1 |
PÉREZ T, GARCIA-SEGURA S, EL-GHENYMY A,et al. Solar photoelectro-Fenton degradation of the antibiotic metronidazole using a flow plant with a Pt/air-diffusion cell and a CPC photoreactor[J]. Electrochimica Acta, 2015, 165:173-181. doi: 10.1016/j.electacta.2015.02.243
|
2 |
FANG Zhanqiang, CHEN Jinhong, QIU Xinhong,et al. Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles[J]. Desalination, 2011, 268(1/2/3):60-67. doi: 10.1016/j.desal.2010.09.051
|
3 |
BOXI S S, PARIA S. Effect of silver doping on TiO 2,CdS,and ZnS nanoparticles for the photocatalytic degradation of metronidazole under visible light[J]. RSC Advances, 2014, 4(71):37752-37760. doi: 10.1039/c4ra06192f
|
4 |
ABOUDALLE A, FOURCADE F, ASSADI A A,et al. Reactive oxygen and iron species monitoring to investigate the electro-Fenton performances. Impact of the electrochemical process on the biodegradability of metronidazole and its by-products[J]. Chemosphere, 2018, 199:486-494. doi: 10.1016/j.chemosphere.2018.02.075
|
5 |
REDDY N H S, PATNALA S, LÖBENBERG R,et al. In vitro dissolution of generic immediate-release solid oral dosage forms containing BCS class I drugs:Comparative assessment of metronidazole,zidovudine,and amoxicillin Versus relevant comparator pharmaceutical products in South Africa and India[J]. AAPS PharmSciTech, 2014, 15(5):1076-1086. doi: 10.1208/s12249-014-0135-6
|
6 |
STANCIL S L, VAN HAANDEL L, ABDEL-RAHMAN S,et al .Development of a UPLC-MS/MS method for quantitation of metronidazole and 2-hydroxy metronidazole in human plasma and its application to a pharmacokinetic study[J]. Journal of Chromatography B, 2018, 1092:272-278. doi: 10.1016/j.jchromb.2018.06.024
|
7 |
HOSSAIN A, NAKAMICHI S, HABIBULLAH-AL-MAMUN M,et al. Occurrence and ecological risk of pharmaceuticals in river surface water of Bangladesh[J]. Environmental Research, 2018, 165:258-266. doi: 10.1016/j.envres.2018.04.030
|
8 |
WAGIL M, MASZKOWSKA J, BIAŁK-BIELIŃSKA A,et al. Determination of metronidazole residues in water,sediment and fish tissue samples[J]. Chemosphere, 2015, 119:S28-S34. doi: 10.1016/j.chemosphere.2013.12.061
|
9 |
MADBOULY N A, NASHEE H, ELGENDY A A,et al. Encapsulation of low metronidazole dose in poly ( D, L-lactide-co-glycolide) (PLGA) nanoparticles improves Giardia intestinalis treatment[J]. Infection & Chemotherapy, 2020, 52(4):550. doi: 10.3947/ic.2020.52.4.550
|
10 |
COMMITTEE W H O E. The selection and use of essential medicines[J]. World Health Organization Technical Report Series,2012,950:1-268.
|
11 |
PAN Yishuai, LI Xuchun, FU Kun,et al. Degradation of metronidazole by UV/chlorine treatment:Efficiency,mechanism,pathways and DBPs formation[J]. Chemosphere, 2019, 224:228-236. doi: 10.1016/j.chemosphere.2019.02.081
|
12 |
SEGOVIA-SANDOVAL S J, PASTRANA-MARTÍNEZ L M, OCAMPO-PÉREZ R,et al. Synthesis and characterization of carbon xerogel/graphene hybrids as adsorbents for metronidazole pharmaceutical removal:Effect of operating parameters[J]. Separation and Purification Technology, 2020, 237:116341. doi: 10.1016/j.seppur.2019.116341
|
13 |
KIM S H, SHON H K, NGO H H. Adsorption characteristics of antibiotics trimethoprim on powdered and granular activated carbon[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(3):344-349. doi: 10.1016/j.jiec.2009.09.061
|
14 |
ZHANG Shisheng, LIN Tao, CHEN Wei,et al. Degradation kinetics,byproducts formation and estimated toxicity of metronidazole (MNZ) during chlor(am)ination[J]. Chemosphere, 2019, 235:21-31. doi: 10.1016/j.chemosphere.2019.06.150
|
15 |
RAO Yandi, LI Aoqi, ZHANG Yuxin,et al. Efficient degradation of metronidazole with dual-cathode of acetylene black-PTFE/CoFe 2O 4-PTFE coupling persulfate[J]. Separation and Purification Technology, 2022, 283:120193. doi: 10.1016/j.seppur.2021.120193
|
16 |
ZHANG Tianqi, WANG Ting, MEJIA-TICKNER B,et al. Inactivation of bacteria by peracetic acid combined with ultraviolet irradiation:Mechanism and optimization[J]. Environmental Science & Technology, 2020, 54(15):9652-9661. doi: 10.1021/acs.est.0c02424
|
17 |
BAUM J C, FENG Mingbao, GUO Binglin,et al. Generation of iron(Ⅳ) in the oxidation of amines by ferrate(Ⅵ):Theoretical insight and implications in oxidizing pharmaceuticals[J]. ACS ES&T Water, 2021, 1(8):1932-1940. doi: 10.1021/acsestwater.1c00156
|
18 |
KIM J, HUANG C H. Reactivity of peracetic acid with organic compounds:A critical review[J]. ACS ES&T Water, 2021, 1(1):15-33. doi: 10.1021/acsestwater.0c00029
|
19 |
ZHANG Tianqi, HUANG C H. Modeling the kinetics of UV/peracetic acid advanced oxidation process[J]. Environmental Science & Technology, 2020, 54(12):7579-7590. doi: 10.1021/acs.est.9b06826
|
20 |
KIM J, ZHANG Tianqi, LIU Wen,et al. Advanced oxidation process with peracetic acid and Fe(Ⅱ) for contaminant degradation[J]. Environmental Science & Technology, 2019, 53(22):13312-13322. doi: 10.1021/acs.est.9b02991
|
21 |
LIU Banghai, GUO Wanqian, JIA Wenrui,et al. Insights into the oxidation of organic contaminants by Co(Ⅱ) activated peracetic acid:The overlooked role of high-valent cobalt-oxo species[J]. Water Research, 2021, 201:117313. doi: 10.1016/j.watres.2021.117313
|
22 |
LI Ruobai, MANOLI K, KIM J,et al. Peracetic acid-ruthenium(Ⅲ) oxidation process for the degradation of micropollutants in water[J]. Environmental Science & Technology, 2021, 55(13):9150-9160. doi: 10.1021/acs.est.0c06676
|
23 |
DOMÍNGUEZ-HENAO L, TUROLLA A, MONTICELLI D,et al .Assessment of a colorimetric method for the measurement of low concentrations of peracetic acid and hydrogen peroxide in water[J]. Talanta, 2018, 183:209-215. doi: 10.1016/j.talanta.2018.02.078
|
24 |
LUO Cong, FENG Mingbao, SHARMA V K,et al. Oxidation of pharmaceuticals by ferrate(Ⅵ) in hydrolyzed urine:Effects of major inorganic constituents[J]. Environmental Science & Technology, 2019, 53(9):5272-5281. doi: 10.1021/acs.est.9b00006
|
25 |
WANG Lei, SUN Hongwen, WU Yinghong,et al. Photodegradation of nonylphenol polyethoxylates in aqueous solution[J]. Environmental Chemistry, 2009, 6(2):185. doi: 10.1071/en08101
|
26 |
CHEN Siao, CAI Meiquan, LIU Yongze,et al. Effects of water matrices on the degradation of naproxen by reactive radicals in the UV/peracetic acid process[J]. Water Research, 2019, 150:153-161. doi: 10.1016/j.watres.2018.11.044
|
27 |
HU Jun, LI Tong, ZHANG Xuxiang,et al. Degradation of steroid estrogens by UV/peracetic acid:Influencing factors,free radical contribution and toxicity analysis[J]. Chemosphere, 2022, 287:132261. doi: 10.1016/j.chemosphere.2021.132261
|
28 |
FENG Mingbao, WANG Xinghao, CHEN Jing,et al. Degradation of fluoroquinolone antibiotics by ferrate(Ⅵ):Effects of water constituents and oxidized products[J]. Water Research, 2016, 103:48-57. doi: 10.1016/j.watres.2016.07.014
|
29 |
|
|
FANG Zhihuang, LIU Xiang, YU Yang,et al. Performance and properties of H 2-receptor antagonist degradation by ferrate[J]. Chemical Industry and Engineering Progress, 2021, 40(8):4647-4655. doi: 10.16085/j.issn.1000-6613.2020-1846
|
30 |
ZHAO Zihao, LI Xinhong, LI Hongchao,et al. New insights into the activation of peracetic acid by Co(Ⅱ):Role of Co(Ⅱ)-peracetic acid complex as the dominant intermediate oxidant[J]. ACS ES&T Engineering, 2021, 1(10):1432-1440. doi: 10.1021/acsestengg.1c00166
|
31 |
CAI Meiquan, SUN Peizhe, ZHANG Liqiu,et al. UV/peracetic acid for degradation of pharmaceuticals and reactive species evaluation[J]. Environmental Science & Technology, 2017, 51(24):14217-14224. doi: 10.1021/acs.est.7b04694
|
32 |
WANG Zongping, WANG Jingwen, XIONG Bin,et al. Application of cobalt/peracetic acid to degrade sulfamethoxazole at neutral condition:Efficiency and mechanisms[J]. Environmental Science & Technology, 2020, 54(1):464-475. doi: 10.1021/acs.est.9b04528
|
33 |
SHAO Binbin, DONG Hongyu, FENG Liying,et al. Influence ofsulfite/〔Fe(Ⅵ)〕 molar ratio on the active oxidants generation in Fe(Ⅵ)/sulfite process[J]. Journal of Hazardous Materials, 2020, 384:121303. doi: 10.1016/j.jhazmat.2019.121303
|
34 |
WANG Junyue, KIM J, ASHLEY D C,et al. Peracetic acid enhances micropollutant degradation by ferrate(Ⅵ) through promotion of electron transfer efficiency[J]. Environmental Science & Technology, 2022, 56(16):11683-11693. doi: 10.1021/acs.est.2c02381
|