1 |
YANG Lu, ZHOU Yunqiao, SHI Bin,et al. Anthropogenic impacts on the contamination of pharmaceuticals and personal care products(PPCPs) in the coastal environments of the Yellow and Bohai Seas[J]. Environment International, 2020, 135:105306. doi: 10.1016/j.envint.2019.105306
|
2 |
ZHENG Dongsheng, YIN Guoyu, LIU Min,et al. A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments[J]. Science of the Total Environment, 2021, 777:146009. doi: 10.1016/j.scitotenv.2021.146009
|
3 |
SHEN Jia, YANG Lili, LIU Guorui,et al. Occurrence,profiles,and control of unintentional POPs in the steelmaking industry:A review[J]. Science of the Total Environment, 2021, 773:145692. doi: 10.1016/j.scitotenv.2021.145692
|
4 |
OLIVEIRA M, ALMEIDA M, MIGUEL I. A micro(nano)plastic boomerang tale:A never ending story?[J]. TrAC Trends in Analytical Chemistry, 2019, 112:196-200. doi: 10.1016/j.trac.2019.01.005
|
5 |
YANG Jingren, ZENG Deqian, LI Jun,et al. A highly efficient Fenton-like catalyst based on isolated diatomic Fe-Co anchored on N-doped porous carbon[J]. Chemical Engineering Journal, 2021, 404:126376. doi: 10.1016/j.cej.2020.126376
|
6 |
HASSANI A, KARACA M, KARACA S,et al. Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process[J]. Journal of Environmental Management, 2018, 211:53-62. doi: 10.1016/j.jenvman.2018.01.014
|
7 |
TAUFIQ A, HIDAYAT N, SAPUTRO R EKO,et al. Crystal structure evolution of magnetite ferrofluids:Effect of heating treatment[J]. IOP Conference Series:Materials Science and Engineering, 2019, 515:012004. doi: 10.1088/1757-899x/515/1/012004
|
8 |
RAHIM POURAN S, ABDUL AZIZ A R, WAN DAUD W M A,et al. RETRACTED:Estimation of the effect of catalyst physical characteristics on Fenton-like oxidation efficiency using adaptive neuro-fuzzy computing technique[J]. Measurement, 2015, 59:314-328. doi: 10.1016/j.measurement.2014.09.060
|
9 |
XU Huanyan, WANG Yuan, SHI Tiannuo,et al. Heterogeneous Fenton-like discoloration of methyl orange using Fe 3O 4/MWCNTs as catalyst:Kinetics and Fenton-like mechanism[J]. Frontiers of Materials Science, 2018, 12(1):34-44. doi: 10.1007/s11706-018-0412-5
|
10 |
PEREIRA M C, OLIVEIRA L C, MURAD E. Iron oxide catalysts:Fenton and Fenton-like reactions:A review[J]. Clay Minerals, 2012, 47:285-302. doi: 10.1180/claymin.2012.047.3.01
|
11 |
HE Hongping, ZHONG Yuanhong, LIANG Xiaoliang,et al. Natural Magnetite:An efficient catalyst for the degradation of organic contaminant[J]. Scientific Reports, 2015, 5:10139. doi: 10.1038/srep10139
|
12 |
MATTA R, HANNA K, CHIRON S. Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals[J]. Science of the Total Environment, 2007, 385(1/2/3):242-251. doi: 10.1016/j.scitotenv.2007.06.030
|
13 |
|
|
SHAO Qiang, GUO Yiqiong. Removal of phenol from water by activation of persulfate with Fe-Mn catalyst[J]. Industrial Water Treatment, 2020, 40(7):94-97. doi: 10.11894/iwt.2019-0578
|
14 |
朱紫燕,王孝文,王允东,等. Fenton反应中加速FeⅢ还原为FeⅡ的研究进展及展望[J]. 工业水处理,2022,42(2):1-10.
|
|
ZHU Ziyan, WANG Xiaowen, WANG Yundong,et al. Research progress and prospect of accelerating reduction of FeⅢ to FeⅡ in Fenton reaction[J]. Industrial Water Treatment,2022,42(2):1-10.
|
15 |
WEI Xiaoshu, XIE Xiaomin, WANG Yi,et al. Shape-dependent Fenton-like catalytic activity of Fe 3O 4 nanoparticles[J]. Journal of Environmental Engineering, 2020, 146(3):04020005. doi: 10.1061/(asce)ee.1943-7870.0001648
|
16 |
HOU Liwei, ZHANG Qinghua, JÉRÔME F,et al. Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts[J]. Applied Catalysis B:Environmental, 2014, 144:739-749. doi: 10.1016/j.apcatb.2013.07.072
|
17 |
KHATAEE A, TASEIDIFAR M, KHORRAM S,et al. Preparation of nanostructured magnetite with plasma for degradation of a cationic textile dye by the heterogeneous Fenton process[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53:132-139. doi: 10.1016/j.jtice.2015.02.023
|
18 |
ZHANG Shengxiao, ZHAO Xiaoli, NIU Hongyun,et al. Superparamagnetic Fe 3O 4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds[J]. Journal of Hazardous Materials, 2009, 167(1/2/3):560-566. doi: 10.1016/j.jhazmat.2009.01.024
|
19 |
RATHI P L, Structural DEEPA S.,magnetic,thermal and optical properties of Sn 2 + cation doped magnetite nanoparticles[J]. Ceramics International,2020, 46(3):2969-2978. doi: 10.1016/j.ceramint.2019.09.294
|
20 |
PADALIA D, JOHRI U C, ZAIDI M G H. Effect of cerium substitution on structural and magnetic properties of magnetite nanoparticles[J]. Materials Chemistry and Physics, 2016, 169:89-95. doi: 10.1016/j.matchemphys.2015.11.034
|
21 |
ZHONG Yuanhong, LIANG Xiaoliang, TAN Wei,et al. A comparative study about the effects of isomorphous substitution of transition metals(Ti,Cr,Mn,Co and Ni) on the UV/Fenton catalytic activity of magnetite[J]. Journal of Molecular Catalysis A:Chemical, 2013, 372:29-34. doi: 10.1016/j.molcata.2013.01.038
|
22 |
HUANG Xuanlin, XU Cong, MA Jiping,et al. Ionothermal synthesis of Cu-doped Fe 3O 4 magnetic nanoparticles with enhanced peroxidase-like activity for organic wastewater treatment[J]. Advanced Powder Technology, 2018, 29(3):796-803. doi: 10.1016/j.apt.2017.12.025
|
23 |
LIANG Xiaoliang, ZHONG Yuanhong, ZHU Sanyuan,et al. The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite[J]. Journal of Hazardous Materials, 2012, 199/200:247-254. doi: 10.1016/j.jhazmat.2011.11.007
|
24 |
YANG Shijian, HE Hongping, WU Daqing,et al. Decolorization of methylene blue by heterogeneous Fenton reaction using Fe 3- x Ti x O 4(0≤ x≤0.78) at neutral pH values[J]. Applied Catalysis B:Environmental, 2009, 89(3/4):527-535. doi: 10.1016/j.apcatb.2009.01.012
|
25 |
MAGALHÃES F, PEREIRA M C, BOTREL S E C,et al. Cr-containing magnetites Fe 3- x Cr x O 4:The role of Cr 3+ and Fe 2+ on the stability and reactivity towards H 2O 2 reactions[J]. Applied Catalysis A:General, 2007, 332(1):115-123. doi: 10.1016/j.apcata.2007.08.002
|
26 |
BALDRIAN P, MERHAUTOVÁ V, GABRIEL J,et al. Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides[J]. Applied Catalysis B:Environmental, 2006, 66(3/4):258-264. doi: 10.1016/j.apcatb.2006.04.001
|
27 |
GUO Xiaojun, LI Hairu, ZHAO Shengguo. Fast degradation of Acid Orange Ⅱ by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe 2O 4 catalyst[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55:90-100. doi: 10.1016/j.jtice.2015.03.039
|
28 |
SHARMA R, BANSAL S, SINGHAL S. Augmenting the catalytic activity of CoFe 2O 4 by substituting rare earth cations into the spinel structure[J]. RSC Advances, 2016, 6(75):71676-71691. doi: 10.1039/c6ra14325c
|
29 |
JIN Hang, TIAN Xike, NIE Yulun,et al. Oxygen vacancy promoted heterogeneous Fenton-like degradation of ofloxacin at pH 3.2~9.0 by Cu substituted magnetic Fe 3O 4@FeOOH nanocomposite[J]. Environmental Science & Technology, 2017, 51(21):12699-12706. doi: 10.1021/acs.est.7b04503
|
30 |
LI Hao, SHANG Jian, YANG Zhiping,et al. Oxygen vacancy associated surface Fenton chemistry:Surface structure dependent hydroxyl radicals generation and substrate dependent reactivity[J]. Environmental Science & Technology, 2017, 51(10):5685-5694. doi: 10.1021/acs.est.7b00040
|
31 |
TANG Xuekun, LI Zishun, LIU Kun,et al. Sulfidation modified Fe 3O 4 nanoparticles as an efficient Fenton-like catalyst for azo dyes degradation at wide pH range[J]. Powder Technology, 2020, 376:42-51. doi: 10.1016/j.powtec.2020.08.018
|
32 |
DO T M, BYUN J Y, KIM S H. Magnetite-coated metal foams as one-body catalysts for Fenton-like reactions[J]. Research on Chemical Intermediates, 2017, 43(6):3481-3492. doi: 10.1007/s11164-016-2440-z
|
33 |
WANG Xiaoyi, LIAO Yulong, XIANG Quanjun,et al. Magnetite/iron foil as an effective and nonfiltration catalyst for heterogeneous Fenton-like reactions under neutral conditions[J]. Inorganic Chemistry, 2019, 58(8):4718-4721. doi: 10.1021/acs.inorgchem.9b00546
|
34 |
NADAR S S, VAIDYA L, MAURYA S,et al. Polysaccharide based metal organic frameworks(polysaccharide-MOF):A review[J]. Coordination Chemistry Reviews, 2019, 396:1-21. doi: 10.1016/j.ccr.2019.05.011
|
35 |
XU Guorong, AN Zihan, XU Ke,et al. Metal organic framework(MOF)-based micro/nanoscaled materials for heavy metal ions removal:The cutting-edge study on designs,synthesis,and applications[J]. Coordination Chemistry Reviews, 2021, 427:213554. doi: 10.1016/j.ccr.2020.213554
|
36 |
REGO R M, KURIYA G, KURKURI M D,et al. MOF based engineered materials in water remediation:Recent trends[J]. Journal of Hazardous Materials, 2021, 403:123605. doi: 10.1016/j.jhazmat.2020.123605
|
37 |
JIAO Yue, WAN Caichao, BAO Wenhui,et al. Facile hydrothermal synthesis of Fe 3O 4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B[J]. Carbohydrate Polymers, 2018, 189:371-378. doi: 10.1016/j.carbpol.2018.02.028
|
38 |
ARANTES A C C, ALMEIDA C D G, DAUZACKER L C L,et al. Renewable hybrid nanocatalyst from magnetite and cellulose for treatment of textile effluents[J]. Carbohydrate Polymers, 2017, 163:101-107. doi: 10.1016/j.carbpol.2017.01.007
|
39 |
APARICIO F, ESCALADA J P, DE GERÓNIMO E,et al. Carbamazepine degradation mediated by light in the presence of humic substances-coated magnetite nanoparticles[J]. Nanomaterials(Basel,Switzerland), 2019, 9(10):1379. doi: 10.3390/nano9101379
|
40 |
ZUBIR N A, YACOU C, MOTUZAS J,et al. Structural and functional investigation of graphene oxide-Fe 3O 4 nanocomposites for the heterogeneous Fenton-like reaction[J]. Scientific Reports, 2014, 4:4594. doi: 10.1038/srep04594
|
41 |
ZANG Hongmei, MIAO Chunyan, SHANG Jianying,et al. Structural effects on the catalytic activity of carbon-supported magnetite nanocomposites in heterogeneous Fenton-like reactions[J]. RSC Advances, 2018, 8(29):16193-16201. doi: 10.1039/c8ra02286k
|
42 |
MANOJLOVIĆ D, LELEK K, ROGLIĆ G,et al. Efficiency of homely synthesized magnetite:Carbon composite anode toward decolorization of reactive textile dyes[J]. International Journal of Environmental Science and Technology, 2020, 17(4):2455-2462. doi: 10.1007/s13762-020-02654-8
|
43 |
SHAO Yanming, ZHOU Lincheng, BAO Chao,et al. Magnetic responsive metal-organic frameworks nanosphere with core-shell structure for highly efficient removal of methylene blue[J]. Chemical Engineering Journal, 2016, 283:1127-1136. doi: 10.1016/j.cej.2015.08.051
|
44 |
ZHANG Chaofeng, QIU Lingguang, KE Fei,et al. A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe 3O 4@MIL-100(Fe) for the decolorization of methylene blue dye[J]. Journal of Materials Chemistry A, 2013, 1(45):14329. doi: 10.1039/c3ta13030d
|
45 |
ZHAO Hongying, QIAN Lin, Huanli LÜ,et al. Introduction of a Fe 3O 4 core enhances the photocatalytic activity of MIL-100(Fe) with tunable shell thickness in the presence of H 2O 2 [J]. ChemCatChem, 2015, 7(24):4148-4155. doi: 10.1002/cctc.201500801
|
46 |
ZHENG Pei, PAN Zhe, ZHANG Jun. Synergistic enhancement in catalytic performance of superparamagnetic Fe 3O 4@ Bacilus subtilis as recyclable Fenton-like catalyst[J]. Catalysts, 2017, 7(11):349. doi: 10.3390/catal7110349
|
47 |
XU Fang, LU Qinwei, LI Kunpeng,et al. Green synthesis of magnetic mesoporous carbon from waste-lignin and its application as an efficient heterogeneous Fenton catalyst[J]. Journal of Cleaner Production, 2021, 285:125363. doi: 10.1016/j.jclepro.2020.125363
|
48 |
LUO Zhijun, TANG Hongjun, QU Lingling,et al. A visible-light-driven solid state photo-Fenton reagent based on magnetite/carboxylate-rich carbon spheres[J]. CrystEngComm, 2012, 14(18):5710. doi: 10.1039/c2ce25834j
|
49 |
XU Huanyan, WANG Yuan, SHI Tiannuo,et al. Heterogeneous Fenton-like discoloration of methyl orange using Fe 3O 4/MWCNTs as catalyst:Kinetics and Fenton-like mechanism[J]. Frontiers of Materials Science, 2018, 12(1):34-44. doi: 10.1007/s11706-018-0412-5
|
50 |
WEI Xipeng, WU Honghai, SUN Feng. Magnetite/Fe-Al-montmoril-lonite as a Fenton catalyst with efficient degradation of phenol[J]. Journal of Colloid and Interface Science, 2017, 504:611-619. doi: 10.1016/j.jcis.2017.05.110
|
51 |
XU Lejin, WANG Jianlong. Magnetic nanoscaled Fe 3O 4/CeO 2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol[J]. Environmental Science & Technology, 2012, 46(18):10145-10153. doi: 10.1021/es300303f
|
52 |
GONÇALVES R G L, LOPES P A, RESENDE J A,et al. Performance of magnetite/layered double hydroxide composite for dye removal via adsorption,Fenton and photo-Fenton processes[J]. Applied Clay Science, 2019, 179:105152. doi: 10.1016/j.clay.2019.105152
|
53 |
OZBEY UNAL B, BILICI Z, UGUR N,et al. Adsorption and Fenton oxidation of azo dyes by magnetite nanoparticles deposited on a glass substrate[J]. Journal of Water Process Engineering, 2019, 32:100897. doi: 10.1016/j.jwpe.2019.100897
|
54 |
QU Jifeng, CHE Tinghua, SHI Libin,et al. A novel magnetic silica supported spinel ferrites NiFe 2O 4 catalyst for heterogeneous Fenton-like oxidation of Rhodamine B[J]. Chinese Chemical Letters, 2019, 30(6):1198-1203. doi: 10.1016/j.cclet.2019.01.021
|
55 |
MUNOZ M, DE PEDRO Z M, MENENDEZ N,et al. A ferromagnetic γ-alumina-supported iron catalyst for CWPO. Application to chlorophenols[J]. Applied Catalysis B:Environmental, 2013, 136/137:218-224. doi: 10.1016/j.apcatb.2013.02.002
|
56 |
TABASUM A, ZAHID M, BHATTI H N,et al. Fe 3O 4-GO composite as efficient heterogeneous photo-Fenton’s catalyst to degrade pesticides[J]. Materials Research Express, 2018, 6(1):015608. doi: 10.1088/2053-1591/aae6ab
|
57 |
XU Huanyan, LI Bo, SHI Tiannuo,et al. Nanoparticles of magnetite anchored onto few-layer graphene:A highly efficient Fenton-like nanocomposite catalyst[J]. Journal of Colloid and Interface Science, 2018, 532:161-170. doi: 10.1016/j.jcis.2018.07.128
|
58 |
HAN Tingting, QU Lingling, LUO Zhijun,et al. Enhancement of hydroxyl radical generation of a solid state photo-Fenton reagent based on magnetite/carboxylate-rich carbon composites by embedding carbon nanotubes as electron transfer channels[J]. New Journal of Chemistry, 2014, 38(3):942. doi: 10.1039/c3nj00959a
|
59 |
CLEVELAND V, BINGHAM J P, KAN E. Heterogeneous Fenton degradation of bisphenol A by carbon nanotube-supported Fe 3O 4 [J]. Separation and Purification Technology, 2014, 133:388-395. doi: 10.1016/j.seppur.2014.06.061
|
60 |
VIEIRA Y, SILVESTRI S, LEICHTWEIS J,et al. New insights into the mechanism of heterogeneous activation of nano-magnetite by microwave irradiation for use as Fenton catalyst[J]. Journal of Environmental Chemical Engineering, 2020, 8(3):103787. doi: 10.1016/j.jece.2020.103787
|
61 |
SANZ J, LOMBRAÑA J I, DE LUIS A M,et al. Microwave and Fenton’s reagent oxidation of wastewater[J]. Environmental Chemistry Letters, 2003, 1(1):45-50. doi: 10.1007/s10311-002-0007-2
|
62 |
HASSANI A, KARACA C, KARACA S,et al. Enhanced removal of basic violet 10 by heterogeneous sono-Fenton process using magnetite nanoparticles[J]. Ultrasonics Sonochemistry, 2018, 42:390-402. doi: 10.1016/j.ultsonch.2017.11.036
|
63 |
PRAKASH L V, GOPINATH A, GANDHIMATHI R,et al. Ultrasound aided heterogeneous Fenton degradation of Acid Blue 15 over green synthesized magnetite nanoparticles[J]. Separation and Purification Technology, 2021, 266:118230. doi: 10.1016/j.seppur.2020.118230
|
64 |
MALAKOOTIAN M, NASTARAN ASADZADEH S. Oxidative removal of tetracycline by sono Fenton-like oxidation process in aqueous media[J]. Desalination and Water Treatment, 2020, 193:392-401. doi: 10.5004/dwt.2020.25810
|
65 |
HUANG Ruixiong, FANG Zhanqiang, YAN Xiaomin,et al. Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe 3O 4 magnetic nanoparticles under neutral condition[J]. Chemical Engineering Journal, 2012, 197:242-249. doi: 10.1016/j.cej.2012.05.035
|
66 |
LEGRINI O, OLIVEROS E, BRAUN A M. Photochemical processes for water treatment[J]. Chemical Reviews, 1993, 93(2):671-698. doi: 10.1021/cr00018a003
|
67 |
YANG Xiaoling, CHEN Wei, HUANG Jianfei,et al. Rapid degradation of methylene blue in a novel heterogeneous Fe 3O 4@rGO@TiO 2-catalyzed photo-Fenton system[J]. Scientific Reports, 2015, 5:10632. doi: 10.1038/srep10632
|
68 |
BRILLAS E,MUR E, SAULEDA R,et al. Aniline mineralization by AOP’s:Anodic oxidation,photocatalysis,electro-Fenton and photoelectro-Fenton processes[J]. Applied Catalysis B:Environmental, 1998, 16(1):31-42. doi: 10.1016/s0926-3373(97)00059-3
|
69 |
HE Zhiqiao, GAO Chao, QIAN Mengqian,et al. Electro-Fenton process catalyzed by Fe 3O 4 magnetic nanoparticles for degradation of C. I. Reactive Blue 19 in aqueous solution:Operating conditions,influence,and mechanism[J]. Industrial & Engineering Chemistry Research, 2014, 53(9):3435-3447. doi: 10.1021/ie403947b
|
70 |
HOU Baolin, HAN Hongjun, JIA Shengyong,et al. Heterogeneous electro-Fenton oxidation of catechol catalyzed by nano-Fe 3O 4:Kinetics with the fermi’s equation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 56:138-147. doi: 10.1016/j.jtice.2015.04.017
|
71 |
ZHANG Yan, GAO Mingming, WANG Shuguang,et al. Integrated electro-Fenton process enabled by a rotating Fe 3O 4/gas diffusion cathode for simultaneous generation and activation of H 2O 2 [J]. Electrochimica Acta, 2017, 231:694-704. doi: 10.1016/j.electacta.2017.02.091
|
72 |
HUNG C M, HUANG C P, LAM S S,et al. The removal of polycyclic aromatic hydrocarbons(PAHs) from marine sediments using persulfate over a nano-sized iron composite of magnetite and carbon black activator[J]. Journal of Environmental Chemical Engineering, 2020, 8(5):104440. doi: 10.1016/j.jece.2020.104440
|
73 |
HU Limin, WANG Peng, ZHANG Guangshan,et al. Enhanced persulfate oxidation of organic pollutants and removal of total organic carbons using natural magnetite and microwave irradiation[J]. Chemical Engineering Journal, 2020, 383:123140. doi: 10.1016/j.cej.2019.123140
|
74 |
CHEN Jiabin, ZHOU Xuefei, ZHU Youmin,et al. Synergistic activation of peroxydisulfate with magnetite and copper ion at neutral condition[J]. Water Research, 2020, 186:116371. doi: 10.1016/j.watres.2020.116371
|
75 |
SAHAR S,ZEB A, LIU Yanan,et al. Enhanced Fenton,photo-Fenton and peroxidase-like activity and stability over Fe 3O 4/g-C 3N 4 nanocomposites[J]. Chinese Journal of Catalysis, 2017, 38(12):2110-2119. doi: 10.1016/s1872-2067(17)62957-7
|
76 |
CAI Hao, ZHAO Tianci, MA Zichuan,et al. Efficient removal of metronidazole by the photo-Fenton process with a magnetic Fe 3O 4 @PBC composite[J]. Journal of Environmental Engineering, 2020, 146(7):04020056. doi: 10.1061/(asce)ee.1943-7870.0001735
|
77 |
YU Lian, CHEN Jiandong, LIANG Zhen,et al. Degradation of phenol using Fe 3O 4-GO nanocomposite as a heterogeneous photo-Fenton catalyst[J]. Separation and Purification Technology, 2016, 171:80-87. doi: 10.1016/j.seppur.2016.07.020
|
78 |
CHAI Fanfan, LI Keyan, SONG Chunshan,et al. Synthesis of magnetic porous Fe 3O 4/C/Cu 2O composite as an excellent photo-Fenton catalyst under neutral condition[J]. Journal of Colloid and Interface Science, 2016, 475:119-125. doi: 10.1016/j.jcis.2016.04.047
|
79 |
NGUYEN X S, ZHANG Gaoke, YANG Xianfeng. Mesocrystalline Zn-doped Fe 3O 4 hollow submicrospheres:Formation mechanism and enhanced photo-Fenton catalytic performance[J]. ACS Applied Materials & Interfaces, 2017, 9(10):8900-8909. doi: 10.1021/acsami.6b16839
|
80 |
MIAO Jie, YANG Hai, ZHU Daozheng,et al. A facile strategy for the preparation of a porous flower-like Fe 3O 4/Cu 2O/Ag nanocomposite with unexpected and recyclable photocatalytic activity under visible light irradiation[J]. Materials Letters, 2016, 163:106-110. doi: 10.1016/j.matlet.2015.10.038
|
81 |
WANG Haisheng, HU Yongan, JIANG Yang,et al. Facile synthesis and excellent recyclable photocatalytic activity of pine cone-like Fe 3O 4@Cu 2O/Cu porous nanocomposites[J]. Dalton Transactions, 2013, 42(14):4915-4921. doi: 10.1039/c2dt32290k
|
82 |
CHEN Zhongtao, ZHENG Yanmei, LIU Yuanyuan,et al. Magnetic Mn-Doped Fe 3O 4 hollow Microsphere/RGO heterogeneous Photo-Fenton Catalyst for high efficiency degradation of organic pollutant at neutral pH[J]. Materials Chemistry and Physics, 2019, 238:121893. doi: 10.1016/j.matchemphys.2019.121893
|
83 |
NIDHEESH P V, GANDHIMATHI R, VELMATHI S,et al. Magnetite as a heterogeneous electro Fenton catalyst for the removal of Rhodamine B from aqueous solution[J]. RSC Advances, 2014, 4(11):5698. doi: 10.1039/c3ra46969g
|
84 |
REZGUI S, AMRANE A, FOURCADE F,et al. Electro-Fenton catalyzed with magnetic chitosan beads for the removal of Chlordimeform insecticide[J]. Applied Catalysis B:Environmental, 2018, 226:346-359. doi: 10.1016/j.apcatb.2017.12.061
|