工业水处理 ›› 2024, Vol. 44 ›› Issue (6): 78-87. doi: 10.19965/j.cnki.iwt.2023-0449

• 试验研究 • 上一篇    下一篇

氢氧化钴/生物炭活化过氧乙酸降解水中抗生素

孙丰宾1,2(), 杨旭东3, 李璠3, 乔林1(), 刘文3,4   

  1. 1. 中国气象局北京城市气象研究院, 北京 100089
    2. 中国科学院大气物理研究所, 北京 100029
    3. 北京大学环境科学与工程学院, 水沙教育部重点实验室, 北京 100871
    4. 北京大学国家环境保护河流全物质通量重点实验室, 北京 100871
  • 收稿日期:2024-03-12 出版日期:2024-06-20 发布日期:2024-06-18
  • 作者简介:

    孙丰宾(1985— ),博士。E-mail:

    乔林,研究员。E-mail:

  • 基金资助:
    国家自然科学基金项目(52270053); 国家重点研发计划青年科学家项目(2021YFA1202500); 北京市自然科学基金项目(8232035); 北京市科技新星计划交叉合作课题(20220484215)

Activation of peracetic acid by cobalt hydroxide/biochar for antibiotics degradation in water

Fengbin SUN1,2(), Xudong YANG3, Fan LI3, Lin QIAO1(), Wen LIU3,4   

  1. 1. Institute of Urban Meteorology, CMA, Beijing 100089, China
    2. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    3. The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
    4. State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China
  • Received:2024-03-12 Online:2024-06-20 Published:2024-06-18

摘要:

通过对非均相复合催化剂进行合理的电子结构调控,可有效促进界面电荷分离和转移,进而提升催化剂的性能。近年来,以生物炭(BC)基材料活化过氧乙酸〔CH3C(O)OOH,PAA〕的非均相高级氧化工艺因能产生多种活性氧物种(ROS)而备受关注。采用一种简易的共沉淀法合成了Co(OH)2纳米颗粒修饰的生物炭材料(h-Co/BC),并将其应用于活化PAA降解水中的典型抗生素四环素(TC)。实验结果表明h-Co/BC在pH=7条件下,7 min内可实现对初始浓度为10 µmol/L的TC的完全降解去除。自由基猝灭实验和电子顺磁共振(EPR)分析表明,该非均相体系中主要的ROS为烷氧基自由基,包括CH3COO·、CH3COOO·、·OH和1O2。材料表征结合密度泛函理论计算表明,Co(OH)2纳米颗粒成功地负载于生物炭上,Co 3d带中心更靠近费米能级,利于电子的定向迁移,进而被PAA捕获,随后PAA裂解生成ROS。该研究可为非均相PAA高级氧化技术中功能材料的研发提供新的理念。

关键词: 生物炭, 氢氧化钴, 过氧乙酸, 抗生素, 密度泛函理论计算

Abstract:

Reasonable regulation of electronic structures of heterogeneous composite catalysts can enhance the charge separation and transfer at the interface of materials, thus further promoting the catalytic performance of catalysts. Recently, peracetic acid〔CH3C(O)OOH, PAA〕 based on heterogeneous advanced oxidation process with biochar(BC) materials has attacked much interests due to various reactive oxygen species(ROS) generated in the process. In this study, biochar modified with Co(OH)2 nanoparticles(h-Co/BC) was successfully synthesized by a simple co-precipitation method, which was applied to activate PAA for tetracycline(TC) degradation. The results showed that h-Co/BC could completely degrade TC with an initial concentration of 10 µmol/L within 7 min at pH 7. The scavenger quenching tests and electron paramagnetic resonance(EPR) analysis further indicated that the produced primary ROS were alkoxy radical, which mainly including CH3COO·, CH3COOO·, ·OH and 1O2. In addition, materials characterizations combined with density functional theory calculation showed that biochar was successfully modified with Co(OH)2 nanoparticles. Thus, the Co 3d-band in h-Co/BC was closer to Fermi level compared with that in pure Co(OH)2, benefiting to directional electron transfer, which could then be easily captured by PAA for cleavage to ROS. This study provided a new method for synthesis of functional materials applied in PAA-based AOPs.

Key words: biochar, cobalt hydroxide, peracetic acid, antibiotics, density functional theory calculation

中图分类号: