1 |
SHI Kaiyang, ZHOU Man, WANG Fulin,et al. Perylene diimide/iron phthalocyanine Z-scheme heterojunction with strong interfacial charge transfer through π-π interaction:Efficient photocatalytic degradation of tetracycline hydrochloride[J]. Chemosphere, 2023, 329:138617. doi: 10.1016/j.chemosphere.2023.138617
|
2 |
YAO Keyu, FANG Lei, LIAO Pubin,et al. Ultrasound-activated peracetic acid to degrade tetracycline hydrochloride:Efficiency and mechanism[J]. Separation and Purification Technology, 2023, 306:122635. doi: 10.1016/j.seppur.2022.122635
|
3 |
ZHANG Bin, HE Xu, YU Chengze,et al. Degradation of tetracycline hydrochloride by ultrafine TiO 2 nanoparticles modified g-C 3N 4 heterojunction photocatalyst:Influencing factors,products and mechanism insight[J]. Chinese Chemical Letters, 2022, 33(3):1337-1342. doi: 10.1016/j.cclet.2021.08.008
|
4 |
DUMRONGROJTHANATH P, THONGTEM T, PHURUANGRAT A,et al. Synthesis and characterization of hierarchical multilayered flower-like assemblies of Ag doped Bi 2WO 6 and their photocatalytic activities[J]. Superlattices and Microstructures, 2013, 64:196-203. doi: 10.1016/j.spmi.2013.09.028
|
5 |
TIAN Ke, HU Limin, LI Letian,et al. Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment[J]. Chinese Chemical Letters, 2022, 33(10):4461-4477. doi: 10.1016/j.cclet.2021.12.042
|
6 |
GUO Sheng, YANG Wei, YOU Liming,et al. Simultaneous reduction of Cr(Ⅵ) and degradation of tetracycline hydrochloride by a novel iron-modified rectorite composite through heterogeneous photo-Fenton processes[J]. Chemical Engineering Journal, 2020, 393:124758. doi: 10.1016/j.cej.2020.124758
|
7 |
PRIYADARSHINI M,DAS I, GHANGREKAR M M,et al. Advanced oxidation processes:Performance,advantages,and scale-up of emerging technologies[J]. Journal of Environmental Management, 2022, 316:115295. doi: 10.1016/j.jenvman.2022.115295
|
8 |
XIE Jinling, ZHANG Lingrui, LUO Xuan,et al. Sulfur anchored on N-doped porous carbon as metal-free peroxymonosulfate activator for tetracycline hydrochloride degradation:Nonradical pathway mechanism,performance and biotoxicity[J]. Chemical Engineering Journal, 2023, 457:141149. doi: 10.1016/j.cej.2022.141149
|
9 |
CAO Zhou, ZHAO Yunpu, LI Jingmai,et al. Rapid electron transfer-promoted tetracycline hydrochloride degradation:Enhanced activity in visible light-coupled peroxymonosulfate with PdO/g-C 3N 4/kaolinite catalyst[J]. Chemical Engineering Journal, 2023, 457:141191. doi: 10.1016/j.cej.2022.141191
|
10 |
ZHAO Hengxuan, WANG Lu, KONG Deyang,et al. Degradation of triclosan in a peroxymonosulfate/Br - system:Identification of reactive species and formation of halogenated byproducts[J]. Chemical Engineering Journal, 2020, 384:123297. doi: 10.1016/j.cej.2019.123297
|
11 |
ZHOU Yang, JIANG Jin, GAO Yuan,et al. Oxidation of steroid estrogens by peroxymonosulfate(PMS) and effect of bromide and chloride ions:Kinetics,products,and modeling[J]. Water Research, 2018, 138:56-66. doi: 10.1016/j.watres.2018.03.045
|
12 |
WANG Liangjie, LI Juan, LIU Xinyao,et al. Overestimation of 1O 2 role in N-doped carbon materials/peroxymonosulfate system:The misleading of furfuryl alcohol quenching effect[J]. Chemosphere, 2023, 324:138264. doi: 10.1016/j.chemosphere.2023.138264
|
13 |
KIM J, ZHANG Tianqi, LIU Wen,et al. Advanced oxidation process with peracetic acid and Fe(Ⅱ) for contaminant degradation[J]. Environmental Science & Technology, 2019, 53(22):13312-13322. doi: 10.1021/acs.est.9b02991
|
14 |
YANG Shurun, HE Chuanshu, XIE Zhihui,et al. Efficient activation of PAA by FeS for fast removal of pharmaceuticals:The dual role of sulfur species in regulating the reactive oxidized species[J]. Water Research, 2022, 217:118402. doi: 10.1016/j.watres.2022.118402
|
15 |
CAI Meiquan, SUN Peizhe, ZHANG Liqiu,et al. UV/peracetic acid for degradation of pharmaceuticals and reactive species evaluation[J]. Environmental Science & Technology, 2017, 51(24):14217-14224. doi: 10.1021/acs.est.7b04694
|
16 |
周润宇,付永胜,周高峰,等. 石墨相氮化碳负载尖晶石型铁钴硫化物活化过氧乙酸降解自然水体中罗丹明B的研究[J]. 水处理技术,2022,48(12):77-82.
|
|
ZHOU Runyu, FU Yongsheng, ZHOU Gaofeng,et al. Degradation of rhodamine B in natural waters by peracetic acid activated with FeCo2S4 modified g-C3N4 [J]. Technology of Water Treatment,2022,48(12):77-82.
|
17 |
WANG Zongping, WANG Jingwen, XIONG Bin,et al. Application of cobalt/peracetic acid to degrade sulfamethoxazole at neutral condition:Efficiency and mechanisms[J]. Environmental Science & Technology, 2020, 54(1):464-475. doi: 10.1021/acs.est.9b04528
|
18 |
刘振中,万思文,吴阳,等. CoFe2O4/CuO活化过氧乙酸高效降解磺胺甲 唑[J]. 物理化学学报,2023,39(5):130-138.
|
|
LIU Zhenzhong, WAN Siwen, WU Yang,et al. Highly efficient degradation of sulfamethoxazole using activating peracetic acid with CoFe2O4/CuO[J]. Acta Physico-Chimica Sinica,2023,39(5):130-138.
|
19 |
DENG Jiewen, WANG Hongbin, FU Yongsheng,et al. Phosphate-induced activation of peracetic acid for diclofenac degradation:Kinetics,influence factors and mechanism[J]. Chemosphere, 2022, 287:132396. doi: 10.1016/j.chemosphere.2021.132396
|
20 |
WANG Jingwen, XIONG Bin, MIAO Lei,et al. Applying a novel advanced oxidation process of activated peracetic acid by CoFe 2O 4 to efficiently degrade sulfamethoxazole[J]. Applied Catalysis B:Environmental, 2021, 280:119422. doi: 10.1016/j.apcatb.2020.119422
|
21 |
YUAN Deling, YANG Kai, PAN Shiyu,et al. Peracetic acid enhanced electrochemical advanced oxidation for organic pollutant elimination[J]. Separation and Purification Technology, 2021, 276:119317. doi: 10.1016/j.seppur.2021.119317
|
22 |
QI Juanjuan, LIU Juzhe, SUN Fengbin,et al. High active amorphous Co(OH) 2 nanocages as peroxymonosulfate activator for boosting acetaminophen degradation and DFT calculation[J]. Chinese Chemical Letters, 2021, 32(5):1814-1818. doi: 10.1016/j.cclet.2020.11.026
|
23 |
ZHANG Wenjuan, LIU Jingxin, TAN Jie,et al. Facile route for fabricating Co(OH) 2@WO 3 microspheres from scheelite and its environmental application for high-performance peroxymonosulfate activation[J]. Journal of Cleaner Production, 2022, 340:130714. doi: 10.1016/j.jclepro.2022.130714
|
24 |
HE Dong, SONG Xianyin, LI Wenqing,et al. Active electron density modulation of Co 3O 4-based catalysts enhances their oxygen evolution performance[J]. Angewandte Chemie(International Ed. in English), 2020, 59(17):6929-6935. doi: 10.1002/anie.202001681
|
25 |
AHMAD M, OK Y S, RAJAPAKSHA A U,et al. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars:Chemical,microbial and spectroscopic assessments[J]. Journal of Hazardous Materials, 2016, 301:179-186. doi: 10.1016/j.jhazmat.2015.08.029
|
26 |
WANG Tianye, LIU Shuxia, MAO Wei,et al. Novel Bi 2WO 6 loaded N-biochar composites with enhanced photocatalytic degradation of rhodamine B and Cr(Ⅵ)[J]. Journal of Hazardous Materials, 2020, 389:121827. doi: 10.1016/j.jhazmat.2019.121827
|
27 |
XIONG Xinyue, LIU Zhanglin, ZHAO Li,et al. Tailoring biochar by PHP towards the oxygenated functional groups(OFGs)-rich surface to improve adsorption performance[J]. Chinese Chemical Letters, 2022, 33(6):3097-3100. doi: 10.1016/j.cclet.2021.09.099
|
28 |
HE Yan, ZHAO Xin, ZHU Siman,et al. Conversion of swine manure into biochar for soil amendment:Efficacy and underlying mechanism of dissipating antibiotic resistance genes[J]. Science of the Total Environment, 2023, 871:162046. doi: 10.1016/j.scitotenv.2023.162046
|
29 |
GUO Ruonan, XI Beidou, GUO Changsheng,et al. Persulfate-based advanced oxidation processes:The new hope brought by nanocatalyst immobilization[J]. Environmental Functional Materials, 2022, 1(1):67-91. doi: 10.1016/j.efmat.2022.05.004
|
30 |
YU Cheng, ZHU Xiaoxi, MOHAMED A,et al. Enhanced Cr(Ⅵ) bioreduction by biochar:Insight into the persistent free radicals mediated extracellular electron transfer[J]. Journal of Hazardous Materials, 2023, 442:129927. doi: 10.1016/j.jhazmat.2022.129927
|
31 |
WANG Zhenyu, GU Zaoli, YANG Yifeng,et al. Review of biochar as a novel carrier for anammox process:Material,performance and mechanisms[J]. Journal of Water Process Engineering, 2022, 50:103277. doi: 10.1016/j.jwpe.2022.103277
|
32 |
KONG Lingshuai, FANG Guodong, FANG Zhao,et al. Peroxymonosulfate activation by localized electrons of ZnO oxygen vacancies for contaminant degradation[J]. Chemical Engineering Journal, 2021, 416:128996. doi: 10.1016/j.cej.2021.128996
|
33 |
YANG Xudong, LI Fan, LIU Wen,et al. Oxygen vacancy-induced spin polarization of tungsten oxide nanowires for efficient photocatalytic reduction and immobilization of uranium(Ⅵ) under simulated solar light[J]. Applied Catalysis B:Environmental, 2023, 324:122202. doi: 10.1016/j.apcatb.2022.122202
|
34 |
TAO Xi, PAN P, HUANG Taobo,et al. In-situ construction of Co(OH) 2 nanoparticles decorated urchin-like WO 3 for highly efficient degradation of sulfachloropyridazine via peroxymonosulfate activation:Intermediates and DFT calculation[J]. Chemical Engineering Journal, 2020, 395:125186. doi: 10.1016/j.cej.2020.125186
|
35 |
YANG Yang, ZHAO Shenghao, BI Fukun,et al. Highly efficient photothermal catalysis of toluene over Co 3O 4/TiO 2 p-n heterojunction:The crucial roles of interface defects and band structure[J]. Applied Catalysis B:Environmental, 2022, 315:121550. doi: 10.1016/j.apcatb.2022.121550
|
36 |
YANG Xudong, DUAN Jun, QI Juanjuan,et al. Modulating the electron structure of Co-3d in Co 3O 4- x /WO 2.72 for boosting peroxymonosulfate activation and degradation of sulfamerazine:Roles of high-valence W and rich oxygen vacancies[J]. Journal of Hazardous Materials, 2023, 445:130576. doi: 10.1016/j.jhazmat.2022.130576
|
37 |
QI Juanjuan, YANG Xiaoyong, PAN P Y,et al. Interface engineering of Co(OH) 2 nanosheets growing on the KNbO 3 perovskite based on electronic structure modulation for enhanced peroxymonosulfate activation[J]. Environmental Science & Technology, 2022, 56(8):5200-5212. doi: 10.1021/acs.est.1c08806
|
38 |
FANG Zhimo, QI Juanjuan, XU Yongyi,et al. Promoted generation of singlet oxygen by hollow-shell CoS/g-C 3N 4 catalyst for sulfonamides degradation[J]. Chemical Engineering Journal, 2022, 441:136051. doi: 10.1016/j.cej.2022.136051
|
39 |
DU Penghui, WANG Junjian, SUN Guodong,et al. Hydrogen atom abstraction mechanism for organic compound oxidation by acetylperoxyl radical in Co(Ⅱ)/peracetic acid activation system[J]. Water Research, 2022, 212:118113. doi: 10.1016/j.watres.2022.118113
|
40 |
LI Jiaqi, ZHOU Zhiwei, LI Xing,et al. Synergistically boosting sulfamerazine degradation via activation of peroxydisulfate by photocatalysis of Bi 2O 3-TiO 2/PAC under visible light irradiation[J]. Chemical Engineering Journal, 2022, 428:132613. doi: 10.1016/j.cej.2021.132613
|