 10.1039/C4CE02376E
 | 
																													
																						| 46 | Jiang Enhui ,  Liu Xiaoteng ,  Che Huinan , et al.  Visible-light-driven Ag/Bi3O4Cl nanocomposite photocatalyst with enhanced photocatalytic activity for degradation of tetracycline[J]. RSC Advances, 2018, 8 (65): 37200- 37207. doi: 10.1039/C8RA07482H
 | 
																													
																						| 47 | Yue Longfei ,  Wang Shanfeng ,  Shan Guoqiang , et al.  Novel MWNTs-Bi2WO6 composites with enhanced simulated solar photoactivity toward adsorbed and free tetracycline in water[J]. Applied Catalysis B: Environmental, 2015, 176/177, 11- 19. doi: 10.1016/j.apcatb.2015.03.043
 | 
																													
																						| 48 | Di Jun ,  Ji Mengxia ,  Xia Jiexiang , et al.  Bi4O5Br2 ultrasmall nanosheets in situ strong coupling to MWCNT and improved photocatalytic activity for tetracycline hydrochloride degradation[J]. Journal of Molecular Catalysis A: Chemical, 2016, 424, 331- 341. doi: 10.1016/j.molcata.2016.08.029
 | 
																													
																						| 49 | Che Huinan ,  Che Guangbo ,  Jiang Enhui , et al.  A novel Z-Scheme CdS/Bi3O4Cl heterostructure for photocatalytic degradation of antibiotics: Mineralization activity, degradation pathways and mechanism insight[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 224- 234. doi: 10.1016/j.jtice.2018.05.004
 | 
																													
																						| 50 | Li Jinhai ,  Han Mengshu ,  Guo Yang , et al.  Hydrothermal synthesis of novel flower-like BiVO4/Bi2Ti2O7 with superior photocatalytic activity toward tetracycline removal[J]. Applied Catalysis A: General, 2016, 524, 105- 114. doi: 10.1016/j.apcata.2016.06.025
 | 
																													
																						| 51 | Zhou Chengyun ,  Lai Cui ,  Xu Piao , et al.  Rational design of carbondoped carbon nitride/Bi12O17Cl2 composites: A promising candidate photocatalyst for boosting visible-light-driven photocatalytic degradation of tetracycline[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (5): 6941- 6949. URL
 | 
																													
																						| 52 | Zhong Shuang ,  Li Chenyang ,  Shen Mengnan , et al.  Synthesis of modified bismuth tungstate and the photocatalytic properties on tetracycline degradation and pathways[J]. Journal of Materials Research and Technology, 2019, 8 (2): 1849- 1858. doi: 10.1016/j.jmrt.2019.01.002
 | 
																													
																						| 53 | Wang Jia ,  Zhang Gaoke ,  Li Jun , et al.  Novel three-dimensional flowerlike BiOBr/Bi2SiO5 p-n heterostructured nanocomposite for degradation of tetracycline: Enhanced visible light photocatalytic activity and mechanism[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (11): 14221- 14229. URL
 | 
																													
																						| 54 | Guo Hai ,  Niu Chenggang ,  Zhang Lei , et al.  Construction of direct Z-scheme AgI/Bi2Sn2O7 nanojunction system with enhanced photocatalytic activity: Accelerated interfacial charge transfer induced efficient Cr(Ⅵ) reduction, tetracycline degradation and escherichia coli inactivation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (6): 8003- 8018. | 
																													
																						| 55 | Li Minfang ,  Lai Cui ,  Yi Huan , et al.  Multiple charge-carrier transfer channels of Z-scheme bismuth tungstate-based photocatalyst for tetracycline degradation: Transformation pathways and mechanism[J]. Journal of Colloid and Interface Science, 2019, 555, 770- 782. doi: 10.1016/j.jcis.2019.08.035
 | 
																													
																						| 56 | He Dong ,  Sun Yabing ,  Li Shunbin , et al.  Decomposition of tetracycline in aqueous solution by corona discharge plasma combined with a Bi2MoO6 nanocatalyst[J]. Journal of Chemical Technology & Biotechnology, 2015, 90 (12): 2249- 2256. URL
 | 
																													
																						| 57 | Hailili R ,  Wang Zhiqiang ,  Xu Meiyue , et al.  Layered nanostructured ferroelectric perovskite Bi5FeTi3O15 for visible light photodegradation of antibiotics[J]. Journal of Materials Chemistry A, 2017, 5 (40): 21275- 21290. doi: 10.1039/C7TA06618J
 |