1 |
LIU Conghu, CAI Wei, ZHAI Mengyu,et al. Decoupling of wastewater eco-environmental damage and China’s economic development[J]. Science of the Total Environment, 2021, 789:147980. doi: 10.1016/j.scitotenv.2021.147980
|
2 |
NIU Kunyu, WU Jian, YU Fang,et al. Construction and operation costs of wastewater treatment and implications for the paper industry in China[J]. Environmental Science & Technology, 2016, 50(22):12339-12347. doi: 10.1021/acs.est.6b03835
|
3 |
MAO Guozhu, HU Haoqiong, LIU Xi,et al. A bibliometric analysis of industrial wastewater treatments from 1998 to 2019[J]. Environmental Pollution, 2021, 275:115785. doi: 10.1016/j.envpol.2020.115785
|
4 |
|
|
LIU Tiantao. Comparison of water pollutant discharge data of different caliber in printing and dyeing industry[J]. Textile Dyeing and Finishing Journal, 2021, 43(1):1-2. doi: 10.3969/j.issn.1005-9350.2021.01.001
|
5 |
|
|
ZHANG Yan. Research progress in the treatment technologies of pharmaceutical wastewater[J]. Industrial Water Treatment, 2018, 38(5):5-9. doi: 10.11894/1005-829x.2018.38(5).005
|
6 |
焦东. 废纸制浆造纸厂废水处理新工艺及中试研究[D]. 广州:华南理工大学,2020.
|
|
JIAO Dong. New technology and pilot study on wastewater treatment in waste paper pulp and paper mill[D]. Guangzhou:South China University of Technology,2020.
|
7 |
DENG Dongyang, LAMSSALI M, ARYAL N,et al. Textiles wastewater treatment technology:A review[J]. Water Environment Research:A Research Publication of the Water Environment Federation, 2020, 92(10):1805-1810. doi: 10.1002/wer.1437
|
8 |
ABDEL SHAFY HUSSEIN I, MANSOUR MONA S M. Treatment of phatinaceutical industrial wastewater via anaerobic/aerobic system for unrestricted reuse[J]. Journal of Scientific & Industrial Research,2017,76(2):119-127.
|
9 |
YANG Kai, ZHU Ying, SHAN Ranran,et al. Heavy metals in sludge during anaerobic sanitary landfill:Speciation transformation and phytotoxicity[J]. Journal of Environmental Management, 2017, 189:58-66. doi: 10.1016/j.jenvman.2016.12.019
|
10 |
LU Wenjing, YE Rong, MING Zhongyuan,et al. Performance evaluation in composting of sewage sludge with different bulking agents[J]. Journal of Environmental Engineering, 2020, 146(6):05020002. doi: 10.1061/(ASCE)EE.1943-7870.0001727
|
11 |
NATAL-DA-LUZ T, TIDONA S, JESUS B,et al. The use of sewage sludge as soil amendment. The need for an ecotoxicological evaluation[J]. Journal of Soils and Sediments, 2009, 9(3):246-260. doi: 10.1007/s11368-009-0077-x
|
12 |
BAYAR S, TALINLI İ. Solidification/stabilization of hazardous waste sludge obtained from a chemical industry[J]. Clean Technologies and Environmental Policy, 2013, 15(1):157-165. doi: 10.1007/s10098-012-0494-1
|
13 |
HUANG Rixiang, ZHANG Bei, SAAD E M,et al. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges[J]. Water Research, 2018, 132:260-269. doi: 10.1016/j.watres.2018.01.009
|
14 |
IHSANULLAH I, KHAN M T, ZUBAIR M,et al. Removal of pharmaceuticals from water using sewage sludge-derived biochar:A review[J]. Chemosphere, 2022, 289:133196. doi: 10.1016/j.chemosphere.2021.133196
|
15 |
RANGABHASHIYAM S, DOS SANTOS LINS P V, DE MAGALHÃES OLIVEIRA L M T,et al. Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants:A critical review[J]. Environmental Pollution, 2022, 293:118581. doi: 10.1016/j.envpol.2021.118581
|
16 |
刁韩杰,张进,王敏艳,等. 高温热解对污泥炭特性及其重金属形态变化的影响[J]. 环境工程,2019,37(3):29-34.
|
|
DIAO Hanjie, ZHANG Jin, WANG Minyan,et al. Effect of high temperature pyrolysis of sewage sludge on characteristics of residual biochar and speciation changes of heavy metals[J]. Environmental Engineering,2019,37(3):29-34.
|
17 |
TANG Yao, ALAM M S, KONHAUSER K O,et al. Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater[J]. Journal of Cleaner Production, 2019, 209:927-936. doi: 10.1016/j.jclepro.2018.10.268
|
18 |
|
|
YU Li, LIU Yunkang, ATTI M,et al. Catalytic degradation of cefalexin wastewater by sludge carbon in CWPO system[J]. Environmental Chemistry, 2020, 39(5):1262-1270. doi: 10.7524/j.issn.0254-6108.2019050602
|
19 |
TANG Zheng, KONG Yifan, ZHAO Song,et al. Enhancement of Cr(Ⅵ) decontamination by irradiated sludge biochar in neutral conditions:Evidence of a possible role of persistent free radicals[J]. Separation and Purification Technology, 2021, 277:119414. doi: 10.1016/j.seppur.2021.119414
|
20 |
国家环境保护总局水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 北京:中国环境科学出版社,2002:91-467.
|
21 |
SREEKUMAR N, SELVARAJU N, ANEESH C,et al. Fluorescence transients as a selection tool for marine microalgal consortia in a raceway pond reactor for biofuel production[J]. Journal of Scientific & Industrial Research,2015,74(11):645-650.
|
22 |
LI Yongchao, YANG Xiaoyan, WONG M,et al. Atrazine biodegradation in water by co-immobilized Citricoccus sp. strain TT3 with Chlorella vulgaris under a harsh environment[J]. Algal Research, 2023, 70:102994. doi: 10.1016/j.algal.2023.102994
|
23 |
|
|
CHEN Li, WEN Kangxin, DU Zhi,et al. Effect of pyrolysis conditions on pyrolysis characteristics of straw and yield of biochar[J]. Journal of Harbin Institute of Technology, 2020, 52(11):26-32. doi: 10.11918/201901100
|
24 |
SHAKYA A, VITHANAGE M, AGARWAL T. Influence of pyrolysis temperature on biochar properties and Cr(Ⅵ) adsorption from water with groundnut shell biochars:Mechanistic approach[J]. Environmental Research, 2022, 215:114243. doi: 10.1016/j.envres.2022.114243
|
25 |
LIU Xiaoqing, DING Hongsheng, WANG Yuanying,et al. Pyrolytic temperature dependent and ash catalyzed formation of sludge char with ultra-high adsorption to 1-naphthol[J]. Environmental Science & Technology, 2016, 50(5):2602-2609. doi: 10.1021/acs.est.5b04536
|
26 |
PITTS W M, JOHNSSON E L, BRYNER N P. Carbon monoxide formation in fires by high-temperature anaerobic wood pyrolysis[J]. Symposium(International) on Combustion, 1994, 25(1):1455-1462. doi: 10.1016/s0082-0784(06)80789-7
|
27 |
LI Shaopu, KANG Yong. Effect of PO 4 3- on the polymerization of polyferric phosphatic sulfate and its flocculation characteristics for different simulated dye wastewater[J]. Separation and Purification Technology, 2021, 276:119373. doi: 10.1016/j.seppur.2021.119373
|
28 |
FIDEL R B, LAIRD D A, THOMPSON M L,et al. Characterization and quantification of biochar alkalinity[J]. Chemosphere, 2017, 167:367-373. doi: 10.1016/j.chemosphere.2016.09.151
|
29 |
张进,刁韩杰,王敏艳,等. 稻壳与污泥共热解对污泥炭特性及其重金属生态风险的影响[J]. 环境科学学报,2019,39(4):1250-1256.
|
|
ZHANG Jin, DIAO Hanjie, WANG Minyan,et al. Effects of rice husk and sewage sludge co-pyrolysis on characteristics of the sludge biochar and its ecological risk of heavy metals[J]. Acta Scientiae Circumstantiae,2019,39(4):1250-1256.
|
30 |
RAJ A, YADAV A, RAWAT A P,et al. Kinetic and thermodynamic investigations of sewage sludge biochar in removal of Remazol Brilliant Blue R dye from aqueous solution and evaluation of residual dyes cytotoxicity[J]. Environmental Technology & Innovation, 2021, 23:101556. doi: 10.1016/j.eti.2021.101556
|
31 |
WU Qinyue, ZHANG Yan, CUI Minhua,et al. Pyrolyzing pharmaceutical sludge to biochar as an efficient adsorbent for deep removal of fluoroquinolone antibiotics from pharmaceutical wastewater:Performance and mechanism[J]. Journal of Hazardous Materials, 2022, 426:127798. doi: 10.1016/j.jhazmat.2021.127798
|
32 |
DANHASSAN U A, ZHANG Xin, QI Riying,et al. Insight into synthesis and catalytic performance of mesoporous electroactive biochar for aqueous sulfide adsorptive oxidation[J]. Journal of Environmental Chemical Engineering, 2023, 11(5):110619. doi: 10.1016/j.jece.2023.110619
|
33 |
|
|
LIU Bei, QI Peishi, SUN Yanlong,et al. AC-EG adsorption treatment of pharmaceutical wastewater and adsorbents' microwave regeneration[J]. Journal of Harbin Institute of Technology, 2018, 50(8):64-69. doi: 10.11918/j.issn.0367-6234.201705013
|
34 |
江汝清,余广炜,王玉,等. 污泥炭对厌氧发酵沼液的吸附特征[J]. 环境科学与技术,2022,45(3):178-187.
|
|
JIANG Ruqing, YU Guangwei, WANG Yu,et al. Study on the adsorption treatment of anaerobic fermentation liquid with sludge biochar[J]. Environmental Science & Technology,2022,45(3):178-187.
|
35 |
吴钦岳,刘和,郑炜,等. 制药污泥热解制备生物炭及对制药废水的吸附处理性能分析[J]. 环境工程,2021,39(11):103-109.
|
|
WU Qinyue, LIU He, ZHENG Wei,et al. Preparation of biochar by pyrolysis of pharmaceutical sludge and its adsorption performance in treating pharmaceutical wastewater[J]. Environmental Engineering,2021,39(11):103-109.
|
36 |
|
|
LIN Chaoping, NING Xun'an, WU Junji,et al. Advanced treatment of dyeing wastewater by activated carbon prepared from waste filter bags[J]. Chinese Journal of Environmental Engineering, 2016, 10(12):6977-6982. doi: 10.12030/j.cjee.201507107
|
37 |
蒋玉柱,惠贺龙,刘弘毅,等. 印染污泥基生物炭吸附处理难降解有机废水[J]. 环境工程,2022,40(10):32-39.
|
|
JIANG Yuzhu, HUI Helong, LIU Hongyi,et al. Adsorption treatment of refractory organic wastewater by biocarbon based on printing and dyeing sludge[J]. Environmental Engineering,2022,40(10):32-39.
|
38 |
CHEN Si, QIN Chaoxian, WANG Teng,et al. Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar:Adsorption capacity,isotherm,kinetic,thermodynamics and mechanism[J]. Journal of Molecular Liquids, 2019, 285:62-74. doi: 10.1016/j.molliq.2019.04.035
|
39 |
CARVALHO NEVES L, BEBER DE SOUZA J, DE SOUZA VIDAL C M,et al. Phytotoxicity indexes and removal of color,COD,phenols and ISA from pulp and paper mill wastewater post-treated by UV/H 2O 2 and photo-Fenton[J]. Ecotoxicology and Environmental Safety, 2020, 202:110939. doi: 10.1016/j.ecoenv.2020.110939
|
40 |
|
|
GUO Saisai, LIU Xiaomei, CHEN Hongkun,et al. Properties of ball-milled biochar and its toxic effects on E. coli and S. aureus [J]. Journal of Agro-Environment Science, 2019, 38(7):1468-1475. doi: 10.11654/jaes.2018-1617
|
41 |
ZHANG Ying, YANG Ruixin, SI Xiaohui,et al. The adverse effect of biochar to aquatic algae:The role of free radicals[J]. Environmental Pollution, 2019, 248:429-437. doi: 10.1016/j.envpol.2019.02.055
|
42 |
HUANG Xiaochen, ZHU Shishu, ZHANG Hongli,et al. Biochar nanoparticles induced distinct biological effects on freshwater algae via oxidative stress,membrane damage,and nutrient depletion[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(32):10761-10770. doi: 10.1021/acssuschemeng.1c01814
|