1 |
WALLING C. Intermediates in the reactions of Fenton type rea⁃gents[J]. Accounts of Chemical Research, 1998, 31(4):155-157. doi: 10.1021/ar9700567
|
2 |
LLOYD R V, HANNA P M, MASON R P. The origin of the hydroxyl radical oxygen in the Fenton reaction[J]. Free Radic Biology Medicine, 1997, 22(5):885-888. doi: 10.1016/s0891-5849(96)00432-7
|
3 |
|
|
WANG Weiming. The research on advanced treatment of coking wastewater by heterogeneous photo⁃Fenton[D]. Harbin:Harbin Institute of Technology, 2012. doi: 10.4028/www.scientific.net/amr.599.313
|
4 |
RUPPERT G, BAUER R, HEISLER G. The photo⁃Fenton reaction :An effective photochemical wastewater treatment process[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1993, 73(1):75-78. doi: 10.1016/1010-6030(93)80035-8
|
5 |
肖华,周荣丰. 电芬顿法的研究现状与发展[J]. 上海环境科学,2004,23(6):253-256.
|
|
XIAO Hua, ZHOU Rongfeng. Present situation and development of study on electro⁃Fenton process[J]. Shanghai Environmental Sciences,2004,23(6):253-256.
|
6 |
BRILLAS E, SIRE S I, OTURAN M A. Electro⁃Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry[J]. Chemical Reviews, 2009, 109(12):6570-6631. doi: 10.1021/cr900136g
|
7 |
|
|
|
8 |
|
|
HUANG Weihong, RUAN Jiebing, CHEN Yiqun,et al. Synergetic degradation of benzidine wastewater by microwave/Fenton reagent[J]. Environmental Science & Technology, 2009, 32(8):130-133. doi: 10.3969/j.issn.1003-6504.2009.08.033
|
9 |
|
|
LI Junchao, JIANG Jinyuan, ZHANG Wei,et al. Oxidative degradation of tetracycline hydrochloride using nano Fe/Co alloy and H 2O 2 under Fenton conditions[J]. Research of Environmental Sciences, 2018, 31(4):757-764. doi: 10.13198/j.issn.1001-6929.2018.01.10
|
10 |
|
|
HAN Jindong, JIANG Jinyuan, LI Junchao,et al. Oxidative degradation of oxytetracycline using nano Fe/Co catalyst and H 2O 2 under Fenton conditions[J]. Research of Environmental Sciences, 2020, 33(10):1-10. doi: 10.13198/j.issn.1001-6929.2020.05.02
|
11 |
|
|
ZHANG Xiaoyi, HE Qingchun, JIANG Jinyuan,et al. Study progress of class⁃Fenton treatment technology[J]. Environmental Science and Management, 2015, 40(6):58-61. doi: 10.3969/j.issn.1673-1212.2015.06.014
|
12 |
|
|
LI Zhenyu, HE Wei, YANG Jinlong. Recent progress in density functional theory and its numerical methods[J]. Progress in Chemistry, 2005, 17(2):192-202. doi: 10.3321/j.issn:1005-281X.2005.02.003
|
13 |
LIU Shubin. Conceptual density functional theory and some recent developments[J]. Acta Physico-Chimica Sinica, 2009, 25(3):590-600. doi: 10.3866/pku.whxb20090332
|
14 |
PALACIOS J J, PÉREZ⁃JIMÉNEZ A J, LOUIS E,et al. Molecular electronics with Gaussian98/03[J]. Computational Chemistry:Reviews of Current Trends, 2005, 9:1-46. doi: 10.1142/9789812701305_0001
|
15 |
KRESSE G G, FURTHMÜLLER J J. Efficient iterative schemes for ab initio total⁃energy calculations using a plane⁃wave basis set[J]. Physical Review B:Condensed Matter, 1996, 54(16):11169-11186. doi: 10.1103/physrevb.54.11169
|
16 |
|
17 |
VELDE G TE, BICKELHAUPT F M, BAERENDS E J,et al. Chemistry with ADF[J]. Journal of Computational Chemistry, 2001, 22(9):931-967. doi: 10.1002/jcc.1056
|
18 |
DELLEY B. DMol3 DFT studies:From molecules and molecular environments to surfaces and solids[J]. Computational Materials Science, 2000, 17(2/3/4):122-126. doi: 10.1016/S0927-0256(00)00008-2
|
19 |
AQUILANTE F, VICO L D, FERRÉ N,et al. Software news and update Molcas 7:The next generation[J]. Journal of Computational Chemistry,2017,31(1):224-247.
|
20 |
NEESE F. Software update:The ORCA program system,version 4.0[J]. Wiley Interdiplinary Reviews:Computational Molecular Science, 2017, 8(1):e1327. doi: 10.1002/wcms.1327
|
21 |
FENG Hongru, SONG Shuang, ZHANG Xiaole,et al. Synergistically enhancing Fenton⁃like degradation of organics by in situ transformation from Fe 3O 4 microspheres to mesoporous Fe,N⁃dual doped carbon[J]. Science of the Total Environment, 2018, 645:550-559. doi: 10.1016/j.scitotenv.2018.07.162
|
22 |
|
|
CHEN Jiamin, ZHOU Changsong, YANG Hongmin,et al. A DFT study on the adsorption of various mercury speciesin the coal combustion flue gases on the Mo⁃doped Fe 3O 4(111) surface[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5):525-532. doi: 10.3969/j.issn.0253-2409.2020.05.002
|
23 |
王健,应晓,刘海洋. 5,15-二(五氟苯基)-10-(2-氨基苯基)金属咔咯的二阶非线性光学性质[J]. 华南师范大学学报:自然科学版,2020,52(2):31-40.
|
|
WANG Jian, YING Xiao, LIU Haiyang. Second⁃order nonlinear optical properties of 5,15-bis(pentafluorophenyl)-10-(2-aminophenyl)metal corrole[J]. Journal of South China Normal University:Natural Science Edition,2020,52(2):31-40.
|
24 |
钟建英,王强,林莘,等. SF6在微水微氧下放电分解机理的研究[J]. 高压电器,2020,56(5):1-7.
|
|
ZHONG Jianying, WANG Qiang, LIN Xin,et al. Study on discharge decomposition mechanism of SF6 under micro⁃water and micro⁃oxygen[J]. High Voltage Apparatus,2020,56(5):1-7.
|
25 |
ANDREOZZI R, CAPRIO V, INSOLA A,et al. Advanced oxidation processes(AOP) for water purification and recovery[J]. Catalysis Today, 1999, 53(1):51-59. doi: 10.1016/s0920-5861(99)00102-9
|
26 |
YUAN Deling, ZHANG Chen, TANG Shoufeng,et al. Enhancing CaO 2 fenton⁃like process by Fe(Ⅱ)-oxalic acid complexation for organic wastewater treatment[J]. Water Research, 2019, 163:114816. doi: 10.1016/j.watres.2019.114861
|
27 |
RAMOS P H, PORTA F A LA, DE RESENDE E C,et al. Fe-DPA as catalyst for oxidation of organic contaminants:Evidence of homogeneous Fenton process[J]. Ztschrift Für Anorganische Und Allgemne Chemie, 2015, 641(5):780-785. doi: 10.1002/zaac.201400578
|
28 |
阿旺次仁,李红娜,唐哲仁,等. 以一种黏土矿物材料为非均相类芬顿催化剂对甲基橙的降解[J]. 环境科学研究,2017,30(11):1769-1776.
|
|
AWANG Ciren, LI Hongna, TANG Zheren,et al. Clay mineral material as catalyst in Fenton⁃like reactions for degradation of methyl orange[J]. Research of Environmental Sciences,2017,30(11):1769-1776.
|
29 |
YIN Yu, SHI Lei, LI Wenlang,et al. Boosting Fenton⁃like reactions via single atom Fe catalysis[J]. Environmental Science & Technology, 2019, 53:11391-11400. doi: 10.1021/acs.est.9b03342
|
30 |
NAZARI P, SETAYESH S R. Effective degradation of reactive red 195 via heterogeneous electro⁃Fenton treatment:Theoretical study and optimization[J]. International Journal of Environmental Science and Technology, 2019, 16:6329-6346. doi: 10.1007/s13762-018-2048-5
|
31 |
YANG Yujia, XU Lejin, LI Wuyang,et al. Adsorption and degradation of sulfadiazine over nanoscale zero⁃valent iron encapsula⁃ted in three⁃dimensional graphene network through oxygen⁃driven heterogeneous Fenton⁃like reactions[J]. Applied Catalysis B:Environmental, 2019, 259:118057. doi: 10.1016/j.apcatb.2019.118057
|
32 |
FERNANDEZ J, MARUTHAMUTHU P, RENKEN A,et al. Bleaching and photobleaching of Orange Ⅱ within seconds by the oxone/Co 2+ reagent in Fenton⁃like processes[J]. Applied Catalysis B: Environmental, 2004, 49(3):207-215. doi: 10.1016/j.apcatb.2003.12.018
|
33 |
YAO Yunjin, CAI Yunmu, WU Guodong,et al. Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (Co x Mn 3- x O 4) for Fenton⁃like reaction in water[J]. Journal of Hazardous Materials, 2015, 296:128-137. doi: 10.1016/j.jhazmat.2015.04.014
|
34 |
ZANG Chengjie, ZHANG Xiansong, HU Shiyu,et al. The role of exposed facets in the Fenton⁃like reactivity of CeO 2 nanocrystal to the orange Ⅱ[J]. Applied Catalysis B:Environmental, 2017, 216:106-113. doi: 10.1016/j.apcatb.2017.05.068
|
35 |
SHENG Yiyi, SUN Yang, XU Jing,et al. Fenton⁃like degradation of rhodamine B over highly durable Cu⁃embedded alumina:Kinetics and Mechanism[J]. Aiche Journal, 2018, 64(2):538-549. doi: 10.1002/aic.15937
|
36 |
ZHANG Yuanyuan, HE Chun, DENG Jingheng,et al. Photo-Fenton⁃like catalytic activity of nano⁃lamellar Fe 2V 4O 13 in the degradation of organic pollutants[J]. Research on Chemical Intermediates, 2009, 35:727-737. doi: 10.1007/s11164-009-0090-0
|
37 |
YAO Yunjin, CHEN Hao, LIAN Chao,et al. Fe,Co,Ni nanocrystals encapsulated in nitrogen⁃doped carbon nanotubes as Fenton⁃like catalysts for organic pollutant removal[J]. Journal of Hazardous Materials, 2016, 314:129-139. doi: 10.1016/j.jhazmat.2016.03.089
|
38 |
LIU Jiayi, LI Xuning, LIU Biao,et al. Shape⁃controlled synthesis of metal⁃organic frameworks with adjustable Fenton⁃like catalytic activity[J]. ACS Applied Materials & Interfaces, 2018, 10(44):38051-38056. doi: 10.1021/acsami.8b12686
|
39 |
YANG Jingren, ZENG Deqian, LI Jun,et al. A highly efficient Fenton⁃like catalyst based on isolated diatomic Fe-Co anchored on N⁃doped porous carbon[J]. Chemical Engineering Journal, 2020, 404:126-376. doi: 10.1016/j.cej.2020.126376
|
40 |
ZHANG Jian, YANG Mengxue, LIAN Ye,et al. Ce 3+ self⁃doped CeO x /FeOCl:An efficient Fenton catalyst for phenol degradation under mild conditions[J]. Dalton Transactions, 2019, 48(10):3476-3485. doi: 10.1039/c8dt04269a
|
41 |
|
|
SUN Yan. Study on adsorption of CO molecules on Ni(110)surface with low coverage[J]. Journal of Atomic and Molecular Physics, 2020, 37(5):644-648. doi: 10.1155/2021/5531847
|
42 |
王邸博,陈达畅,皮守苗,等. 基于密度泛函理论的SF6分解组分在ZnO(0001)吸附及传感性能研究[J]. 电工技术学报,2020,35(7):1592-1602.
|
|
WANG Dibo, CHEN Dachang, PI Shoumiao,et al. Density functional theory study of SF6 decomposed products over ZnO(0001) with gas sensing properties[J]. Transactions of China Electrotechnical Society,2020,35(7):1592-1602.
|
43 |
|
|
MENG Yu, LIU Xiaoyan, BAI Miaomiao,et al. First⁃principles study on the CO adsorption and electronic properties of Fe (111)modified by Cu single atom[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4):440-447. doi: 10.3969/j.issn.0253-2409.2020.04.007
|
44 |
|
|
LIU Yifan, LONG Gaoyuan, HAN Gaorui,et al. Catalytic oxidation of C 6 hydrocarbons on Pt-Sn/Al 2O 3 honeycomb catalysts[J]. China Environmental Science, 2020, 40(4):1437-1443. doi: 10.3969/j.issn.1000-6923.2020.04.006
|
45 |
ZHAO Chunxiao, LIU Biao, LI Xuning,et al. A Co-Fe prussian blue analogue for efficient Fenton⁃like catalysis:The effect of high⁃spin cobalt[J]. Chemical Communications, 2019, 55(50):7151-7154. doi: 10.1039/c9cc01872g
|
46 |
LI Xuning, AO Zhimin, LIU Jiayi,et al. Topotactic transformation of metal⁃organic frameworks to graphene⁃encapsulated transition⁃metal nitrides as efficient Fenton⁃like catalysts[J]. Acs Nano, 2016, 10(12):11532-11540. doi: 10.1021/acsnano.6b07522
|
47 |
HABER F, WEISS J. The catalytic decomposition of hydrogen peroxide by iron salts[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1934, 147(861):332-351. doi: 10.1098/rspa.1934.0221
|
48 |
BRAY W C, GORIN M H. Ferryl ion,a compound of tetravalent iron[J]. Journal of the American Chemical Society, 1932, 54(5):2124-2125. doi: 10.1021/ja01344a505
|
49 |
ZAKHAROV I I, KUDJUKOV K Y, BONDAR V V,et al. DFT⁃based thermodynamics of Fenton reactions rejects the ‘pure’ a⁃quacomplex models[J]. 2011, 964(1/2/3):94-99. doi: 10.1016/j.comptc.2010.12.004
|
50 |
LU H F, CHEN Huifen, Chailin KAO,et al. A computational study of the Fenton reaction in different pH ranges[J]. Physical Chemistry Chemical Physics: 2018, 20(35):22890-22901. doi: 10.1039/c8cp04381g
|
51 |
|
|
QI Dabin, LUO Xudong, YAO Jun,et al. Catalytic oxidation of CO on Pd 38 cluster and Pd slab,a computational study[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4):432-439. doi: 10.3969/j.issn.0253-2409.2020.04.006
|
52 |
王永成,吴琳瑜. Pd n (n=1~4)团簇催化CO还原N2O的机理研究[J]. 西北师范大学学报:自然科学版,2020,56(3):68-76.
|
|
WANG Yongcheng, WU Linyu. Study on the mechanism of N2O reduction by CO over Pd n (n=1~4)cluster[J]. Journal of Northwest Normal University:Natural Science,2020,56(3):68-76.
|
53 |
|
|
ZHANG Hong, TANG Liu. Study on reaction mechanism of p⁃type dopant Cp 2Mg in MOCVD gas phase[J]. CIESC Journal, 2020(7):3000-3008. doi: 10.11949/0438-1157.20191354
|
54 |
XU Lejin, MENG Xiang, LI Ming,et al. Dissolution and degradation of nuclear grade cationic exchange resin by Fenton oxidation combining experimental results and DFT calculations[J]. Chemical Engineering Journal, 2018, 361:1511-1523. doi: 10.1016/j.cej.2018.09.169
|