1 |
|
|
|
2 |
YANG Wenlan, WANG Jicheng, HUA Ming,et al. Characterization of effluent organic matter from different coking wastewater treatment plants[J]. Chemosphere, 2018, 203:68-75. doi: 10.1016/j.chemosphere.2018.03.167
|
3 |
蒙小俊,李海波,曹宏斌,等. A2/O工艺处理焦化废水过程中有机污染物迁移转化研究[J]. 给水排水,2015,51(S1):237-240.
|
|
MENG Xiaojun, LI Haibo, CAO Hongbin,et al. Study on migration and transformation of organic pollutants in coking wastewater treatment by A2/O process[J]. Water & Wastewater Engineering,2015,51(S1):237-240.
|
4 |
SHI Wei, LIU Xiaojing, LIU Yulei,et al. Catalytic ozonation of hard COD in coking wastewater with Fe 2O 3/Al 2O 3-SiC:From catalyst design to industrial application[J]. Journal of Hazardous Materials, 2023, 447:130759. doi: 10.1016/j.jhazmat.2023.130759
|
5 |
QIN Zhi, WEI Cong, WEI Tuo,et al. Evolution of biochemical processes in coking wastewater treatment:A combined evaluation of material and energy efficiencies and secondary pollution[J]. Science of the Total Environment, 2022, 807:151072. doi: 10.1016/j.scitotenv.2021.151072
|
6 |
|
|
SUN Xiaoxue, WEI Cong, LUO Pei,et al. Feasibility test of OHO-MBR combined process for actual coking wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(8):2759-2769. doi: 10.12030/j.cjee.202104025
|
7 |
PITÁS V, SOMOGYI V, KÁRPÁTI Á,et al. Reduction of chemical oxygen demand in a conventional activated sludge system treating coke oven wastewater[J]. Journal of Cleaner Production, 2020, 273:122482. doi: 10.1016/j.jclepro.2020.122482
|
8 |
WEI Gengrui, WEI Tuo, LI Zemin,et al. BOD/COD ratio as a probing index in the O/H/O process for coking wastewater treatment[J]. Chemical Engineering Journal, 2023, 466:143257. doi: 10.1016/j.cej.2023.143257
|
9 |
赵旭,陈希超,党垚,等. 珠三角工业废水与受纳水体的遗传毒性与雌激素效应[J]. 中国给水排水,2021,37(21):69-74.
|
|
ZHAO Xu, CHEN Xichao, DANG Yao,et al. Genotoxicity and estrogenic effects of industrial wastewater and receiving water in the Pearl River Delta[J]. China Water & Wastewater,2021,37(21):69-74.
|
10 |
ZHANG Bingliang, SHAN Chao, HAO Zhineng,et al. Transformation of dissolved organic matter during full-scale treatment of integrated chemical wastewater:Molecular composition correlated with spectral indexes and acute toxicity[J]. Water Research, 2019, 157:472-482. doi: 10.1016/j.watres.2019.04.002
|
11 |
WEI Cong, WU Hengping, KONG Qiaoping,et al. Residual chemical oxygen demand(COD) fractionation in bio-treated coking wastewater integrating solution property characterization[J]. Journal of Environmental Management, 2019, 246:324-333. doi: 10.1016/j.jenvman.2019.06.001
|
12 |
ZANG Lijie, WAN Yi, ZHANG Haifeng,et al. Characterization of non-volatile organic contaminants in coking wastewater using non-target screening:Dominance of nitrogen,sulfur,and oxygen-containing compounds in biological effluents[J]. Science of the Total Environment, 2022, 837:155768. doi: 10.1016/j.scitotenv.2022.155768
|
13 |
|
|
MA Chao, WU Jianxun, NI Hongxing,et al. Molecular characterization of dissolved organic matter in coal coking wastewater by FT-ICR MS[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(3):387-396. doi: 10.7538/zpxb.2022.0082
|
14 |
刘聪,陈吕军,朱小彪,等. 焦化废水A2/O处理过程中的组成和毒性变化规律[J]. 生态毒理学报,2014,9(2):291-298.
|
|
LIU Cong, CHEN Lüjun, ZHU Xiaobiao,et al. Compositional and toxic variations of coking wastewater in an A2/O treatment process[J]. Asian Journal of Ecotoxicology,2014,9(2):291-298.
|
15 |
朱佳迪,李菲菲,陈吕军. AnMBR-A-MBR和A2-MBR工艺处理焦化废水效果与急性毒性物质特征对比[J]. 环境科学,2017,38(10):4293-4301.
|
|
ZHU Jiadi, LI Feifei, CHEN Lüjun. Coking wastewater treatment efficiency and comparison of acute toxicity characteristics of the an MBR-A-MBR and A2-MBR processes[J]. Environmental Science,2017,38(10):4293-4301.
|
16 |
SHI Liu, WANG Dong, CAO Di,et al. Is A/A/O process effective in toxicity removal?Case study with coking wastewater[J]. Ecotoxicology and Environmental Safety, 2017, 142:363-368. doi: 10.1016/j.ecoenv.2017.04.034
|
17 |
方元狄,张静,郑中原,等. 焦化废水处理试验系统出水的生物毒性变化[J]. 生态毒理学报,2017,12(3):317-326.
|
|
FANG Yuandi, ZHANG Jing, ZHENG Zhongyuan,et al. The variation of effluent bio-toxicity in an experimental system for coking wastewater treatment[J]. Asian Journal of Ecotoxicology,2017,12(3):317-326.
|
18 |
|
|
YANG Ruxia, SUN Huifang, ZHANG Guodong,et al. Removal of hard-degradable organic matters from coking wastewater by polyaluminum chloride targeted coagulation[J]. Industrial Water & Wastewater, 2017, 48(6):16-21. doi: 10.3969/j.issn.1009-2455.2017.06.004
|
19 |
|
|
YUAN Xiao, LI Jie, LI Fengting. Research on the advanced treatment of coking wastewater by the novel enhanced ferric coagulant[J]. Industrial Water Treatment, 2016, 36(10):65-66. doi: 10.11894/1005-829x.2016.36(10).065
|
20 |
王丽娜,刘霞,张垒,等. PFS混凝组合Ca(ClO)2氧化深度处理焦化废水实验研究[J]. 工业水处理,2016,36(2):55-58.
|
|
WANG Li’na, LIU Xia, ZHANG Lei,et al. Experimental research on the advanced treatment of coking wastewater by polyferric sulfate coagulation combined with calcium hypochlorite oxidation[J]. Industrial Water Treatment,2016,36(2):55-58.
|
21 |
齐文豪,王淑军,王旭明,等. 聚硅酸铁钛絮凝剂制备及焦化废水混凝处理试验[J]. 净水技术,2021,40(4):101-105.
|
|
QI Wenhao, WANG Shujun, WANG Xuming,et al. Preparation of polysilicate ferric titanium flocculant and coagulation treatment of coking wastewater[J]. Water Purification Technology,2021,40(4):101-105.
|
22 |
LI Jianfeng, LI Jianguo, LIU Xinyuan,et al. Effect of silicon content on preparation and coagulation performance of poly-silicic-metal coagulants derived from coal gangue for coking wastewater treatment[J]. Separation and Purification Technology, 2018, 202:149-156. doi: 10.1016/j.seppur.2018.03.055
|
23 |
何绪文,员润,吴姁,等. 焦化废水深度处理新技术及其相互耦合特征研究[J]. 煤炭科学技术,2021,49(1):175-182.
|
|
HE Xuwen, YUAN Run, WU Xu,et al. Research on characteristics of new technologies and intercoupling technologies for advanced treatment of coking wastewcter[J]. Coal Science and Technology,2021,49(1):175-182.
|
24 |
张志超,牛涛,于豹,等. 焦化废水处理工程实例分析[J]. 工业水处理,2022,42(7):179-185.
|
|
ZHANG Zhichao, NIU Tao, YU Bao,et al. Case analysis of coking wastewater treatment project[J]. Industrial Water Treatment,2022,42(7):179-185.
|
25 |
FAN Wenli, SUN Guangxi, WANG Qi,et al. Identifying the critical activated carbon properties affecting the adsorption of effluent organic matter from bio-treated coking wastewater[J]. Science of the Total Environment, 2023, 871:161968. doi: 10.1016/j.scitotenv.2023.161968
|
26 |
GAO Qieyuan, JIN Pengrui, WANG Lei,et al. Removal of organic pollutants in coking wastewater based on coal-based adsorbents:A pilot-scale study of static adsorption and flotation[J]. Journal of Environmental Chemical Engineering, 2021, 9(6):106844. doi: 10.1016/j.jece.2021.106844
|
27 |
ZHANG Chen, LI Jianfeng, CHEN Zuliang,et al. Factors controlling adsorption of recalcitrant organic contaminant from bio‐treated coking wastewater using lignite activated coke and coal tar-derived activated carbon[J]. Journal of Chemical Technology & Biotechnology, 2018, 93:112-120. doi: 10.1002/jctb.5328
|
28 |
SHI Yuanji, HU Haidong, REN Hongqiang. Dissolved organic matter(DOM) removal from biotreated coking wastewater by chitosan-modified biochar:Adsorption fractions and mechanisms[J]. Bioresource Technology, 2020, 297:122281. doi: 10.1016/j.biortech.2019.122281
|
29 |
LI Jie, YUAN Xiao, ZHAO Huangpu,et al. Highly efficient one-step advanced treatment of biologically pretreated coking wastewater by an integration of coagulation and adsorption process[J]. Bioresource Technology, 2018, 247:1206-1209. doi: 10.1016/j.biortech.2017.09.019
|
30 |
MA Dehua, LIU Cong, ZHU Xiaobiao,et al. Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes[J]. Environmental Science and Pollution Research, 2016, 23(18):18343-18352. doi: 10.1007/s11356-016-6882-z
|
31 |
ZHANG Chen, LI Jianfeng, CHENG Fangqin. Recycling of powder coke to cost effective adsorbent material and its application for tertiary treatment of coking wastewater[J]. Journal of Cleaner Production, 2020, 261:121114. doi: 10.1016/j.jclepro.2020.121114
|
32 |
ZHENG Mengqi, HAN Yuxing, XU Chunyan,et al. Selective adsorption and bioavailability relevance of the cyclic organics in anaerobic pretreated coal pyrolysis wastewater by lignite activated coke[J]. Science of the Total Environment, 2019, 653:64-73. doi: 10.1016/j.scitotenv.2018.10.331
|
33 |
|
|
ZHANG Quanxing, ZHANG Puzhang, LI Aimin,et al. Advance in ion exchange and adsorption resins in China[J]. Acta Polymerica Sinica, 2018(7):814-828. doi: 10.11777/j.issn1000-3304.2018.17317
|
34 |
YANG Wenlan, LI Xuchun, PAN Bingcai,et al. Effective removal of effluent organic matter(EfOM) from bio-treated coking wastewater by a recyclable aminated hyper-cross-linked polymer[J]. Water Research, 2013, 47(13):4730-4738. doi: 10.1016/j.watres.2013.05.032
|
35 |
杨文澜,潘丙才,张炜铭,等. 树脂吸附法深度处理焦化废水生化尾水[J]. 中国给水排水,2017,33(11):12-15.
|
|
YANG Wenlan, PAN Bingcai, ZHANG Weiming,et al. Development and application of resin adsorption technology for advanced treatment of bio-treated coking wastewater[J]. China Water & Wastewater,2017,33(11):12-15.
|
36 |
|
|
SUN Caiyu, BIAN Xilong, LIU Fang,et al. Pilot study on coking wastewater treatment by combining membrane process and resin adsorption[J]. Industrial Water Treatment, 2019, 39(1):78-81. doi: 10.11894/1005-829x.2019.39(1).078
|
37 |
|
|
FU Jiangtao, WANG Li, WANG Wei,et al. Advancement treatment and reuse of coking wastewater by adsorption resin[J]. Industrial Water Treatment, 2017, 37(5):109-112. doi: 10.11894/1005-829x.2017.37(5).109
|
38 |
|
|
DONG Ming. Application of combined process of double membrane and resin adsorption in advanced treatment of coking wastewater[J]. Industrial Water & Wastewater, 2016, 47(1):55-58. doi: 10.3969/j.issn.1009-2455.2016.01.016
|
39 |
陆朝阳. 焦化废水生化尾水中芳香有机污染物的吸附去除机制与技术研究[D]. 南京:南京大学,2012.
|
|
LU Zhaoyang. Study on adsorption and removal mechanism and technology of aromatic organic pollutants in biochemical tail water of coking wastewater[D]. Nanjing:Nanjing University,2012.
|
40 |
王艳芳,张国宇,孙娜,等. 焦化废水生化处理出水深度处理及回用[J]. 中国给水排水,2017,33(4):79-82.
|
|
WANG Yanfang, ZHANG Guoyu, SUN Na,et al. Advanced treatment and reuse of coking wastewater biological effluent[J]. China Water & Wastewater,2017,33(4):79-82.
|
41 |
JIN Xuewen, LI Enchao, LU Shuguang,et al. Coking wastewater treatment for industrial reuse purpose:Combining biological processes with ultrafiltration,nanofiltration and reverse osmosis[J]. Journal of Environmental Sciences, 2013, 25(8):1565-1574. doi: 10.1016/s1001-0742(12)60212-5
|
42 |
门枢,王凯,杨飞. 焦化废水回用处理工艺设计及运行分析[J]. 工业水处理,2023,43(3):186-191.
|
|
Shu MEN, WANG Kai, YANG Fei. Process design and operation analysis of the reuse treatment of coking wastewater[J]. Industrial Water Treatment,2023,43(3):186-191.
|
43 |
|
|
WANG Jiao, CHEN Jinghui, ZHANG Yan,et al. Pilot study on the advanced treatment of coking wastewater by NF process[J]. Industrial Water Treatment, 2017, 37(7):55-57. doi: 10.11894/1005-829x.2017.37(7).055
|
44 |
KE Xiong, WEI Tuo, WEI Gengrui,et al. Integrated process for zero discharge of coking wastewater:A hierarchical cycle-based innnovation[J]. Chemical Engineering Journal, 2023, 457:141257. doi: 10.1016/j.cej.2022.141257
|
45 |
|
|
SHEN Liangjie, LIANG Yong, ZHANG Zhiyuan,et al. A pilot-scale treatment on membrane concentrated solution from coking wastewater by STRO membrane[J]. Industrial Water Treatment, 2021, 41(8):118-121. doi: 10.19965/j.cnki.iwt.2020-1052
|
46 |
|
|
LU Yuanbao, LIANG Ronghua, DU Juan,et al. Project example of reuse of coking wastewater treated by A 2O-Fenton process[J]. Industrial Water & Wastewater, 2015, 46(3):51-54. doi: 10.3969/j.issn.1009-2455.2015.03.014
|
47 |
|
|
YANG Shuilian, TIAN Xiaoyuan, WU Bin,et al. Experimental study on the advanced treatment of bio-chemically treated coking wastewater by the advanced Fenton oxidation process[J]. Industrial Water Treatment, 2014, 34(10):26-29. doi: 10.11894/1005-829x.2014.34(10).026
|
48 |
|
|
ZHOU Lin, HE Zhengguang, FU Qingfeng. Influencing characteristics and kinetic model of coking wastewater degradation by Fenton oxidation[J]. Industrial Water Treatment, 2016, 36(8):60-63. doi: 10.11894/1005-829x.2016.36(8).060
|
49 |
郑俊,贺倩倩,张德伟,等. Fe0/GAC-Fenton异相耦合深度处理焦化废水[J]. 环境工程学报,2016,10(12):6983-6987.
|
|
ZHENG Jun, HE Qianqian, ZHANG Dewei,et al. Advanced treatment of coking wastewater by Fe0/GAC-Fenton heterogeneous coupling process[J]. Chinese Journal of Environmental Engineering,2016,10(12):6983-6987.
|
50 |
SABER AYMAN N, RIDHA D, IMEN F,et al. Synergistic sorption/photo-Fenton removal of typical substituted and parent polycyclic aromatic hydrocarbons from coking wastewater over CuO-Montmorillonite[J]. Journal of Water Process Engineering, 2021, 44:102377. doi: 10.1016/j.jwpe.2021.102377
|
51 |
田路泞,童宇航,陈玺,等. 焦化废水芬顿深度处理加药策略及流化床应用[J]. 环境科学与技术,2017,40(S2):112-116.
|
|
TIAN Luning, TONG Yuhang, CHEN Xi,et al. Dosing strategy and fluidized-bed study for advanced treatment of coking wastewater[J]. Environmental Science & Technology,2017,40(S2):112-116.
|
52 |
杨乐,杨基先,郭海娟,等. 磁纳米类芬顿法与芬顿法处理焦化废水的对比研究[J]. 中国给水排水,2017,33(1):84-88.
|
|
YANG Le, YANG Jixian, GUO Haijuan,et al. Comparative study on magnetic nanoparticles fenton-like method and Fenton method for coking wastewater treatment[J]. China Water & Wastewater,2017,33(1):84-88.
|
53 |
张先,刘熙璘,花昱伉,等. 芬顿试剂氧化工艺深度处理焦化废水及其出水水质研究[J]. 煤质技术,2021,36(1):43-48.
|
|
ZHANG Xian, LIU Xilin, HUA Yukang,et al. Study on advanced treatment of coking wastewater by Fenton reagent oxidation process and its effluent quality[J]. Coal Quality Technology,2021,36(1):43-48.
|
54 |
NA Chunhong, ZHANG Ying, QUAN Xie,et al. Evaluation of the detoxification efficiencies of coking wastewater treated by combined anaerobic-anoxic-oxic(A 2O) and advanced oxidation process[J]. Journal of Hazardous Materials, 2017, 338:186-193. doi: 10.1016/j.jhazmat.2017.05.037
|
55 |
朱小彪. 焦化废水强化处理工艺特性和机理及排水生物毒性研究[D]. 北京:清华大学,2012.
|
|
ZHU Xiaobiao. Study on process characteristics and mechanism of enhanced treatment of coking wastewater and biological toxicity of drainage[D]. Beijing:Tsinghua University,2012.
|
56 |
陈雷,周晟葆,徐炎华,等. O3催化氧化深度处理焦化废水生化尾水影响因素[J]. 煤炭学报,2020,45(S2):1032-1040.
|
|
CHEN Lei, ZHOU Shengbao, XU Yanhua,et al. Influencing factors of advanced treatment of biochemical tail water of coking wastewater by O3 catalytic oxidation[J]. Journal of China Coal Society,2020,45(S2):1032-1040.
|
57 |
雷霆,赵文涛,黄霞,等. 混凝联合O3、O3/UV深度处理焦化废水的研究[J]. 中国给水排水,2010,26(5):100-103.
|
|
LEI Ting, ZHAO Wentao, HUANG Xia,et al. Advanced treatment of coke plant wastewater by coagulation combined with O3 or O3/UV[J]. China Water & Wastewater,2010,26(5):100-103.
|
58 |
杨德敏,袁建梅,夏宏. 臭氧/活性炭联合工艺深度处理焦化废水[J]. 环境工程学报,2014,8(9):3665-3669.
|
|
YANG Demin, YUAN Jianmei, XIA Hong. Advanced treatment of coking wastewater by ozone combined with activated carbon[J]. Chinese Journal of Environmental Engineering,2014,8(9):3665-3669.
|
59 |
PANG Zijun, LUO Pei, WEI Cong,et al. In-situ growth of Co/Ni bimetallic organic frameworks on carbon spheres with catalytic ozonation performance for removal of bio-treated coking wastewater[J]. Chemosphere, 2022, 291:132874. doi: 10.1016/j.chemosphere.2021.132874
|
60 |
LIU Dan, WANG Chunrong, SONG Yifan,et al. Effective mineralization of quinoline and bio-treated coking wastewater by catalytic ozonation using CuFe 2O 4/Sepiolite catalyst:Efficiency and mechanism[J]. Chemosphere, 2019, 227:647-656. doi: 10.1016/j.chemosphere.2019.04.040
|
61 |
|
|
XING Linlin, ZHANG Jingzhi, JIANG Anping,et al. Characteristics of pollutants degradation during catalytic ozonation of coking wastewater[J]. Chinese Journal of Environmental Engineering, 2017, 11(4):2001-2006. doi: 10.12030/j.cjee.201510144
|
62 |
CUI Bin, FU Shaozhu, HAO Xin,et al. Synergistic effects of simultaneous coupling ozonation and biodegradation for coking wastewater treatment:Advances in COD removal,toxic elimination,and microbial regulation[J]. Chemosphere, 2023, 318:137956. doi: 10.1016/j.chemosphere.2023.137956
|
63 |
WU Jin, MA Luming, CHEN Yunlu,et al. Catalytic ozonation of organic pollutants from bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst:Removal and pathways[J]. Water Research, 2016, 92:140-148. doi: 10.1016/j.watres.2016.01.053
|
64 |
|
|
ZHANG Heng, LI Shumin, LIU Yuan,et al. Advanced treatment of bio-treated coking wastewater by microwave-enhanced Fenton process[J]. Chinese Journal of Environmental Engineering, 2020, 14(6):1495-1502. doi: 10.12030/j.cjee.201908151
|
65 |
胡林,刘欣,刘麟,等. 焦化废水电磁强氧化技术的工程应用[J]. 燃料与化工,2021,52(4):60-63.
|
|
HU Lin, LIU Xin, LIU Lin,et al. Engineering application of electromagnetic strong oxidation technology for coking wastewater[J]. Fuel & Chemical Processes,2021,52(4):60-63.
|
66 |
刘美琴,宋秀兰. Fe2+激活过硫酸盐耦合活性炭深度处理焦化废水[J]. 中国环境科学,2018,38(4):1377-1384.
|
|
LIU Meiqin, SONG Xiulan. Advanced treatment of bio-treated coking wastewater by coupling of ferrous-activated persulfate oxidation and activated carbon adsorption[J]. China Environmental Science,2018,38(4):1377-1384.
|
67 |
吕志超,宋秀兰,赵青云. 颗粒活性炭激活过硫酸盐氧化法深度处理焦化废水[J]. 工业水处理,2021,41(2):88-91.
|
|
Zhichao LÜ, SONG Xiulan, ZHAO Qingyun. Advanced treatment of coking wastewater by persulfate oxidation catalyzed by granular activated carbon[J]. Industrial Water Treatment,2021,41(2):88-91.
|
68 |
SONG Xiulan, WANG Chao, LIU Meiqin,et al. Advanced treatment of biologically treated coking wastewater by persulfate oxidation with magnetic activated carbon composite as a catalyst[J]. Water Science and Technology, 2018, 77(7):1891-1898. doi: 10.2166/wst.2018.069
|
69 |
|
|
SU Bingqin, WEN Yutao, LIN Yuting,et al. Advanced treatment of coking wastewater and degradation of pyridine by activated persulfate with modified activated carbon fiber[J]. China Environmental Science, 2023, 43(2):576-591. doi: 10.3969/j.issn.1000-6923.2023.02.010
|
70 |
陈莉荣,成路姣,谷振超,等. 天然磁铁矿/UV/S2O8 2-对焦化废水中不同种类有机物的去除特性[J]. 化工学报,2018,69(12):5292-5300.
|
|
CHEN Lirong, CHENG Lujiao, GU Zhenchao,et al. Removal effect of different organic fractions from coking wastewater by nature magnetite/UV/S2O8 2- process[J]. CIESC Journal,2018,69(12):5292-5300.
|
71 |
HE Xuwen, CHAI Zhenjie, LI Fuping,et al. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using Ti/RuO 2-IrO 2 electrodes[J]. Journal of Chemical Technology & Biotechnology, 2013, 88:1568-1575. doi: 10.1002/jctb.4006
|
72 |
ZHI Dan, ZHANG Jia, WANG Jianbing,et al. Electrochemical treatments of coking wastewater and coal gasification wastewater with Ti/Ti 4O 7 and Ti/RuO 2-IrO 2 anodes[J]. Journal of Environmental Management, 2020, 265:110571. doi: 10.1016/j.jenvman.2020.110571
|
73 |
HE Lei, WANG Chunrong, CHEN Xiaoya,et al. Preparation of Tin-Antimony anode modified with carbon nanotubes for electrochemical treatment of coking wastewater[J]. Chemosphere, 2022, 288:132362. doi: 10.1016/j.chemosphere.2021.132362
|
74 |
ZHU Xiuping, NI Jinren, LAI Peng. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes[J]. Water Research, 2009, 43(17):4347-4355. doi: 10.1016/j.watres.2009.06.030
|
75 |
ZHANG Tingting, LIU Yongjun, YANG Lu,et al. Ti-Sn-Ce/bamboo biochar particle electrodes for enhanced electrocatalytic treatment of coking wastewater in a three-dimensional electrochemical reaction system[J]. Journal of Cleaner Production, 2020, 258:120273. doi: 10.1016/j.jclepro.2020.120273
|
76 |
GAO Xinyu, ZHANG Huan, WANG Yanqiu,et al. Study on preparation of a novel needle coke heterogeneous electro-Fenton cathode for coking wastewater treatment[J]. Chemical Engineering Journal, 2023, 455:140696. doi: 10.1016/j.cej.2022.140696
|
77 |
ZHAO Kun, QUAN Xie, CHEN Shuo,et al. Preparation of fluorinated activated carbon for electro-Fenton treatment of organic pollutants in coking wastewater:The influences of oxygen-containing groups[J]. Separation and Purification Technology, 2019, 224:534-542. doi: 10.1016/j.seppur.2019.05.058
|
78 |
WANG Chunrong, ZHANG Mengru, LIU Wei,et al. Effluent characteristics of advanced treatment for biotreated coking wastewater by electrochemical technology using BDD anodes[J]. Environmental Science and Pollution Research, 2015, 22(9):6827-6834. doi: 10.1007/s11356-014-3891-7
|
79 |
谢莉,刘吉明,逯新宇,等. 电催化氧化法-活性炭深度处理焦化废水[J]. 工业水处理,2021,41(8):69-74.
|
|
XIE Li, LIU Jiming, LU Xinyu,et al. Advanced treatment of coking wastewater by electrocatalytic oxidation-activated carbon adsorption[J]. Industrial Water Treatment,2021,41(8):69-74.
|
80 |
ZHANG Bo, SUN Jiwei, WANG Qin,et al. Electro-Fenton oxidation of coking wastewater:Optimization using the combination of central composite design and convex optimization method[J]. Environmental Technology, 2017, 38(19):2456-2464. doi: 10.1080/09593330.2016.1265591
|
81 |
HU Yang, YU Fuzhi, BAI Zhongteng,et al. Preparation of Fe-loaded needle coke particle electrodes and utilisation in three-dimensional electro-Fenton oxidation of coking wastewater[J]. Chemosphere, 2022, 308:136544. doi: 10.1016/j.chemosphere.2022.136544
|
82 |
XIA Yu, LI Weijia, HE Xuwen,et al. Efficient removal of organic matter from biotreated coking wastewater by coagulation combined with sludge-based activated carbon adsorption[J]. Water, 2022, 14(15):2446. doi: 10.3390/w14152446
|
83 |
LI Zemin, WEI Tuo, PAN Jiamin,et al. Physicochemical pre- and post-treatment of coking wastewater combined for energy recovery and reduced environmental risk[J]. Journal of Hazardous Materials, 2023, 447:130802. doi: 10.1016/j.jhazmat.2023.130802
|
84 |
YUAN Run, XIA Yu, WU Xu,et al. Efficient advanced treatment of coking wastewater using O 3/H 2O 2/Fe-shavings process[J]. Journal of Environmental Chemical Engineering, 2022, 10(2):107307. doi: 10.1016/j.jece.2022.107307
|
85 |
WANG Chen, LIU Yaming, HUANG Mingjie,et al. A rational strategy of combining Fenton oxidation and biological processes for efficient nitrogen removal in toxic coking wastewater[J]. Bioresource Technology, 2022, 363:127897. doi: 10.1016/j.biortech.2022.127897
|
86 |
ZHANG Shihua, ZHENG Jun, CHEN Zhiqiang. Combination of ozonation and biological aerated filter(BAF) for bio-treated coking wastewater[J]. Separation and Purification Technology, 2014, 132:610-615. doi: 10.1016/j.seppur.2014.06.019
|
87 |
|
|
LI Xinyang, LI Yannan, QI Danyang,et al. Study on electrochemical heterogeneous catalytic ozonation process for treatment of coking wastewater[J]. China Environmental Science, 2020, 40(10):4354-4361. doi: 10.3969/j.issn.1000-6923.2020.10.020
|
88 |
王春荣,齐迹,张梦茹,等. 电化学氧化及反硝化BAF联用深度处理焦化废水[J]. 工业水处理,2016,36(11):74-77.
|
|
WANG Chunrong, QI Ji, ZHANG Mengru,et al. Advanced treatment of coking wastewater by electrochemical oxidation combined with denitrification BAF[J]. Industrial Water Treatment,2016,36(11):74-77.
|
89 |
SUN Guangxi, ZHANG Yu, GAO Yingxin,et al. Removal of hard COD from biological effluent of coking wastewater using synchronized oxidation-adsorption technology:Performance,mechanism,and full-scale application[J]. Water Research, 2020, 173:115517. doi: 10.1016/j.watres.2020.115517
|
90 |
LI Xueting, HE Mingyue, SUN Guangxi,et al. Toxicological evaluation of industrial effluents using zebrafish:Efficacy of tertiary treatment of coking wastewater[J]. Environmental Technology & Innovation, 2023, 30:103067. doi: 10.1016/j.eti.2023.103067
|
91 |
游丽华. 混凝和微气泡臭氧氧化组合处理焦化废水生化尾水[D]. 武汉:华中科技大学,2020.
|
|
YOU Lihua. Treatment of biochemical tail water of coking wastewater by coagulation and microbubble ozone oxidation[D]. Wuhan:Huazhong University of Science and Technology,2020.
|
92 |
陈颖,李泽敏,邱光磊,等. 焦化废水后物化处理的臭氧-混凝-吸附原理选择与协同机制[J]. 环境科学学报,2022,42(11):1-11.
|
|
CHEN Ying, LI Zemin, QIU Guanglei,et al. Selection of ozone-coagulation-adsorption principle and synergistic mechanism for post-physical and chemical treatment of coking wastewater[J]. Acta Scientiae Circumstantiae,2022,42(11):1-11.
|
93 |
|
|
CHEN Delin. Study on advanced treatment of biochemical tail water of coking wastewater by catalytic ozone-flocculation[D]. Qingdao:Qingdao University of Science & Technology, 2021. doi: 10.5004/dwt.2020.26482
|
94 |
WANG Hao, ZHANG Siyu, HE Can,et al. Effect of pre-coagulation on catalytic ozonation in the tertiary treatment of coking wastewater:Kinetic and ozone consumption analysis[J]. Journal of Water Process Engineering, 2022, 48:102856. doi: 10.1016/j.jwpe.2022.102856
|