1 |
LIU Guohua, HOIVIK N, WANG Kaiying,et al. Engineering TiO 2 nanomaterials for CO 2 conversion/solar fuels[J]. Solar Energy Materials and Solar Cells, 2012, 105:53-68. doi: 10.1016/j.solmat.2012.05.037
|
2 |
YU Jiaguo, QI Lifang, JARONIEC M. Hydrogen production by photocatalytic water splitting over Pt/TiO 2 nanosheets with exposed(001) facets[J]. Journal of Physical Chemistry C, 2010, 114:13118-13125. doi: 10.1021/jp104488b
|
3 |
SI Yanjie, ZHANG Yijie, LU Luhua,et al. Boosting visible light photocatalytic hydrogen evolution of graphitic carbon nitride via enhancing it interfacial redox activity with cobalt/nitrogen doped tubular graphitic carbon[J]. Applied Catalysis B:Environmental, 2018, 225:512-518. doi: 10.1016/j.apcatb.2017.12.010
|
4 |
SHI Miaomiao, BAO Di, WULAN Bari,et al. Au sub-nanoclusters on TiO 2 toward highly efficient and selective electrocatalyst for N 2 conversion to NH 3 at ambient conditions[J]. Advanced Materials, 2017, 29(17):1606550. doi: 10.1002/adma.201606550
|
5 |
IDE Y, TORII M, SANO T. Layered silicate as an excellent partner of a TiO 2 photocatalyst for efficient and selective green fine-chemical synthesis[J]. Journal of the American Chemical Society, 2013, 135(32):11784-11786. doi: 10.1021/ja406855e
|
6 |
MONTEAGUDO J M, DURÁN A, MARTÍN I S,et al. A novel combined solar pasteurizer/TiO 2 continuous-flow reactor for decontamination and disinfection of drinking water[J]. Chemosphere, 2017, 168:1447-1456. doi: 10.1016/j.chemosphere.2016.11.142
|
7 |
KEFENI K K, MAMBA B B. Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment:Review[J]. Sustainable Materials and Technologies, 2020, 23:e00140. doi: 10.1016/j.susmat.2019.e00140
|
8 |
LI Yongli, XU Xiangfeng, WANG Jinshu,et al. Post-redox engineering electron configurations of atomic thick C 3N 4 nanosheets for enhanced photocatalytic hydrogen evolution[J]. Applied Catalysis B:Environmental, 2020, 270:118855. doi: 10.1016/j.apcatb.2020.118855
|
9 |
LI Xiangzhong, LI Fangbai, FAN C M,et al. Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO 2 mesh photoelectrode[J]. Water Research, 2002, 36(9):2215-2224. doi: 10.1016/s0043-1354(01)00440-7
|
10 |
WATANABE T, FUKAYAMA S, MIYAUCHI M,et al. Photocatalytic activity and photo-induced wettability conversion of TiO 2 thin film prepared by sol-gel process on a soda-lime glass[J]. Journal of Sol-Gel Science and Technology, 2000, 19(1):71-76. doi: 10.1023/a:1008762121743
|
11 |
RYU C S, KIM M S, KIM B W. Photodegradation of alachlor with the TiO 2 film immobilised on the glass tube in aqueous solution[J]. Chemosphere, 2003, 53(7):765-771. doi: 10.1016/s0045-6535(03)00506-x
|
12 |
ZEMAN P, TAKABAYASHI S. Effect of total and oxygen partial pressures on structure of photocatalytic TiO 2 films sputtered on unheated substrate[J]. Surface and Coatings Technology, 2002, 153(1):93-99. doi: 10.1016/s0257-8972(01)01553-5
|
13 |
MATSUOKA M, KITANO M, TAKEUCHI M,et al. Photocatalytic water splitting on visible light-responsive TiO 2 thin films prepared by a RF magnetron sputtering deposition method[J]. Topics in Catalysis, 2005, 35(3):305-310. doi: 10.1007/s11244-005-3838-9
|
14 |
OCHIAI T, NANBA H, NAKAGAWA T,et al. Development of an O 3-assisted photocatalytic water-purification unit by using a TiO 2 modified titanium mesh filter[J]. Catalysis Science & Technology, 2012, 2(1):76-78. doi: 10.1039/c1cy00315a
|
15 |
TAKEDA S, SUZUKI S, ODAKA H,et al. Photocatalytic TiO 2 thin film deposited onto glass by DC magnetron sputtering[J]. Thin Solid Films, 2001, 392(2):338-344. doi: 10.1016/s0040-6090(01)01054-9
|
16 |
ALEXANDER F, ALMHEIRI M, DAHAL P,et al. Water splitting TiO 2 composite material based on black silicon as an efficient photocatalyst[J]. Solar Energy Materials and Solar Cells, 2018, 180:236-242. doi: 10.1016/j.solmat.2017.05.024
|
17 |
RAMASUNDARAM S, SEID M G, LEE W,et al. Preparation,characterization,and application of TiO 2-patterned polyimide film as a photocatalyst for oxidation of organic contaminants[J]. Journal of Hazardous Materials, 2017, 340:300-308. doi: 10.1016/j.jhazmat.2017.06.069
|
18 |
JIANG Wenjun, QIU Zhibao, YAO Wenqing,et al. TiO 2/Al(H 2PO 4) 3 composite film as separation-free and washing-resistance photocatalyst[J]. Applied Catalysis B:Environmental, 2017, 204:43-48. doi: 10.1016/j.apcatb.2016.11.026
|
19 |
张黎,王春昊,黄殿男,等. 改性TiO2/GAC光电协同处理甲基橙废水[J]. 工业水处理,2022,42(12):122-127.
|
|
ZHANG Li, WANG Chunhao, HUANG Diannan,et al. Modified TiO2/GAC photoelectric synergistic treatment of methyl orange wastewater[J]. Industrial Water Treatment,2022,42(12):122-127.
|
20 |
|
|
GAO Daxiang, HUANG Xiaozhong, SHI Hedi. Preparation of Ag@AgCl/GO/CA and its degradation performance on simulated wastewater[J]. Industrial Water Treatment, 2022, 42(12):106-113. doi: 10.19965/j.cnki.iwt.2022-0507
|
21 |
|
|
WANG Sijing, ZHU Yanyan, PENG Jingtang,et al. Photoelectrocatalytic degradation of chemical warfare agent simulant by TiO 2 electrode[J]. Industrial Water Treatment, 2022, 42(7):133-138. doi: 10.19965/j.cnki.iwt.2021-0948
|
22 |
|
|
GUAN Gaoming, SHAO Yixin, XU Zhaoliu,et al. The preparation and photo-electrocatalytic properties of ZnO@Zn/TiO 2 3D array composite[J]. Industrial Water Treatment, 2022, 42(2):130-135. doi: 10.19965/j.cnki.iwt.2021-0546
|
23 |
ZHENG Yan, DUAN Fang, CHEN Mingqing,et al. Synthetic Bi 2O 2CO 3 nanostructures:Novel photocatalyst with controlled special surface exposed[J]. Journal of Molecular Catalysis A:Chemical, 2010, 317(1/2):34-40. doi: 10.1016/j.molcata.2009.10.018
|
24 |
MEI Jun, LIAO Ting, AYOKO G A,et al. Two-dimensional bismuth oxide heterostructured nanosheets for lithium-and sodium-ion storages[J]. ACS Applied Materials & Interfaces, 2019, 11(31):28205-28212. doi: 10.1021/acsami.9b09882
|
25 |
WANG Huan, LIANG Yinghua, LIU Li,et al. Highly ordered TiO 2 nanotube arrays wrapped with g-C 3N 4 nanoparticles for efficient charge separation and increased photoelectrocatalytic degradation of phenol[J]. Journal of Hazardous Materials, 2018, 344:369-380. doi: 10.1016/j.jhazmat.2017.10.044
|
26 |
GUO Lichao, LI Jiajun, CAO Tingting,et al. A chemical-adsorption strategy to enhance the reaction kinetics of lithium-rich layered cathodes via double-shell surface modification[J]. ACS Applied Materials & Interfaces, 2016, 8(37):24594-24602. doi: 10.1021/acsami.6b07254
|
27 |
HOUAS A, LACHHEB H, KSIBI M,et al. Photocatalytic degradation pathway of methylene blue in water[J]. Applied Catalysis B:Environmental, 2001, 31(2):145-157. doi: 10.1016/s0926-3373(00)00276-9
|
28 |
GRČIĆ I, PUMA G L. Photocatalytic degradation of water contaminants in multiple photoreactors and evaluation of reaction kinetic constants independent of photon absorption,irradiance,reactor geometry,and hydrodynamics[J]. Environmental Science & Technology, 2013, 47(23):13702-13711. doi: 10.1021/es403472e
|
29 |
CHEN Huajun, TIAN Wenjie, DING Wuxiu. Effect of preparation methods on morphology of active manganese dioxide and 2,4-dinitrophenol adsorption performance[J]. Adsorption Science & Technology, 2018, 36(3/4):1100-1111. doi: 10.1177/0263617417752578
|
30 |
ZHANG Zhaohong, YU Fengyang, HUANG Lirong,et al. Confirmation of hydroxyl radicals(·OH) generated in the presence of TiO 2 supported on AC under microwave irradiation[J]. Journal of Hazardous Materials, 2014, 278:152-157. doi: 10.1016/j.jhazmat.2014.05.064
|
31 |
ZHANG Xing, FUJIWARA S, FUJII M. Measurements of thermal conductivity and electrical conductivity of a single carbon fiber[J]. International Journal of Thermophysics, 2000, 21(4):965-980. doi: 10.1023/a:1006674510648
|
32 |
HIRAKAWA T, NOSAKA Y. Properties of O 2 ·- and ·OH formed in TiO 2 aqueous suspensions by photocatalytic reaction and the influence of H 2O 2 and some ions[J]. Langmuir, 2002, 18(8):3247-3254. doi: 10.1021/la015685a
|