1 |
RATHI B S, KUMAR P S, VO D V N. Critical review on hazardous pollutants in water environment:Occurrence,monitoring,fate,removal technologies and risk assessment[J]. The Science of the Total Environment, 2021, 797:149134. doi: 10.1016/j.scitotenv.2021.149134
|
2 |
VO T S, HOSSAIN M M, JEONG H M,et al. Heavy metal removal applications using adsorptive membranes[J]. Nano Convergence, 2020, 7(1):36. doi: 10.1186/s40580-020-00245-4
|
3 |
ZHANG Helan, CARRILLO-NAVARRETE F, LÓPEZ-MESAS M,et al. Use of chemically treated human hair wastes for the removal of heavy metal ions from water[J]. Water, 2020, 12(5):1263. doi: 10.3390/w12051263
|
4 |
QIN Huaqing, HU Tianjue, ZHAI Yunbo,et al. The improved methods of heavy metals removal by biosorbents:A review[J]. Environmental Pollution, 2020, 258:113777. doi: 10.1016/j.envpol.2019.113777
|
5 |
TAHIR M B, KIRAN H, IQBAL T. The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach:A review[J]. Environmental Science and Pollution Research, 2019, 26(11):10515-10528. doi: 10.1007/s11356-019-04547-x
|
6 |
黄宗益. 基于BiOCl异质结光催化剂的制备和性能研究[D]. 福州:福建师范大学,2020.
|
|
HUANG Zongyi. Preparation of BiOCl-based heterojunction photocatalyst and performance studies[D]. Fuzhou:Fujian Normal University,2020.
|
7 |
ISMAIL M, WU Zheng, ZHANG Luohong,et al. High-efficient synergy of piezocatalysis and photocatalysis in bismuth oxychloride nanomaterial for dye decomposition[J]. Chemosphere, 2019, 228:212-218. doi: 10.1016/j.chemosphere.2019.04.121
|
8 |
吴姗姗. 氯氧化铋及其复合物的制备与光催化性能研究[D]. 广州:暨南大学,2021.
|
|
WU Shanshan. The synthesis of bismuth oxychloride and its composites and study on their photocatalytic properties[D]. Guangzhou:Jinan University,2021.
|
9 |
|
|
WANG Chuya. Novel visible-light-driven bismuth-based nanomaterials for the photocatalytic degradation of organic pollutants[D]. Hefei:University of Science and Technology of China, 2018. doi: 10.1002/aoc.4642
|
10 |
WREDE S, TIAN Haining. Towards sustainable and efficient p-type metal oxide semiconductor materials in dye-sensitised photocathodes for solar energy conversion[J]. Physical Chemistry Chemical Physics, 2020, 22(25):13850-13861. doi: 10.1039/d0cp01363c
|
11 |
方梓岚. BiOCl形貌调控与光催化性能研究[D]. 哈尔滨:哈尔滨理工大学,2022.
|
|
FANG Zilan. Morphology regulation and photocatalytic performance of BiOCl[D]. Harbin:Harbin University of Science and Technology,2022.
|
12 |
祁可敏. 生物质碳量子点改性铋系光催化剂的构建及对水体中典型药物的降解性能研究[D]. 兰州:兰州大学,2022.
|
|
QI Kemin. Construction of biomass carbon quantum dots modified the bismuth-based photocatalyst and study on the photodegradation performances of typical pharmaceutical in water[D]. Lanzhou:Lanzhou University,2022.
|
13 |
张凯,吉芳英. 铈氮改性水热炭活化过硫酸钾降解盐酸四环素[J]. 精细化工,2023,40(2):380-387.
|
|
ZHANG Kai, JI Fangying. Cerium-nitrogen modified hydrochar for efficient degradation of tetracycline hydrochloride via potassium persulfate activation[J]. Fine Chemicals, 2023,40(2):380-387.
|
14 |
陈润奇,颜雨坤,温国栋,等. 超小尺寸碳载Mn3O4纳米催化剂制备及其催化性能[J]. 精细化工,2023,40(3):592-599.
|
|
CHEN Runqi, YAN Yukun, WEN Guodong,et al. Preparation and catalytic performance of ultrafine carbon-supported Mn3O4 nanocatalyst[J]. Fine Chemicals,2023,40(3):592-599.
|
15 |
LEE Y H, DAI Yongming, FU Jingya,et al. A series of bismuth-oxychloride/bismuth-oxyiodide/graphene-oxide nanocomposites:Synthesis,characterization,and photcatalytic activity and mechanism[J]. Molecular Catalysis, 2017, 432:196-209. doi: 10.1016/j.mcat.2017.01.002
|
16 |
GAO Xiaoya, PENG Wen, TANG Guangbei,et al. Highly efficient and visible-light-driven BiOCl for photocatalytic degradation of carbamazepine[J]. Journal of Alloys and Compounds, 2018, 757:455-465. doi: 10.1016/j.jallcom.2018.05.081
|
17 |
ZOU Ping, LI Zhongguo, JIA Puqi,et al. Enhanced photocatalytic activity of bismuth oxychloride by in situ introducing oxygen vacancy[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 623:126705. doi: 10.1016/j.colsurfa.2021.126705
|
18 |
|
|
YAO Hanyu. Solvent-free synthesis and photoactivity of bismuth oxychloride microflowers,large nanosheet,and homojunctions[D]. Ji’nan:Shandong University, 2018. doi: 10.1002/cctc.201800357
|
19 |
SRIVIND J, NAGARETHINAM V S, SUGANYA M,et al. Visible light irradiated photocatalytic performance of SnS 2-CdO nanocomposite against the degradation of Rhodamine B(cationic) and Congo red(anionic) dyes[J]. Materials Science and Engineering:B, 2020, 255:114530. doi: 10.1016/j.mseb.2020.114530
|
20 |
梁林林. 氯氧化铋基光催化材料的制备及其性能研究[D]. 保定:河北大学,2020.
|
|
LIANG Linlin. Preparation and properties of bismuth oxychloride-based photocatalytic materials[D]. Baoding:Hebei University,2020.
|
21 |
李兵,吴福礼,黄有鹏,等. 花球状Ti3C2/TiO2复合材料的制备及其光催化性能[J]. 精细化工,2022,39(2):261-268.
|
|
LI Bing, WU Fuli, HUANG Youpeng,et al. Preparation and photocatalytic properties of flower-like sphere Ti3C2/TiO2 composites[J]. Fine Chemicals,2022,39(2):261-268.
|
22 |
ZHANG Nan, LI Leigang, SHAO Qi,et al. Fe-doped BiOCl nanosheets with light-switchable oxygen vacancies for photocatalytic nitrogen fixation[J]. ACS Applied Energy Materials, 2019, 2(12):8394-8398. doi: 10.1021/acsaem.9b01961
|
23 |
WANG Hong, ZHANG Wendong, LI Xinwei,et al. Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal@defective BiOCl hierarchical microspheres[J]. Applied Catalysis B:Environmental, 2018, 225:218-227. doi: 10.1016/j.apcatb.2017.11.079
|
24 |
XU Keke, FU Xiuli, PENG Zhijian. Facile synthesis and photocatalytic activity of La-doped BiOCl hierarchical,flower-like nano-/ micro-structures[J]. Materials Research Bulletin, 2018, 98:103-110. doi: 10.1016/j.materresbull.2017.10.013
|
25 |
张倩,王英迪,高峰,等. N-TiO2/Ti3C2复合材料的原位合成及其光催化性能[J]. 精细化工,2022,39(3):525-532.
|
|
ZHANG Qian, WANG Yingdi, GAO Feng,et al. In-situ synthesis and photocatalytic performance of N-TiO2/Ti3C2 composite[J]. Fine Chemicals,2022,39(3):525-532.
|
26 |
聂德财,杨继凯,杨雪,等. WO3/ZnWO4复合薄膜的制备及其光电化学性能[J]. 精细化工,2022,39(1):108-113.
|
|
NIE Decai, YANG Jikai, YANG Xue,et al. Preparation of WO3/ZnWO4 composite film and its photoelectrochemical performance[J]. Fine Chemicals,2022,39(1):108-113.
|