1 |
夏立全,陈贵锋,李文博,等. 焦化废水处理技术进展与发展方向[J]. 洁净煤技术,2020,26(4):56-63.
|
|
XIA Liquan, CHEN Guifeng, LI Wenbo,et al. Progress and perspectives of coking wastewater treatment technology[J]. Clean Coal Technology,2020,26(4):56-63.
|
2 |
张怡鸣,张玉秀,祖德彪,等. 焦化废水处理技术及其污泥细菌菌群结构功能研究进展[J]. 矿业科学学报,2020,5(2):232-241.
|
|
ZHANG Yiming, ZHANG Yuxiu, ZU Debiao,et al. Coking wastewater treatment technology and its bacterial community structure and function in sludge[J]. Journal of Mining Science and Technology,2020,5(2):232-241.
|
3 |
刘宝河,王智,李政辉,等. TiO2/MWCNTs光催化氧化法深度处理焦化废水生化尾水[J]. 环境科学与技术,2022,45(1):92-100.
|
|
LIU Baohe, WANG Zhi, LI Zhenghui,et al. Advanced treatment of biologically treated coking wastewater by TiO2/MWCNTs photocatalytic oxidation[J]. Environmental Science & Technology,2022,45(1):92-100.
|
4 |
LAI Cui, AN Ning, LI Bisheng,et al. Future roadmap on nonmetal-based 2D ultrathin nanomaterials for photocatalysis[J]. Chemical Engineering Journal, 2021, 406:126780. doi: 10.1016/j.cej.2020.126780
|
5 |
HUANG Ying, CHEN Bo, DUAN Jian,et al. Graphitic carbon nitride(g-C 3N 4):An interface enabler for solid-state lithium metal batteries[J]. Angewandte Chemie(International Ed.in English), 2020, 59(9):3699-3704. doi: 10.1002/anie.201914417
|
6 |
HUANG Yuanyong, LI Di, FANG Zhenyuan,et al. Controlling carbon self-doping site of g-C 3N 4 for highly enhanced visible-light-driven hydrogen evolution[J]. Applied Catalysis B:Environmental, 2019, 254:128-134. doi: 10.1016/j.apcatb.2019.04.082
|
7 |
ONG W J, TAN L L, NG Y H,et al. Graphitic carbon nitride(g-C 3N 4)-based photocatalysts for artificial photosynthesis and environmental remediation:Are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12):7159-7329. doi: 10.1021/acs.chemrev.6b00075
|
8 |
JIANG Longbo, YUAN Xingzhong, PAN Yang,et al. Doping of graphitic carbon nitride for photocatalysis:A review[J]. Applied Catalysis B: Environmental, 2017, 217:388–406. doi: 10.1016/j.apcatb.2017.06.003
|
9 |
ZHENG Yun, LIN Lihua, WANG Bo,et al. Graphitic carbon nitride polymers toward sustainable photoredox catalysis[J]. Angewandte Chemie(International Ed.in English), 2015, 54(44):12868-12884. doi: 10.1002/anie.201501788
|
10 |
ZHOU Yajun, ZHANG Lingxia, HUANG Weimin,et al. N⁃doped graphitic carbon-incorporated g-C 3N 4 for remarkably enhanced photocatalytic H 2 evolution under visible light[J]. Carbon, 2016, 99:111-117. doi: 10.1016/j.carbon.2015.12.008
|
11 |
ZHU Dandan, ZHOU Qixing. Nitrogen doped g-C 3N 4 with the extremely narrow band gap for excellent photocatalytic activities under visible light[J]. Applied Catalysis B:Environmental, 2021, 281:119474. doi: 10.1016/j.apcatb.2020.119474
|
12 |
LAI Cui, XU Fuhang, ZHANG Mingming,et al. Facile synthesis of CeO 2/carbonate doped Bi 2O 2CO 3 Z-scheme heterojunction for improved visible-light photocatalytic performance:Photodegradation of tetracycline and photocatalytic mechanism[J]. Journal of Colloid and Interface Science, 2021, 588:283-294. doi: 10.1016/j.jcis.2020.12.073
|
13 |
NAIDI S N, HARUNSANI M H, TAN Ai ling,et al. Green-synthesized CeO 2 nanoparticles for photocatalytic,antimicrobial,antioxidant and cytotoxicity activities[J]. Journal of Materials Chemistry B, 2021, 9(28):5599-5620. doi: 10.1039/d1tb00248a
|
14 |
JIANG Longbo, YUAN Xingzhong, ZENG Guangming,et al. Phosphorus- and sulfur-codoped g-C 3N 4:Facile preparation,mechanism insight,and application as efficient photocatalyst for tetracycline and methyl orange degradation under visible light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7):5831-5841. doi: 10.1021/acssuschemeng.7b00559
|
15 |
HUMAYUN M, HU Zhewen, KHAN A,et al. Highly efficient degradation of 2,4-dichlorophenol over CeO 2/g-C 3N 4 composites under visible-light irradiation:Detailed reaction pathway and mechanism[J]. Journal of Hazardous Materials, 2019, 364:635-644. doi: 10.1016/j.jhazmat.2018.10.088
|
16 |
JIANG Longbo, YUAN Xingzhong, ZENG Guangming,et al. Nitrogen self-doped g-C 3N 4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation[J]. Journal of Colloid and Interface Science, 2019, 536:17-29. doi: 10.1016/j.jcis.2018.10.033
|
17 |
GUAN Zeyu, ZUO Shiyu, YANG Fan,et al. The p and d hybridization interaction in Fe-N-C boosts peroxymonosulfate non-radical activation[J]. Separation and Purification Technology, 2021, 258:118025. doi: 10.1016/j.seppur.2020.118025
|
18 |
ZHOU Yajun, ZHANG Lingxia, LIU Jianjun,et al. Brand new P⁃doped g-C 3N 4:Enhanced photocatalytic activity for H 2 evolution and Rhodamine B degradation under visible light[J]. Journal of Materials Chemistry A, 2015, 3(7):3862-3867. doi: 10.1039/c4ta05292g
|
19 |
XU Fuhang, LAI Cui, ZHANG Mingming,et al. Facile one-pot synthesis of carbon self-doped graphitic carbon nitride loaded with ultra-low ceric dioxide for high-efficiency environmental photocatalysis:Organic pollutants degradation and hexavalent chromium reduction[J]. Journal of Colloid and Interface Science, 2021, 601:196-208. doi: 10.1016/j.jcis.2021.05.124
|
20 |
KESARLA M K, FUENTEZ-TORRES M O, ALCUDIA-RAMOS M A,et al. Synthesis of g-C 3N 4/N-doped CeO 2 composite for photocatalytic degradation of an herbicide[J]. Journal of Materials Research and Technology, 2019, 8(2):1628-1635. doi: 10.1016/j.jmrt.2018.11.008
|
21 |
YANG Jian, LIANG Yujun, LI Kai,et al. One-step low-temperature synthesis of 0D CeO 2 quantum dots/2D BiOX(X=Cl,Br) nanoplates heterojunctions for highly boosting photo-oxidation and reduction ability[J]. Applied Catalysis B:Environmental, 2019, 250:17-30. doi: 10.1016/j.apcatb.2019.03.017
|
22 |
LI Ling, LIU Shiyu, CHENG Min,et al. Improving the Fenton-like catalytic performance of MnO x -Fe 3O 4/biochar using reducing agents:A comparative study[J]. Journal of Hazardous Materials, 2021, 406:124333. doi: 10.1016/j.jhazmat.2020.124333
|
23 |
LI Hongchao, SHAN Chao, PAN Bingcai. Fe(Ⅲ)-doped g-C 3N 4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species[J]. Environmental Science & Technology, 2018, 52(4):2197-2205. doi: 10.1021/acs.est.7b05563
|
24 |
FU Junwei, ZHU Bicheng, JIANG Chuanjia,et al. Hierarchical porous O-doped g-C 3N 4 with enhanced photocatalytic CO 2 reduction activity[J]. Small, 2017, 13(15):1603938. doi: 10.1002/smll.201603938
|
25 |
LIU Jinghai, ZHANG Tiekai, WANG Zhichao,et al. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity[J]. Journal of Materials Chemistry, 2011, 21(38):14398-14401. doi: 10.1039/c1jm12620b
|
26 |
LIN Yan, WU Shaohua, LI Xiang,et al. Microstructure and performance of Z-scheme photocatalyst of silver phosphate modified by MWCNTs and Cr-doped SrTiO 3 for malachite green degradation[J]. Applide Catalysis B:Environmental, 2018, 227:557-570. doi: 10.1016/j.apcatb.2018.01.054
|
27 |
CHEN Liuyun, XIE Xinling, SU Tongming,et al. Co 3O 4/CdS p-n heterojunction for enhancing photocatalytic hydrogen production:Co-S bond as a bridge for electron transfer[J]. Applied Surface Science, 2021, 567:150849. doi: 10.1016/j.apsusc.2021.150849
|
28 |
LIU Jue, WANG Guowei, LI Bing,et al. A high-efficiency mediator-free Z-scheme Bi 2MoO 6/AgI heterojunction with enhanced photocatalytic performance[J]. The Science of the Total Environment, 2021, 784:147227. doi: 10.1016/j.scitotenv.2021.147227
|
29 |
ZUO Weiyuan, LIANG Ling, YE Fanggui,et al. Construction of visible light driven silver sulfide/graphitic carbon nitride p-n heterojunction for improving photocatalytic disinfection[J]. Chemosphere, 2021, 283:131167. doi: 10.1016/j.chemosphere.2021.131167
|