1 |
SONG Yinan, KIRKWOOD N, MAKSIMOVIĆ Č,et al.Nature based solutions for contaminated land remediation and brownfield redevelopment in cities:A review[J]. Science of the Total Environment, 2019, 663:568-579. doi: 10.1016/j.scitotenv.2019.01.347
|
2 |
SUN Yuqing, YU I K M, TSANG D C W,et al.Tailored design of graphitic biochar for high-efficiency and chemical-free microwave-assisted removal of refractory organic contaminants[J]. Chemical Engineering Journal, 2020, 398:125505. doi: 10.1016/j.cej.2020.125505
|
3 |
YU Qianqian, FENG Ling, CHAI Xinna,et al.Enhanced surface Fenton degradation of BPA in soil with a high pH[J]. Chemosphere, 2019, 220:335-343. doi: 10.1016/j.chemosphere.2018.12.141
|
4 |
SUN Yuqing, CHO D W, GRAHAM N J D,et al.Degradation of antibiotics by modified vacuum-UV based processes:Mechanistic consequences of H 2O 2 and K 2S 2O 8 in the presence of halide ions[J]. Science of the Total Environment, 2019, 664:312-321. doi: 10.1016/j.scitotenv.2019.02.006
|
5 |
LI Xufang, CHEN Weiyu, MA Luming,et al.Industrial wastewater advanced treatment via catalytic ozonation with an Fe-based catalyst[J]. Chemosphere, 2018, 195:336-343. doi: 10.1016/j.chemosphere.2017.12.080
|
6 |
WANG Nannan, ZHENG Tong, ZHANG Guangshan,et al.A review on Fenton-like processes for organic wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):762-787. doi: 10.1016/j.jece.2015.12.016
|
7 |
SANTOS M S F, ALVES A, MADEIRA L M.Paraquat removal from water by oxidation with Fenton’s reagent[J]. Chemical Engineering Journal, 2011, 175:279-290. doi: 10.1016/j.cej.2011.09.106
|
8 |
OTURAN M A, AARON J J.Advanced oxidation processes in water/wastewater treatment:Principles and applications.A review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(23):2577-2641. doi: 10.1080/10643389.2013.829765
|
9 |
ASGHAR A, ABDUL RAMAN A A, WAN DAUD W M A.Advanced oxidation processes for in situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment:A review[J]. Journal of Cleaner Production, 2015, 87:826-838. doi: 10.1016/j.jclepro.2014.09.010
|
10 |
YANG Zhao, ZHANG Xu, PU Siji,et al.Novel Fenton-like system(Mg/Fe-O 2) for degradation of 4-chlorophenol[J]. Environmental Pollution, 2019, 250:906-913. doi: 10.1016/j.envpol.2019.04.096
|
11 |
WANG Jianlong, WANG Shizong.Removal of pharmaceuticals and personal care products(PPCPs) from wastewater:A review[J]. Journal of Environmental Management, 2016, 182:620-640. doi: 10.1016/j.jenvman.2016.07.049
|
12 |
FDEZ-SANROMÁN A, ACEVEDO-GARCÍA V, PAZOS M,et al.Iron-doped cathodes for electro-Fenton implementation:Application for pymetrozine degradation[J]. Electrochimica Acta, 2020, 338:135768. doi: 10.1016/j.electacta.2020.135768
|
13 |
GAO Xin, MA Changchang, LIU Yang,et al.Self-induced Fenton reaction constructed by Fe(Ⅲ) grafted BiVO 4 nanosheets with improved photocatalytic performance and mechanism insight[J]. Applied Surface Science, 2019, 467/468:673-683. doi: 10.1016/j.apsusc.2018.10.172
|
14 |
SHEN Xuqian, XIAO Fan, ZHAO Hongying,et al.In situ-formed PdFe nanoalloy and carbon defects in cathode for synergic reduction-oxidation of chlorinated pollutants in electro-Fenton process[J]. Environmental Science & Technology, 2020, 54(7):4564-4572. doi: 10.1021/acs.est.9b05896
|
15 |
YANG Zhao, GONG Xiaobo, PENG Lin,et al.Zn 0-CNTs-Fe 3O 4 catalytic in situ generation of H 2O 2 for heterogeneous Fenton degradation of 4-chlorophenol[J]. Chemosphere, 2018, 208:665-673. doi: 10.1016/j.chemosphere.2018.06.016
|
16 |
JIANG Zhenying, WANG Lingzhi, LEI Juying,et al.Photo-Fenton degradation of phenol by CdS/rGO/Fe 2+ at natural pH with in situ-generated H 2O 2 [J]. Applied Catalysis B:Environmental, 2019, 241:367-374. doi: 10.1016/j.apcatb.2018.09.049
|
17 |
YALFANI M S, CONTRERAS S, MEDINA F,et al.Direct generation of hydrogen peroxide from formic acid and O 2 using heterogeneous Pd/γ-Al 2O 3 catalysts[J]. Chemical Communications, 2008(33):3885. doi: 10.1039/b803149e
|
18 |
YUAN Songhu, MAO Xuhui, ALSHAWABKEH A N.Efficient degradation of TCE in groundwater using Pd and electro-generated H 2 and O 2:A shift in pathway from hydrodechlorination to oxidation in the presence of ferrous ions[J]. Environmental Science & Technology, 2012, 46(6):3398-3405. doi: 10.1021/es204546u
|
19 |
LUO Mingsen, YUAN Songhu, TONG Man,et al.An integrated catalyst of Pd supported on magnetic Fe 3O 4 nanoparticles:Simultaneous production of H 2O 2 and Fe 2+ for efficient electro-Fenton degradation of organic contaminants[J]. Water Research, 2014, 48:190-199. doi: 10.1016/j.watres.2013.09.029
|
20 |
YALFANI M S, CONTRERAS S, MEDINA F,et al.Hydrogen substitutes for the in situ generation of H 2O 2:An application in the Fenton reaction[J]. Journal of Hazardous Materials, 2011, 192(1):340-346. doi: 10.1016/j.jhazmat.2011.05.029
|
21 |
CAI Q Q, LEE B C Y, ONG S L,et al.Fluidized-bed Fenton technologies for recalcitrant industrial wastewater treatment-Recent advances,challenges and perspective[J]. Water Research, 2021, 190:116692. doi: 10.1016/j.watres.2020.116692
|
22 |
LIU Xiaocheng, LI Wenqiang, WANG Yiran,et al.Cathode-introduced atomic H* for Fe(Ⅱ)-complex regeneration to effective electro-Fenton process at a natural pH[J]. Environmental Science & Technology, 2019, 53(12):6927-6936. doi: 10.1021/acs.est.9b00345
|
23 |
PANIZZA M, OTURAN M A.Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode[J]. Electrochimica Acta, 2011, 56(20):7084-7087. doi: 10.1016/j.electacta.2011.05.105
|
24 |
YANG Weilu, ZHOU Minghua, OTURAN N,et al.Electrocatalytic destruction of pharmaceutical imatinib by electro-Fenton process with graphene-based cathode[J]. Electrochimica Acta, 2019, 305:285-294. doi: 10.1016/j.electacta.2019.03.067
|
25 |
SIRÉS I, BRILLAS E, OTURAN M A,et al.Electrochemical advanced oxidation processes:Today and tomorrow.A review[J]. Environmental Science and Pollution Research International, 2014, 21(14):8336-8367. doi: 10.1007/s11356-014-2783-1
|
26 |
WANG Heming, PARK J D, REN Z J.Practical energy harvesting for microbial fuel cells:A review[J]. Environmental Science & Technology, 2015, 49(6):3267-3277. doi: 10.1021/es5047765
|
27 |
RICCOBONO G, PASTORELLA G, VICARI F,et al. Abatement of AO7 in a divided microbial fuel cells by sequential cathodic and anodic treatment powered by different microorganisms[J]. Journal of Electroanalytical Chemistry, 2017, 799:293-298. doi: 10.1016/j.jelechem.2017.06.003
|
28 |
FENG Chunhua, LI Fangbai, LIU Haiyang,et al.A dual-chamber microbial fuel cell with conductive film-modified anode and cathode and its application for the neutral electro-Fenton process[J]. Electrochimica Acta, 2010, 55(6):2048-2054. doi: 10.1016/j.electacta.2009.11.033
|
29 |
PANT D, BOGAERT G VAN, DIELS L,et al.A review of the substrates used in microbial fuel cells(MFCs) for sustainable energy production[J]. Bioresource Technology, 2010, 101(6):1533-1543. doi: 10.1016/j.biortech.2009.10.017
|
30 |
CLARIZIA L, RUSSO D, SOMMA I D,et al.Homogeneous photo-Fenton processes at near neutral pH:A review[J].Applied Catalysis B:Environmental,2017,209:358-371.
|
31 |
HUANG Wenyu, BRIGANTE M, WU Feng,et al.Development of a new homogenous photo-Fenton process using Fe(Ⅲ)-EDDS complexes[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2012, 239:17-23. doi: 10.1016/j.jphotochem.2012.04.018
|
32 |
ZHANG Jun, ZHANG Gong, JI Qinghua,et al.Carbon nanodot-modified FeOCl for photo-assisted Fenton reaction featuring synergistic in situ H 2O 2 production and activation[J]. Applied Catalysis B:Environmental, 2020, 266:118665. doi: 10.1016/j.apcatb.2020.118665
|
33 |
MARTÍNEZ-HUITLE C A, RODRIGO M A, SIRÉS I,et al.Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants:A critical review[J]. Chemical Reviews, 2015, 115(24):13362-13407. doi: 10.1021/acs.chemrev.5b00361
|
34 |
PANG Suyan, JIANG Jin, MA Jun.Oxidation of sulfoxides and arsenic(Ⅲ) in corrosion of nanoscale zero valent iron by oxygen:Evidence against ferryl ions〔Fe(Ⅳ)〕 as active intermediates in Fenton reaction[J]. Environmental Science & Technology, 2011, 45(1):307-312. doi: 10.1021/es102401d
|
35 |
NIE Yulun, HU Chun, QU Jiuhui,et al.Efficient photodegradation of acid red B by immobilized ferrocene in the presence of UVA and H 2O 2 [J]. Journal of Hazardous Materials, 2008, 154(1/2/3):146-152. doi: 10.1016/j.jhazmat.2007.10.005
|
36 |
ZHANG Shuzhen, HE Wen, ZHANG Xudong,et al.Fabricating Fe 3O 4/Fe/biocarbon fibers using cellulose nanocrystals for high-rate Li-ion battery anode[J]. Electrochimica Acta, 2015, 174:1175-1184. doi: 10.1016/j.electacta.2015.06.098
|
37 |
MINELLA M, MARCHETTI G, DE LAURENTIIS E,et al.Photo-Fenton oxidation of phenol with magnetite as iron source[J]. Applied Catalysis B:Environmental, 2014, 154/155:102-109. doi: 10.1016/j.apcatb.2014.02.006
|
38 |
ZHOU Lincheng, SHAO Yanming, LIU Junrui,et al.Preparation and characterization of magnetic porous carbon microspheres for removal of methylene blue by a heterogeneous Fenton reaction[J]. ACS Applied Materials & Interfaces, 2014, 6(10):7275-7285. doi: 10.1021/am500576p
|
39 |
LIU Zhengxin, ZHANG Lujie, DONG Feihong,et al.Preparation of ultrasmall goethite nanorods and their application as heterogeneous Fenton reaction catalysts in the degradation of azo dyes[J]. ACS Applied Nano Materials, 2018, 1(8):4170-4178. doi: 10.1021/acsanm.8b00930
|
40 |
GANIYU S O, ZHOU Minghua, MARTÍNEZ-HUITLE C A.Heterogeneous electro-Fenton and photoelectro-Fenton processes:A critical review of fundamental principles and application for water/wastewater treatment[J]. Applied Catalysis B:Environmental, 2018, 235:103-129. doi: 10.1016/j.apcatb.2018.04.044
|
41 |
MUANGTHAI I, RATANATAMSKUL C, LU M C. Removal of 2,4-dichlorophenol by fluidized-bed fenton process[J].Sustainable Environment Research,2010,20(5):325-331.
|
42 |
BELLO M M, RAMAN A A A, ASGHAR A.Activated carbon as carrier in fluidized bed reactor for Fenton oxidation of recalcitrant dye:Oxidation-adsorption synergy and surface interaction[J]. Journal of Water Process Engineering, 2020, 33:101001. doi: 10.1016/j.jwpe.2019.101001
|
43 |
LI Huiyuan, PRIAMBODO R, WANG Yan,et al.Mineralization of bisphenol A by photo-Fenton-like process using a waste iron oxide catalyst in a three-phase fluidized bed reactor[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53:68-73. doi: 10.1016/j.jtice.2015.02.024
|
44 |
ZHANG Hui, LIU Jianguo, Changjin OU,et al.Reuse of Fenton sludge as an iron source for NiFe 2O 4 synthesis and its application in the Fenton-based process[J]. Journal of Environmental Sciences, 2017, 53:1-8. doi: 10.1016/j.jes.2016.05.010
|
45 |
GAMARALALAGE D, SAWAI O, NUNOURA T.Reusing the generated sludge as Fe source in Fenton process for treating crepe rubber wastewater[J]. Journal of Material Cycles and Waste Management, 2019, 21(2):248-257. doi: 10.1007/s10163-018-0784-8
|
46 |
MAGNONE E, KIM S D, PARK J H.A systematic study of the iron hydroxide-based adsorbent for removal of hydrogen sulphide from biogas[J]. Microporous and Mesoporous Materials, 2018, 270:155-160. doi: 10.1016/j.micromeso.2018.05.018
|
47 |
AMINS K, ABDEL HAMID E M, EL-SHERBINY S A,et al.The use of sewage sludge in the production of ceramic floor tiles[J]. HBRC Journal, 2018, 14(3):309-315. doi: 10.1016/j.hbrcj.2017.02.002
|
48 |
QIANG Zhimin, CHANG J H, HUANG C P.Electrochemical regeneration of Fe 2+ in Fenton oxidation processes[J]. Water Research, 2003, 37(6):1308-1319. doi: 10.1016/s0043-1354(02)00461-x
|
49 |
PIGNATELLO J J, OLIVEROS E, MACKAY A.Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(1):1-84. doi: 10.1080/10643380500326564
|
50 |
PERINI J A L, TONETTI A L, VIDAL C,et al.Simultaneous degradation of ciprofloxacin,amoxicillin,sulfathiazole and sulfamethazine,and disinfection of hospital effluent after biological treatment via photo-Fenton process under ultraviolet germicidal irradiation[J]. Applied Catalysis B:Environmental, 2018, 224:761-771. doi: 10.1016/j.apcatb.2017.11.021
|
51 |
XU Lejin, WANG Jianlong.Magnetic nanoscaled Fe 3O 4/CeO 2composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol[J]. Environmental Science & Technology, 2012, 46(18):10145-10153. doi: 10.1021/es300303f
|
52 |
RUALES-LONFAT C, BARONA J F, SIENKIEWICZ A,et al.Iron oxides semiconductors are efficients for solar water disinfection:A comparison with photo-Fenton processes at neutral pH[J]. Applied Catalysis B:Environmental, 2015, 166/167:497-508. doi: 10.1016/j.apcatb.2014.12.007
|
53 |
YATMAZ H C, KERISSENU D.Photocatalytic efficiencies of alternate heterogeneous catalysts:Iron modified minerals and semiconductors for removal of an azo dye in solutions[J]. Environment Protection Engineering, 2018, 44(1):5-17. doi: 10.37190/epe180101
|
54 |
HOU Liwei, WANG Liguo, ROYE R S,et al.Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst[J]. Journal of Hazardous Materials, 2016, 302:458-467. doi: 10.1016/j.jhazmat.2015.09.033
|
55 |
WANG Nan, ZHU Lihua, WANG Dali,et al.Sono-assisted preparation of highly-efficient peroxidase-like Fe 3O 4 magnetic nanoparticles for catalytic removal of organic pollutants with H 2O 2 [J]. Ultrasonics Sonochemistry, 2010, 17(3):526-533. doi: 10.1016/j.ultsonch.2009.11.001
|
56 |
QIU Bocheng, XING Mingyang, ZHANG Jinlong.Stöber-like method to synthesize ultralight,porous,stretchable Fe 2O 3/graphene aerogels for excellent performance in photo-Fenton reaction and electrochemical capacitors[J]. Journal of Materials Chemistry A, 2015, 3(24):12820-12827. doi: 10.1039/c5ta02675j
|
57 |
MA Jie, YANG Mingxuan, YU Fei,et al.Easy solid-phase synthesis of pH-insensitive heterogeneous CNTs/FeS Fenton-like catalyst for the removal of antibiotics from aqueous solution[J]. Journal of Colloid and Interface Science, 2015, 444:24-32. doi: 10.1016/j.jcis.2014.12.027
|
58 |
DU Jiangkun, BAO Jianguo, FU Xiaoyan,et al.Mesoporous sulfur-modified iron oxide as an effective Fenton-like catalyst for degradation of bisphenol A[J]. Applied Catalysis B:Environmental, 2016, 184:132-141. doi: 10.1016/j.apcatb.2015.11.015
|
59 |
GEORGI A, SCHIERZ A, TROMMLER U,et al.Humic acid modified Fenton reagent for enhancement of the working pH range[J]. Applied Catalysis B:Environmental, 2007, 72(1/2):26-36. doi: 10.1016/j.apcatb.2006.10.009
|
60 |
KLAMERTH N, MALATO S, MALDONADO M I,et al.Modified photo-Fenton for degradation of emerging contaminants in municipal wastewater effluents[J]. Catalysis Today, 2011, 161(1):241-246. doi: 10.1016/j.cattod.2010.10.074
|
61 |
FAN C, TSUI L, LIAO Mingchu.Parathion degradation and its intermediate formation by Fenton process in neutral environment[J]. Chemosphere, 2011, 82(2):229-236. doi: 10.1016/j.chemosphere.2010.10.016
|
62 |
SOUTHWORTH B A, VOELKER B M.Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid[J]. Environmental Science & Technology, 2003, 37(6):1130-1136. doi: 10.1021/es020757l
|
63 |
LI Jing, MAILHOT G, WU Feng,et al.Photochemical efficiency of Fe(Ⅲ)-EDDS complex:·OH radical production and 17 β-estradiol degradation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2010, 212(1):1-7. doi: 10.1016/j.jphotochem.2010.03.001
|
64 |
FAUST B C, ZEPP R G.Photochemistry of aqueous iron(Ⅲ)-polycarboxylate complexes:Roles in the chemistry of atmospheric and surface waters[J]. Environmental Science & Technology, 1993, 27(12):2517-2522. doi: 10.1021/es00048a032
|
65 |
LI Yongchao, BACHAS L G, BHATTACHARYYA D.Kinetics studies of trichlorophenol destruction by chelate-based Fenton reaction[J]. Environmental Engineering Science, 2005, 22(6):756-771. doi: 10.1089/ees.2005.22.756
|
66 |
LEWIS S, LYNCH A, BACHAS L,et al.Chelate-modified Fenton reaction for the degradation of trichloroethylene in aqueous and two-phase systems[J]. Environmental Engineering Science, 2009, 26(4):849-859. doi: 10.1089/ees.2008.0277
|
67 |
ZHOU Yanbo, FANG Xingbin, WANG Tenghao,et al.Chelating agents enhanced CaO 2 oxidation of bisphenol A catalyzed by Fe 3+ and reuse of ferric sludge as a source of catalyst[J]. Chemical Engineering Journal, 2017, 313:638-645. doi: 10.1016/j.cej.2016.09.111
|