1 |
CHENG Min, LAI Cui, LIU Yang,et al. Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis[J]. Coordination Chemistry Reviews, 2018, 368:80-92. doi: 10.1016/j.ccr.2018.04.012
|
2 |
|
|
LU Laiya, QIN Jialing, YANG Wei. Summary of treatment methods of printing and dyeing wastewater[J]. Shandong Chemical Industry, 2020, 49(15):67-68. doi: 10.3969/j.issn.1008-021X.2020.15.028
|
3 |
LU Sen, LIU Libing, DEMISSIE H,et al. Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment:A review[J]. Environment International, 2021, 146:106273. doi: 10.1016/j.envint.2020.106273
|
4 |
PEREIRA A G B, RODRIGUES F H A, PAULINO A T,et al. Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater:A review[J]. Journal of Cleaner Production, 2021, 284:124703. doi: 10.1016/j.jclepro.2020.124703
|
5 |
|
|
MA Yanli, LI Haihong, Qi BIN. Acclimation and microbial community analysis of salt-resistant dye-degrading bacteria[J]. Industrial Water Treatemnt, 2023, 43(4):78-84. doi: 10.19965/j.cnki.iwt.2022-0459
|
6 |
|
|
HU Chengzhi, LIU Huijuan, QU Jiuhui. Research progress of electrochemical technologies for water treatment[J]. Chinese Journal of Environmental Engineering, 2018, 12(3):677-696. doi: 10.12030/j.cjee.201801179
|
7 |
EPSZTEIN R, DUCHANOIS R M, RITT C L,et al. Towards single-species selectivity of membranes with subnanometre pores[J]. Nature Nanotechnology, 2020, 15(6):426-436. doi: 10.1038/s41565-020-0713-6
|
8 |
HODGES B C, CATES E L, KIM J H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials[J]. Nature Nanotechnology, 2018, 13(8):642-650. doi: 10.1038/s41565-018-0216-x
|
9 |
YANG Zhichao, QIAN Jieshu, YU Anqing,et al. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14):6659-6664. doi: 10.1073/pnas.1819382116
|
10 |
ZHOU Peng, REN Wei, NIE Gang,et al. Fast and long-lasting iron(Ⅲ) reduction by boron toward green and accelerated Fenton chemistry[J]. Angewandte Chemie International Edition, 2020, 59(38):16517-16526. doi: 10.1002/anie.202007046
|
11 |
ZHAO Hongying, QIAN Lin, GUAN Xiaohong,et al. Continuous bulk FeCuC aerogel with ultradispersed metal nanoparticles:An efficient 3D heterogeneous electro-Fenton cathode over a wide range of pH 3-9[J]. Environmental Science & Technology, 2016, 50(10):5225-5233. doi: 10.1021/acs.est.6b00265
|
12 |
SUN Meng, CHU Chiheng, GENG Fanglan,et al. Reinventing Fenton chemistry:Iron oxychloride nanosheet for pH-insensitive H 2O 2 activation[J]. Environmental Science & Technology Letters, 2018, 5(3):186-191. doi: 10.1021/acs.estlett.8b00065
|
13 |
ABEDNATANZI S, GOHARI DERAKHSHANDEH P, DEPAUW H,et al. Mixed-metal metal-organic frameworks[J]. Chemical Society Reviews, 2019, 48(9):2535-2565. doi: 10.1039/c8cs00337h
|
14 |
KARMAKAR A, VELASCO E, LI Jing. Metal-organic frameworks as effective sensors and scavengers for toxic environmental pollutants[J]. National Science Review, 2022, 9(7):nwac091. doi: 10.1093/nsr/nwac091
|
15 |
LI Yang, PANG Jiandong, BU Xianhe. Multi-functional metal-organic frameworks for detection and removal of water pollutions[J]. Chemical Communications, 2022, 58(57):7890-7908. doi: 10.1039/d2cc02738k
|
16 |
XU Shaojun, CHANSAI S, STERE C,et al. Sustaining metal-organic frameworks for water-gas shift catalysis by non-thermal plasma[J]. Nature Catalysis, 2019, 2(2):142-148. doi: 10.1038/s41929-018-0206-2
|
17 |
BANERJEE D, SIMON C M, ELSAIDI S K,et al. Xenon gas separation and storage using metal-organic frameworks[J]. Chem, 2018, 4(3):466-494. doi: 10.1016/j.chempr.2017.12.025
|
18 |
HE Siyu, WU li, LI Xue,et al. Metal-organic frameworks for advanced drug delivery[J]. Acta Pharmaceutica Sinica B, 2021, 11(8):2362-2395. doi: 10.1016/j.apsb.2021.03.019
|
19 |
BEHBOODI-SADABAD F, LI S, LEI W,et al. High-throughput screening of multifunctional nanocoatings based on combinations of polyphenols and catecholamines[J]. Materials Today Bio, 2021, 10:100108. doi: 10.1016/j.mtbio.2021.100108
|
20 |
ZHAO Xueting, WANG Tingyuan, WANG Ruoxi,et al. Superwetting photothermal membranes enabled by polyphenol-mediated nanostructured coating with raspberry-like architectures for solar-driven interfacial evaporation[J]. Desalination, 2022, 542:116046. doi: 10.1016/j.desal.2022.116046
|
21 |
刘禹豪. TiO2/Fe-MOF@PP复合熔喷非织造材料的制备及其有机染料去除性能研究[D]. 杭州:浙江理工大学,2020.
|
|
LIU Yuhao. Preparation of TiO2/Fe-MOF@PP composite melt-blown nonwovens and its organic dye removal performance[D]. Hangzhou:Zhejiang Sci-Tech University,2020.
|
22 |
SHI Li, WANG Tao, ZHANG Huabin,et al. An amine-functionalized iron(Ⅲ) metal-organic framework as efficient visible-light photocatalyst for Cr(Ⅵ) reduction[J]. Advanced Science, 2015, 2(3):1500006. doi: 10.1002/advs.201500006
|
23 |
WANG Zhenxing, HAN Mingcai, ZHANG Jin,et al. Designing preferable functional materials based on the secondary reactions of the hierarchical tannic acid(TA)-aminopropyltriethoxysilane(APTES) coating[J]. Chemical Engineering Journal, 2019, 360:299-312. doi: 10.1016/j.cej.2018.11.144
|
24 |
余德游. Fe-MOFs催化臭氧降解染整废水有机污染物的效能及机制研究[D]. 杭州:浙江理工大学,2020.
|
|
YU Deyou. Study on the efficiency and mechanism of Fe-MOFs catalytic ozone degradation of organic pollutants in dyeing and finishing wastewater[D]. Hangzhou:Zhejiang Sci-Tech University,2020.
|
25 |
|
|
LIAO Yalong. Construction of flexible and elastic zirconium-based fiber materials and study on its degradation of chemical agents[D]. Shanghai:Donghua University, 2022. doi: 10.1002/smll.202101639
|
26 |
LU Zhihui, CAO Xuefang, HONG Wei,et al. Strong enhancement effect of bisulfite on MIL-68(Fe)-catalyzed Fenton-like reaction for organic pollutants degradation[J]. Applied Surface Science, 2020, 542:148631. doi: 10.1016/j.apsusc.2020.148631
|
27 |
LI Xiang, WANG Bo, CAO Yuhua,et al. Water contaminant elimination based on metal-organic frameworks and perspective on their industrial applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5):4548-4563. doi: 10.1021/acssuschemeng.8b05751
|