1 |
国务院令第643号 畜禽规模养殖污染防治条例 [S].
|
2 |
刘锐. 集约化养殖废水的无害化处理与资源化利用技术集成与工程示范[R]. 浙江嘉兴:浙江清华长三角研究院,2013.
|
3 |
周胜,刘长娥,张继宁. 人工湿地处理畜禽养殖废水的研究与展望[J]. 上海农业学报,2017,33(2):154-160.
|
|
ZHOU Sheng, LIU Change, ZHANG Jining. Research and prospect of livestock wastewater treatment using constructed wetlands[J].Acta Agriculturae Shanghai,2017,33(2):154-160.
|
4 |
MILANO J, ONG H C, MASJUKI H H,et al. Microalgae biofuels as an alternative to fossil fuel for power generation[J]. Renewable and Sustainable Energy Reviews, 2016, 58:180-197. doi: 10.1016/j.rser.2015.12.150
|
5 |
李冰,石岩,吴迪,等. 混合废水耦合微藻对小球藻生长及净水能力的研究[J]. 工业水处理,2022,42(3):114-122.
|
|
LI Bing, SHI Yan, WU Di,et al. Analysis of Chlorella sp. growing and water purification capacity in the mixed wastewater coupled with microalgae[J]. Industrial Water Treatment,2022,42(3):114-122.
|
6 |
张倬玮,张会宁,孙广垠,等. MBR工艺处理海水养殖废水的研究进展[J]. 水处理技术,2017,43(1):6-11.
|
|
ZHANG Zhuowei, ZHANG Huining, SUN Guangyin,et al. Research progress in marine aquaculture wastewater treatment with MBR process[J]. Technology of Water Treatment,2017,43(1):6-11.
|
7 |
张倬玮. SMBR工艺处理海水养殖废水及其微生物多样性研究[D]. 邯郸:河北工程大学,2016.
|
|
ZHANG Zhuowei. Research on mariculture wastewater treatment and microbial diversity in SMBR process[D]. Handan:Hebei University of Engineering,2016.
|
8 |
杨雅茹,李帅东,白林,等. 上流式厌氧污泥床(UASB)启动运行性能及其不同高度微生物群落的研究[J]. 四川畜牧兽医,2021,48(12):26-29.
|
|
YANG Yaru, LI Shuaidong, BAI Lin,et al. Study on start-up performance of upflow anaerobic sludge bed(UASB) and microbial communities at different height[J]. Sichuan Animal & Veterinary Sciences,2021,48(12):26-29.
|
9 |
张琳琳. UBF-复合生物滤池-人工湿地处理分散养殖废水研究[D]. 上海:上海交通大学,2017.
|
|
ZHANG Linlin. Research on combined process of UBF/multi-layered biological tricking filter/constructed wetland for rural dispersed livestock wasterwater treatment[D]. Shanghai:Shanghai Jiao Tong University,2017.
|
10 |
|
|
GUAN Ruoling, PENG Xinwei. Application of membrane technology in mariculture wastewater treatment[J]. Journal of Anhui Agricultural Sciences, 2022, 50(3):22-25. doi: 10.3969/j.issn.0517-6611.2022.03.006
|
11 |
康赛,郑利兵,魏源送,等. 膜蒸馏在高氨氮废水处理与回用中的研究应用进展[J]. 工业水处理,2021,41(12):15-21.
|
|
KANG Sai, ZHENG Libing, WEI Yuansong,et al. Research and application progress of membrane distillation in highconcentration ammonia nitrogen wastewaters treatment and recovery[J]. Industrial Water Treatment,2021,41(12):15-21.
|
12 |
罗义,周启星. 抗生素抗性基因(ARGs):一种新型环境污染物[J]. 环境科学学报,2008,28(8):1499-1505.
|
|
LUO Yi, ZHOU Qixing. Antibiotic resistance genes(ARGs) as emerging pollutants[J]. Acta Scientiae Circumstantiae,2008,28(8):1499-1505.
|
13 |
|
|
WANG Xiaochun. The performance of agsbr for swine wastewater treatment and its mechanism for antibiotic removal[D]. Harbin:Harbin Institute of Technology, 2019. doi: 10.1016/j.biortech.2018.11.023
|
14 |
|
|
FENG Yujie, CUI Yuhong, SUN Lixin,et al. Development of electro-chemical technology and high efficiency catalytic electrode for wastewater treatment[J]. Journal of Harbin Institute of Technology, 2004, 36(4):450-455. doi: 10.3321/j.issn:0367-6234.2004.04.011
|
15 |
何畅. 改性ACF电化学系统去除水中四环素与铜离子复合污染物的特征和机理研究[D]. 重庆:重庆大学,2022.
|
|
HE Chang. Study on characteristics and mechanism of removal of tetracycline and copper ion complex pollutants in water by modified ACF electrochemical system[D]. Chongqing:Chongqing University,2022.
|
16 |
|
|
YING Luyao, WANG Rongchang. Removal pathways of antibiotic pollutants by bacterial-algal consortium and its stress response mechanisms[J]. Chemical Industry and Engineering Progress, 2023, 42(1):469-479. doi: 10.16085/j.issn.1000-6613.2022-0570
|
17 |
姚雨亨. PSBR/GAC/PC工艺对水产养殖废水中典型抗生素的去除及其迁移转化机制研究[D]. 上海:上海第二工业大学,2020.
|
|
YAO Yuheng. Removal of typical antibiotics from aquaculture wastewater by GAC/PC/PSBR processes and study on its migration and transformation mechanism[D]. Shanghai:Shanghai Polytechnic University,2020.
|
18 |
张哲. 藻菌共生体系在畜禽养殖废水处理中的参数优化及微生物相互作用关系探究[D]. 南昌:南昌大学,2022.
|
|
ZHANG Zhe. Study on the parameter optimization and microbial interaction of microalgae-bacteria symbiotic system in livestock wastewater treatment[D]. Nanchang:Nanchang University,2022.
|
19 |
|
|
TIAN Maozhi, DING Ziyao, SUN Chen,et al. Study on the effects of Fe 3+ on EPS secretion and membrane fouling of microalgae-bacteria symbionts for swine wastewater treatment[J/OL]. Industrial Water Treatment:1-16[2024-05-05]. DOI: 10.19965/j.cnki.iwt.2023-1003 .
|
20 |
|
|
ZHU Yiru, ZHAN Jian. The mechanism and application progress of algae-bacteria symbiosis in treating heavy metal wastewater[J]. Applied Chemical Industry, 2024, 53(2):438-442. doi: 10.3969/j.issn.1671-3206.2024.02.038
|
21 |
|
|
GAO Lingpeng, LIU Zhihong, LI Shixuan. Experimental study on treatment of mariculture wastewater by immobilized bacteria-algae[J]. Industrial Water & Wastewater, 2021, 52(6):11-15. doi: 10.3969/j.issn.1009-2455.2021.06.003
|
22 |
陈红芬. 固定化藻菌强化水产养殖废水脱氮除磷研究[D]. 无锡:江南大学,2019.
|
|
CHEN Hongfen. Study on nitrogen and phosphorus removal of aquaculture wastewater by immobilized microalgae and bacteria[D]. Wuxi:Jiangnan University,2019.
|
23 |
王慧敏. 基于微生物燃料电池的废水处理和咔唑降解菌胞外电子传递研究[D]. 济南:山东大学,2022.
|
|
WANG Huimin. The wastewater treatment and extracellular electron transport of a carbazole-degrading bacteria based on microbial fuel cell[D]. Ji'nan:Shandong University,2022.
|
24 |
朱洪义. 基于微生物燃料电池系统处理养殖废水效能研究[D]. 重庆:重庆大学,2022.
|
|
ZHU Hongyi. Study on the efficiency and performance of swine wastewater treatment based on microbial fuel cells system[D]. Chongqing:Chongqing University,2022.
|
25 |
李小虎,朱能武,李冲,等. 以养殖废水为底料的微生物燃料电池产电性能与水质净化效果[J]. 环境工程学报,2012,6(7):2189-2194.
|
|
LI Xiaohu, ZHU Nengwu, LI Chong,et al. Electricity generation and treatment of swine wastewater using microbial fuel cells[J]. Chinese Journal of Environmental Engineering,2012,6(7):2189-2194.
|
26 |
ZHU Liandong, WANG Zhongming, TAKALA J,et al. Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production[J]. Bioresource Technology, 2013, 137:318-325. doi: 10.1016/j.biortech.2013.03.144
|
27 |
DING Weijun, CHENG Shaoan, YU Liliang,et al. Effective swine wastewater treatment by combining microbial fuel cells with flocculation[J]. Chemosphere, 2017, 182:567-573. doi: 10.1016/j.chemosphere.2017.05.006
|
28 |
CHENG D L, NGO H H, GUO W S,et al. Problematic effects of antibiotics on anaerobic treatment of swine wastewater[J]. Bioresource Technology, 2018, 263:642-653. doi: 10.1016/j.biortech.2018.05.010
|
29 |
HEMBACH N, BIERBAUM G, SCHREIBER C,et al. Facultative pathogenic bacteria and antibiotic resistance genes in swine livestock manure and clinical wastewater:A molecular biology comparison[J]. Environmental Pollution, 2022, 313:120128. doi: 10.1016/j.envpol.2022.120128
|
30 |
LAN Lihua, KONG Xianwang, SUN Haoxiang,et al. High removal efficiency of antibiotic resistance genes in swine wastewater via nanofiltration and reverse osmosis processes[J]. Journal of Environmental Management, 2019, 231:439-445. doi: 10.1016/j.jenvman.2018.10.073
|
31 |
SARAVANAN A, DEIVAYANAI V C, KUMAR P S,et al. A detailed review on advanced oxidation process in treatment of wastewater:Mechanism,challenges and future outlook[J]. Chemosphere, 2022, 308:136524. doi: 10.1016/j.chemosphere.2022.136524
|
32 |
WU Dongquan, SUI Qian, YU Xia,et al. Identification of indicator PPCPs in landfill leachates and livestock wastewaters using multi-residue analysis of 70 PPCPs:Analytical method development and application in Yangtze River Delta,China[J]. Science of The Total Environment, 2021, 753:141653. doi: 10.1016/j.scitotenv.2020.141653
|