1 |
LEI Zhen, YANG Shuming, LI Yuyou,et al. Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature:A review of achievements,challenges,and perspectives[J]. Bioresource Technology, 2018, 267:756-768. doi: 10.1016/j.biortech.2018.07.050
|
2 |
YANG Shuming, ZHANG Qian, LEI Zhen,et al. Comparing powdered and granular activated carbon addition on membrane fouling control through evaluating the impacts on mixed liquor and cake layer properties in anaerobic membrane bioreactors[J]. Bioresource Technology, 2019, 294:122137. doi: 10.1016/j.biortech.2019.122137
|
3 |
LEI Zhen, WANG Jun, LENG Luwei,et al. New insight into the membrane fouling of anaerobic membrane bioreactors treating sewage:Physicochemical and biological characterization of cake and gel layers[J]. Journal of Membrane Science, 2021, 632:119383. doi: 10.1016/j.memsci.2021.119383
|
4 |
QU Jiuhui, WANG Hongchen, WANG Kaijun,et al. Municipal wastewater treatment in China:Development history and future perspectives[J]. Frontiers of Environmental Science & Engineering, 2019, 13(6):88. doi: 10.1007/s11783-019-1172-x
|
5 |
MOIDEEN S N F, KRISHNAN S, LI Yuyou,et al. Performance evaluation and energy potential analysis of anaerobic membrane bioreactor (AnMBR) in the treatment of simulated milk wastewater[J]. Chemosphere, 2023, 317:137923. doi: 10.1016/j.chemosphere.2023.137923
|
6 |
LEI Zhen, YANG Shuming, LI Xiang,et al. Revisiting the effects of powdered activated carbon on membrane fouling mitigation in an anaerobic membrane bioreactor by evaluating long-term impacts on the surface layer[J]. Water Research, 2019, 167:115137. doi: 10.1016/j.watres.2019.115137
|
7 |
YAO Yuanyuan, XU Ronghua, ZHOU Zhongbo,et al. Linking dynamics in morphology,components,and microbial communities of biocakes to fouling evolution:A comparative study of anaerobic and aerobic membrane bioreactors[J]. Chemical Engineering Journal, 2021, 413:127483. doi: 10.1016/j.cej.2020.127483
|
8 |
YAO Yuanyuan, GAN Zhihao, ZHOU Zhongbo,et al. Carbon sources driven supernatant micro-particles differentiate in submerged anaerobic membrane bioreactors (AnMBRs)[J]. Chemical Engineering Journal, 2022, 430:133020. doi: 10.1016/j.cej.2021.133020
|
9 |
LEI Zhen, MA Yu, WANG Jun,et al. Biochar addition supports high digestion performance and low membrane fouling rate in an anaerobic membrane bioreactor under low temperatures[J]. Bioresource Technology, 2021, 330:124966. doi: 10.1016/j.biortech.2021.124966
|
10 |
KUMAR M, SUN Yuqing, RATHOUR R,et al. Algae as potential feedstock for the production of biofuels and value-added products:Opportunities and challenges[J]. Science of the Total Environment, 2020, 716:137116. doi: 10.1016/j.scitotenv.2020.137116
|
11 |
GUPTA A D, SINGH H, VARJANI S,et al. A critical review on biochar-based catalysts for the abatement of toxic pollutants from water via advanced oxidation processes (AOPs)[J]. Science of the Total Environment, 2022, 849:157831. doi: 10.1016/j.scitotenv.2022.157831
|
12 |
FAISAL S, EBAID R, XIONG Min,et al. Maximizing the energy recovery from rice straw through two-step conversion using eggshell-catalytic pyrolysis followed by enhanced anaerobic digestion using calcium-rich biochar[J]. Science of the Total Environment, 2023, 858:159984. doi: 10.1016/j.scitotenv.2022.159984
|
13 |
CHEN Le, FANG Wei, LIANG Jinsong,et al. Biochar application in anaerobic digestion:Performances,mechanisms,environmental assessment and circular economy[J]. Resources,Conservation and Recycling, 2023, 188:106720. doi: 10.1016/j.resconrec.2022.106720
|
14 |
HOANG A T, GOLDFARB J L, FOLEY A M,et al. Production of biochar from crop residues and its application for anaerobic digestion[J]. Bioresource Technology, 2022, 363:127970. doi: 10.1016/j.biortech.2022.127970
|
15 |
COLLINS B A, BIRZER C H, KIDD S P,et al. Coupling a biochar filter to a leach bed reactor for anaerobic digestion of chicken litter[J]. Bioresource Technology Reports, 2023, 21:101362. doi: 10.1016/j.biteb.2023.101362
|
16 |
CAI Yafan, SHEN Xia, MENG Xingyao,et al. Syntrophic consortium with the aid of coconut shell-derived biochar enhances methane recovery from ammonia-inhibited anaerobic digestion[J]. Science of the Total Environment, 2023, 872:162182. doi: 10.1016/j.scitotenv.2023.162182
|
17 |
冷露伟. 生物炭缓解厌氧膜生物反应器膜污染的原位机理研究[D]. 西安:西安建筑科技大学,2022.
|
|
LENG Luwei. Study on in-situ mechanism of biochar to alleviate membrane fouling in anaerobic membrane bioreactor[D]. Xi’an:Xi’an University of Architecture and Technology,2022.
|
18 |
CHEN Linlin, CHENG Peijin, YE Lu,et al. Biological performance and fouling mitigation in the biochar-amended anaerobic membrane bioreactor (AnMBR) treating pharmaceutical wastewater[J]. Bioresource Technology, 2020, 302:122805. doi: 10.1016/j.biortech.2020.122805
|
19 |
张意志. 消化残渣衍生生物炭强化AnMBR厌氧共消化性能研究[D]. 上海:华东师范大学,2022.
|
|
ZHANG Yizhi. Study on anaerobic co-digestion performance of AnMBR enhanced by biochar derived from digestion residue[D]. Shanghai:East China Normal University,2022.
|
20 |
SINGH S, KUMAR V, DHANJAL D S,et al. A sustainable paradigm of sewage sludge biochar:Valorization,opportunities,challenges and future prospects[J]. Journal of Cleaner Production, 2020, 269:122259. doi: 10.1016/j.jclepro.2020.122259
|
21 |
ZHOU Xuerong, LAI Cui, ALMATRAFI E,et al. Unveiling the roles of dissolved organic matters derived from different biochar in biochar/persulfate system:Mechanism and toxicity[J]. Science of the Total Environment, 2023, 864:161062. doi: 10.1016/j.scitotenv.2022.161062
|
22 |
NEHA S, REMYA N. Co-production of biooil and biochar from microwave co-pyrolysis of food-waste and plastic using recycled biochar as microwave susceptor[J]. Sustainable Energy Technologies and Assessments, 2022, 54:102892. doi: 10.1016/j.seta.2022.102892
|
23 |
KAZEMI SHARIAT PANAHI H, DEHHAGHI M, OK Y S,et al. A comprehensive review of engineered biochar:Production,characteristics,and environmental applications[J]. Journal of Cleaner Production, 2020, 270:122462. doi: 10.1016/j.jclepro.2020.122462
|
24 |
LEFÈVRE E, BOSSA N, GARDNER C M,et al. Biochar and activated carbon act as promising amendments for promoting the microbial debromination of tetrabromobisphenol A[J]. Water Research, 2018, 128:102-110. doi: 10.1016/j.watres.2017.09.047
|
25 |
SUN Ziyan, FENG Lu, LI Yeqing,et al. The role of electrochemical properties of biochar to promote methane production in anaerobic digestion[J]. Journal of Cleaner Production, 2022, 362:132296. doi: 10.1016/j.jclepro.2022.132296
|
26 |
SHEN Yanwen, YU Yamei, ZHANG Yue,et al. Role of redox-active biochar with distinctive electrochemical properties to promote methane production in anaerobic digestion of waste activated sludge[J]. Journal of Cleaner Production, 2021, 278:123212. doi: 10.1016/j.jclepro.2020.123212
|
27 |
MINH T DO, SONG Jianzhi, DEB A,et al. Biochar based catalysts for the abatement of emerging pollutants:A review[J]. Chemical Engineering Journal, 2020, 394:124856. doi: 10.1016/j.cej.2020.124856
|
28 |
WU Liying, LI Zhuoyu, CHENG Pingtong,et al. Efficient activation of peracetic acid by mixed sludge derived biochar:Critical role of persistent free radicals[J]. Water Research, 2022, 223:119013. doi: 10.1016/j.watres.2022.119013
|
29 |
|
|
YANG Liu. Enhanced anaerobic treatment of 2,4- dichlorophenol wastewater by magnetite-loaded biochar[D]. Dalian:Dalian University of Technology, 2022. doi: 10.16085/j.issn.1000-6613.2021-2381
|
30 |
|
|
SHANG Zezhou, SHENG Chenjing, WANG Rui,et al. Anaerobic digestion of food waste enhanced by different wheat straw biochar[J]. China Environmental Science, 2023, 43(5):2381-2392. doi: 10.3969/j.issn.1000-6923.2023.05.030
|
31 |
WANG Pixiang, PENG Haixin, ADHIKARI S,et al. Enhancement of biogas production from wastewater sludge via anaerobic digestion assisted with biochar amendment[J]. Bioresource Technology, 2020, 309:123368. doi: 10.1016/j.biortech.2020.123368
|
32 |
马帅. 生物炭促进餐厨垃圾厌氧消化产气性能的研究[D]. 武汉:华中科技大学,2018.
|
|
MA Shuai. Study on biochar promoting anaerobic digestion of gas production from kitchen waste[D]. Wuhan:Huazhong University of Science and Technology,2018.
|
33 |
JIANG Qin, CHEN Yongdong, YU Shangke,et al. Effects of citrus peel biochar on anaerobic co-digestion of food waste and sewage sludge and its direct interspecies electron transfer pathway study[J]. Chemical Engineering Journal, 2020, 398:125643. doi: 10.1016/j.cej.2020.125643
|
34 |
WANG Xingdong, CHANG V W C, LI Zhiwei,et al. Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste:Synergistic effects on biochar properties and the environmental risk of heavy metals[J]. Journal of Hazardous Materials, 2021, 412:125200. doi: 10.1016/j.jhazmat.2021.125200
|
35 |
DI Lu, ZHANG Quanguo, WANG Fang,et al. Effect of nano-Fe 3O 4 biochar on anaerobic digestion of chicken manure under high ammonia nitrogen concentration[J]. Journal of Cleaner Production, 2022, 375:134107. doi: 10.1016/j.jclepro.2022.134107
|
36 |
LI Xiao, WU Mingxuan, XUE Yingwen. Nickel-loaded shrimp shell biochar enhances batch anaerobic digestion of food waste[J]. Bioresource Technology, 2022, 352:127092. doi: 10.1016/j.biortech.2022.127092
|
37 |
LI Xunan, CHU Siqin, WANG Panliang,et al. Potential of biogas residue biochar modified by ferric chloride for the enhancement of anaerobic digestion of food waste[J]. Bioresource Technology, 2022, 360:127530. doi: 10.1016/j.biortech.2022.127530
|
38 |
DENG Yuanfang, XIA Jun, ZHAO Rui,et al. Modified biochar promotes the direct interspecies electron transfer between iron-reducing bacteria and methanogens in high organic loading co-digestion[J]. Bioresource Technology, 2021, 342:126030. doi: 10.1016/j.biortech.2021.126030
|
39 |
PAN Junting, MA Junyi, LIU Xiaoxia,et al. Effects of different types of biochar on the anaerobic digestion of chicken manure[J]. Bioresource Technology, 2019, 275:258-265. doi: 10.1016/j.biortech.2018.12.068
|
40 |
LEI Zhen, ZHANG Shixin, WANG Lianxu,et al. Biochar enhances the biotransformation of organic micropollutants (OMPs) in an anaerobic membrane bioreactor treating sewage[J]. Water Research, 2022, 223:118974. doi: 10.1016/j.watres.2022.118974
|
41 |
HUANG Qin, TONG Fei, GAO Yan,et al. Enhanced simultaneous arsenite oxidation and sorption by Mn-modified biochar:Insight into the mechanisms under optimal modification condition[J]. Journal of Environmental Chemical Engineering, 2023, 11(3):109612. doi: 10.1016/j.jece.2023.109612
|
42 |
CHENG Dongle, NGO H H, GUO Wenshan,et al. Improving sulfonamide antibiotics removal from swine wastewater by supplying a new pomelo peel derived biochar in an anaerobic membrane bioreactor[J]. Bioresource Technology, 2021, 319:124160. doi: 10.1016/j.biortech.2020.124160
|
43 |
WANG Gaojun, LIU Guohao, YAO Gaofei,et al. Biochar-assisted anaerobic membrane bioreactor towards high-efficient energy recovery from swine wastewater:Performances and the potential mechanisms[J]. Bioresource Technology, 2023, 369:128480. doi: 10.1016/j.biortech.2022.128480
|
44 |
MASEBINU S O, AKINLABI E T, MUZENDA E,et al. A review of biochar properties and their roles in mitigating challenges with anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2019, 103:291-307. doi: 10.1016/j.rser.2018.12.048
|
45 |
SUN Chenhao, DU Qing, ZHANG Xinbo,et al. Role of spent coffee ground biochar in an anaerobic membrane bioreactor for treating synthetic swine wastewater[J]. Journal of Water Process Engineering, 2022, 49:102981. doi: 10.1016/j.jwpe.2022.102981
|
46 |
Fan LÜ, LUO Chenghao, SHAO Liming,et al. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina [J]. Water Research, 2016, 90:34-43. doi: 10.1016/j.watres.2015.12.029
|
47 |
CHEN Rong, NIE Yulun, HU Yisong,et al. Fouling behaviour of soluble microbial products and extracellular polymeric substances in a submerged anaerobic membrane bioreactor treating low-strength wastewater at room temperature[J]. Journal of Membrane Science, 2017, 531:1-9. doi: 10.1016/j.memsci.2017.02.046
|
48 |
CHENG Hui, LI Yemei, KATO H,et al. Enhancement of sustainable flux by optimizing filtration mode of a high-solid anaerobic membrane bioreactor during long-term continuous treatment of food waste[J]. Water Research, 2020, 168:115195. doi: 10.1016/j.watres.2019.115195
|
49 |
ZHAO Weixin, YANG Haizhou, HE Shufei,et al. A review of biochar in anaerobic digestion to improve biogas production:Performances,mechanisms and economic assessments[J]. Bioresource Technology, 2021, 341:125797. doi: 10.1016/j.biortech.2021.125797
|
50 |
MENG Lingyu, XIE Li, SUENAGA T,et al. Eco-compatible biochar mitigates volatile fatty acids stress in high load thermophilic solid-state anaerobic reactors treating agricultural waste[J]. Bioresource Technology, 2020, 309:123366. doi: 10.1016/j.biortech.2020.123366
|
51 |
CAI Yafan, ZHU Mingming, MENG Xingyao,et al. The role of biochar on alleviating ammonia toxicity in anaerobic digestion of nitrogen-rich wastes:A review[J]. Bioresource Technology, 2022, 351:126924. doi: 10.1016/j.biortech.2022.126924
|
52 |
CHENG Qunpeng, XU Chenxi, HUANG Wenwen,et al. Improving anaerobic digestion of piggery wastewater by alleviating stress of ammonia using biochar derived from rice straw[J]. Environmental Technology & Innovation, 2020, 19:100948. doi: 10.1016/j.eti.2020.100948
|
53 |
TANG Jialing, PU Yunhui, ZENG Ting,et al. Enhanced methane production coupled with livestock wastewater treatment using anaerobic membrane bioreactor:Performance and membrane filtration properties[J]. Bioresource Technology, 2022, 345:126470. doi: 10.1016/j.biortech.2021.126470
|
54 |
YANG Bo, XU Hui, LIU Yanbiao,et al. Role of GAC-MnO 2 catalyst for triggering the extracellular electron transfer and boosting CH 4 production in syntrophic methanogenesis[J]. Chemical Engineering Journal, 2020, 383:123211. doi: 10.1016/j.cej.2019.123211
|
55 |
GIWA A S, XU Heng, CHANG Fengmin,et al. Effect of biochar on reactor performance and methane generation during the anaerobic digestion of food waste treatment at long-run operations[J]. Journal of Environmental Chemical Engineering, 2019, 7(4):103067. doi: 10.1016/j.jece.2019.103067
|
56 |
WANG Tao, ZHANG Dong, DAI Lingling,et al. Magnetite triggering enhanced direct interspecies electron transfer:A scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge[J]. Environmental Science & Technology, 2018, 52(12):7160-7169. doi: 10.1021/acs.est.8b00891
|
57 |
|
|
YANG Liu, WANG Mingwei, ZHANG Yaobin. Magnetite-loaded biochar for enhanced anaerobic microbial treatment of 2,4-dichlorophenol wastewater[J]. Chemical Industry and Engineering Progress, 2022, 41(9):5065-5073. doi: 10.16085/j.issn.1000-6613.2021-2381
|
58 |
PAN Weiliang, OUYANG Honglin, TAN Xiuqing,et al. Effects of biochar addition towards the treatment of blackwater in anaerobic dynamic membrane bioreactor (AnDMBR):Comparison among room temperature,mesophilic and thermophilic conditions[J]. Bioresource Technology, 2023, 374:128776. doi: 10.1016/j.biortech.2023.128776
|