1 |
MEKONNEN M M, GERBENS-LEENES P W, HOEKSTRA A Y. The consumptive water footprint of electricity and heat:A global assessment[J]. Environmental Science:Water Research & Technology, 2015, 1(3):285-297. doi: 10.1039/c5ew00026b
|
2 |
MELDRUM J, NETTLES-ANDERSON S, HEATH G,et al. Life cycle water use for electricity generation:A review and harmonization of literature estimates[J]. Environmental Research Letters, 2013, 8(1):015031. doi: 10.1088/1748-9326/8/1/015031
|
3 |
BYERS E A, HALL J W, AMEZAGA J M,et al. Water and climate risks to power generation with carbon capture and storage[J]. Environmental Research Letters, 2016, 11(2):024011. doi: 10.1088/1748-9326/11/2/024011
|
4 |
Yang OU, ZHAI Haibo, RUBIN E S. Life cycle water use of coal- and natural-gas-fired power plants with and without carbon capture and storage[J]. International Journal of Greenhouse Gas Control, 2016, 44:249-261. doi: 10.1016/j.ijggc.2015.11.029
|
5 |
DODDER R S. A review of water use in the U. S. electric power sector:Insights from systems-level perspectives[J]. Current Opinion in Chemical Engineering, 2014, 5:7-14. doi: 10.1016/j.coche.2014.03.004
|
6 |
MEKONNEN M M, GERBENS-LEENES P W, HOEKSTRA A Y. Future electricity:The challenge of reducing both carbon and water footprint[J]. Science of the Total Environment, 2016, 569/570:1282-1288. doi: 10.1016/j.scitotenv.2016.06.204
|
7 |
FRICKO O, PARKINSON S C, JOHNSON N,et al. Energy sector water use implications of a 2 ℃ climate policy[J]. Environmental Research Letters, 2016, 11(3):034011. doi: 10.1088/1748-9326/11/3/034011
|
8 |
CHEW L L, CHONG V C, WONG R C S,et al. Three decades of sea water abstraction by Kapar power plant(Malaysia):What impacts on tropical zooplankton community?[J]. Marine Pollution Bulletin, 2015, 101(1):69-84. doi: 10.1016/j.marpolbul.2015.11.022
|
9 |
XU Duo, WANG Hao, HAN Dongyun,et al. Phytoplankton community structural reshaping as response to the thermal effect of cooling water discharged from power plant[J]. Environmental Pollution, 2021, 285:117517. doi: 10.1016/j.envpol.2021.117517
|
10 |
PRINCE P J J, NANDHAGOPAL G, RAJAN BABU B,et al. Impact of coastal power plant cooling system on planktonic diversity of a polluted creek system[J]. Marine Pollution Bulletin, 2018, 133:378-391. doi: 10.1016/j.marpolbul.2018.05.053
|
11 |
LEE P, TSENG L C, HWANG J S. Comparison of mesozooplankton mortality impacted by the cooling systems of two nuclear power plants at the northern Taiwan coast,southern East China Sea[J]. Marine Pollution Bulletin, 2018, 136:114-124. doi: 10.1016/j.marpolbul.2018.09.003
|
12 |
WIOYARANI, CAHYANINGSIH S, WULAN D R,et al. Water quality assessment around a coal-fired power plant in southern coast of Java,Indonesia[J]. Regional Studies in Marine Science, 2019, 25:100463. doi: 10.1016/j.rsma.2018.100463
|
13 |
IBRAHIM S M A, ATTIA S I. The influence of condenser cooling seawater fouling on the thermal performance of a nuclear power plant[J]. Annals of Nuclear Energy, 2015, 76:421-430. doi: 10.1016/j.anucene.2014.10.018
|
14 |
KIRILINA A V, SUSLOV S Y, KOZLOVSKII V V,et al. Water chemistry development for a thermal power plant circulating cooling system using the VTIAMIN EKO-1 chemical agent[J]. Thermal Engineering, 2019, 66(10):750-759. doi: 10.1134/s0040601519100021
|
15 |
MACKNICK J, NEWMARK R, HEATH G,et al. Operational water consumption and withdrawal factors for electricity generating technologies:A review of existing literature[J]. Environmental Research Letters, 2012, 7(4):045802. doi: 10.1088/1748-9326/7/4/045802
|
16 |
ROY P, RAO I N, MARTHA T R,et al. Discharge water temperature assessment of thermal power plant using remote sensing techniques[J]. Energy Geoscience, 2022, 3(2):172-181. doi: 10.1016/j.engeos.2021.06.006
|
17 |
GUDE V G. Energy and water autarky of wastewater treatment and power generation systems[J]. Renewable and Sustainable Energy Reviews, 2015, 45:52-68. doi: 10.1016/j.rser.2015.01.055
|
18 |
PEER R A M, SANDERS K T. The water consequences of a transitioning US power sector[J]. Applied Energy, 2018, 210:613-622. doi: 10.1016/j.apenergy.2017.08.021
|
19 |
RAO P, KOSTECKI R, DALE L,et al. Technology and engineering of the water-energy nexus[J]. Annual Review of Environment and Resources, 2017, 42:407-437. doi: 10.1146/annurev-environ-102016-060959
|
20 |
MAULBETSCH J, BARKER B. Water use for electric power generation[R]. California,Electric Power Research Institute,2008.
|
21 |
PAN Shuyuan, SNYDER S, PACKMAN A,et al. Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus[J]. Water-Energy Nexus, 2018, 1(1):26-41. doi: 10.1016/j.wen.2018.04.002
|
22 |
ZHAI Haibo, RUBIN E S, GROL E J,et al. Dry cooling retrofits at existing fossil fuel-fired power plants in a water-stressed region:Tradeoffs in water savings,cost,and capacity shortfalls[J]. Applied Energy, 2022, 306:117997. doi: 10.1016/j.apenergy.2021.117997
|
23 |
YIN Xiaobo, YANG Ronggui, TAN Gang,et al. Terrestrial radiative cooling:Using the cold universe as a renewable and sustainable energy source[J]. Science, 2020, 370(6518):786-791. doi: 10.1126/science.abb0971
|
24 |
ZEYGHAMI M, GOSWAMI D Y, STEFANAKOS E. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling[J]. Solar Energy Materials and Solar Cells, 2018, 178:115-128. doi: 10.1016/j.solmat.2018.01.015
|
25 |
|
26 |
CATALANOTTI S, CUOMO V, PIRO G,et al. The radiative cooling of selective surfaces[J]. Solar Energy, 1975, 17(2):83-89. doi: 10.1016/0038-092x(75)90062-6
|
27 |
LI Wei, FAN Shanhui. Radiative cooling:Harvesting the coldness of the universe[J]. Optics and Photonics News, 2019, 30(11):32-39. doi: 10.1364/opn.30.11.000032
|
28 |
AILI A, ZHAO Dongliang, TAN Gang,et al. Reduction of water consumption in thermal power plants with radiative sky cooling[J]. Applied Energy, 2021, 302:117515. doi: 10.1016/j.apenergy.2021.117515
|
29 |
ZEYGHAMI M, KHALILI F. Performance improvement of dry cooled advanced concentrating solar power plants using daytime radiative cooling[J]. Energy Conversion and Management, 2015, 106:10-20. doi: 10.1016/j.enconman.2015.09.016
|
30 |
OLWI I A, SABBAGH J A, KHALIFA A M A. Mathematical modeling of passive dry cooling for power plants in arid land[J]. Solar Energy, 1992, 48(5):279-286. doi: 10.1016/0038-092x(92)90055-f
|
31 |
SABBAGH J A, KHALIFA A M A, OLWI I A. Development of passive dry cooling system for power plants in arid land[J]. Solar Energy, 1993, 51(6):431-447. doi: 10.1016/0038-092x(93)90129-c
|
32 |
DU MARCHIE VAN VOORTHUYSEN E, ROES R. Blue sky cooling for parabolic trough plants[J]. Energy Procedia, 2014, 49:71-79. doi: 10.1016/j.egypro.2014.03.008
|
33 |
|
34 |
ZHAO Dongliang, AILI A, ZHAI Yao,et al. Subambient cooling of water:Toward real-world applications of daytime radiative cooling[J]. Joule, 2019, 3(1):111-123. doi: 10.1016/j.joule.2018.10.006
|
35 |
TAGHIAN D S, AHMADIKIA H. Retrofit of a wet cooling tower in order to reduce water and fan power consumption using a wet/dry approach[J]. Applied Thermal Engineering, 2017, 125:1002-1014. doi: 10.1016/j.applthermaleng.2017.07.069
|
36 |
MA Jiaze, WANG Yufei, FENG Xiao,et al. Synthesis cooling water system with air coolers[J]. Chemical Engineering Research and Design, 2018, 131:643-655. doi: 10.1016/j.cherd.2017.10.020
|
37 |
ZHANG Chao, ZHONG Lijin, FU Xiaotian,et al. Revealing water stress by the thermal power industry in China based on a high spatial resolution water withdrawal and consumption inventory[J]. Environmental Science & Technology, 2016, 50(4):1642-1652. doi: 10.1021/acs.est.5b05374
|
38 |
FENG Cuijie, TSAI C C, MA C Y,et al. Integrating cost-effective microbial fuel cells and energy-efficient capacitive deionization for advanced domestic wastewater treatment[J]. Chemical Engineering Journal, 2017, 330:1-10. doi: 10.1016/j.cej.2017.07.122
|
39 |
HU Yisong, WANG X C, NGO H H,et al. Anaerobic dynamic membrane bioreactor(AnDMBR) for wastewater treatment:A review[J]. Bioresource Technology, 2018, 247:1107-1118. doi: 10.1016/j.biortech.2017.09.101
|
40 |
TAMBURINI A, TEDESCO M, CIPOLLINA A,et al. Reverse electrodialysis heat engine for sustainable power production[J]. Applied Energy, 2017, 206:1334-1353. doi: 10.1016/j.apenergy.2017.10.008
|
41 |
SALEEM M W, IM B G, KIM W S. Electrochemical CDI integration with PRO process for water desalination and energy production:Concept,simulation,and performance evaluation[J]. Journal of Electroanalytical Chemistry, 2018, 822:134-143. doi: 10.1016/j.jelechem.2018.05.007
|
42 |
TIAN Chuanmin, JAFFAR M N, RAMJI H R,et al. Custom design of a hanging cooling water power generating system applied to a sensitive cooling water discharge weir in a seaside power plant:A challenging energy scheme[J]. Energy, 2015, 81:511-518. doi: 10.1016/j.energy.2014.12.064
|
43 |
AYOUB A, GJORGIEV B, SANSAVINI G. Cooling towers performance in a changing climate:Techno-economic modeling and design optimization[J]. Energy, 2018, 160:1133-1143. doi: 10.1016/j.energy.2018.07.080
|
44 |
TORKFAR F, AVAMI A. A simultaneous methodology for the optimal design of integrated water and energy networks considering pressure drops in process industries[J]. Process Safety and Environmental Protection, 2016, 103:442-454. doi: 10.1016/j.psep.2016.06.008
|
45 |
NOURI N, BALALI F, NASIRI A,et al. Water withdrawal and consumption reduction for electrical energy generation systems[J]. Applied Energy, 2019, 248:196-206. doi: 10.1016/j.apenergy.2019.04.023
|
46 |
PAYET-BURIN R, BERTONI F, DAVIDSEN C,et al. Optimization of regional water-power systems under cooling constraints and climate change[J]. Energy, 2018, 155:484-494. doi: 10.1016/j.energy.2018.05.043
|
47 |
ZHANG Haitian, FENG Xiao, WANG Yufei,et al. Optimization of cooler networks with different cooling types in series and parallel configuration[J]. Industrial & Engineering Chemistry Research, 2019, 58(15):6017-6025. doi: 10.1021/acs.iecr.8b04059
|
48 |
MOHAMMED A S W, VAHEDI N, ROMERO C,et al. An optimization for water requirement in natural gas combined cycle power plants equipped with once-through and hybrid cooling systems and carbon capture unit[J]. Water-Energy Nexus, 2020, 3:117-134. doi: 10.1016/j.wen.2020.08.001
|
49 |
XIA Lin, LIU Deyou, ZHOU Ling,et al. Optimization of a seawater once-through cooling system with variable speed pumps in fossil fuel power plants[J]. International Journal of Thermal Sciences, 2015, 91:105-112. doi: 10.1016/j.ijthermalsci.2015.01.005
|
50 |
SOUZA R D, KHANAM S, MOHANTY B. Synthesis of heat exchanger network considering pressure drop and layout of equipment exchanging heat[J]. Energy, 2016, 101:484-495. doi: 10.1016/j.energy.2016.02.040
|
51 |
MA Jiaze, WANG Yufei, FENG Xiao. Simultaneous optimization of pump and cooler networks in a cooling water system[J]. Applied Thermal Engineering, 2017, 125:377-385. doi: 10.1016/j.applthermaleng.2017.07.026
|
52 |
ANDERSSON K. Sanitation,wastewater management and sustainability:from waste disposal to resource recovery[M]. UN environmental programme global programme of action for the protection of the marine environment from land based activities and stockholm environment institute(SEI),2016:39-54.
|
53 |
QIN Ying, CURMI E, KOPEC G M,et al. China’s energy-water nexus:Assessment of the energy sector’s compliance with the “3 Red Lines” industrial water policy[J]. Energy Policy, 2015, 82:131-143. doi: 10.1016/j.enpol.2015.03.013
|
54 |
ZHANG Xinxin, LIU Junguo, TANG Yu,et al. China’s coal-fired power plants impose pressure on water resources[J]. Journal of Cleaner Production, 2017, 161:1171-1179. doi: 10.1016/j.jclepro.2017.04.040
|
55 |
HOINKIS J, DEOWAN S A, PANTEN V,et al. Membrane bioreactor(MBR) technology:A promising approach for industrial water reuse[J]. Procedia Engineering, 2012, 33:234-241. doi: 10.1016/j.proeng.2012.01.1199
|
56 |
FOGLIA A, ANDREOLA C, CIPOLLETTA G,et al. Comparative life cycle environmental and economic assessment of anaerobic membrane bioreactor and disinfection for reclaimed water reuse in agricultural irrigation:A case study in Italy[J]. Journal of Cleaner Production, 2021, 293:126201. doi: 10.1016/j.jclepro.2021.126201
|
57 |
CHERCHI C, KESAANO M, BADRUZZAMAN M,et al. Municipal reclaimed water for multi-purpose applications in the power sector:A review[J]. Journal of Environmental Management, 2019, 236:561-570. doi: 10.1016/j.jenvman.2018.10.102
|
58 |
AL-MALAHY K S E, HODGKIESS T. Comparative studies of the seawater corrosion behaviour of a range of materials[J]. Desalination, 2003, 158(1/2/3):35-42. doi: 10.1016/s0011-9164(03)00430-2
|
59 |
GONG Yi, MA Fuqiu, XUE Yun,et al. Failure analysis on leaked titanium tubes of seawater heat exchangers in recirculating cooling water system of coastal nuclear power plant[J]. Engineering Failure Analysis, 2019, 101:172-179. doi: 10.1016/j.engfailanal.2019.03.018
|
60 |
PORADA S, ZHAO R, VAN DER WAL A,et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8):1388-1442. doi: 10.1016/j.pmatsci.2013.03.005
|
61 |
HAMED O A, ZAMAMIRI A M,ALY S,et al. Thermal performance and exergy analysis of a thermal vapor compression desalination system[J]. Energy Conversion and Management, 1996, 37(4):379-387. doi: 10.1016/0196-8904(95)00194-8
|
62 |
QASIM M, BADRELZAMAN M, DARWISH N N,et al. Reverse osmosis desalination:A state-of-the-art review[J]. Desalination, 2019, 459:59-104. doi: 10.1016/j.desal.2019.02.008
|
63 |
MOHAMED A S A, AHMED M S, MAGHRABIE H M,et al. Desalination process using humidification-dehumidification technique:A detailed review[J]. International Journal of Energy Research, 2021, 45(3):3698-3749. doi: 10.1002/er.6111
|
64 |
ALAEI SHAHMIRZADI M A, HOSSEINI S S, LUO Jianquan,et al. Significance,evolution and recent advances in adsorption technology,materials and processes for desalination,water softening and salt removal[J]. Journal of Environmental Management, 2018, 215:324-344. doi: 10.1016/j.jenvman.2018.03.040
|
65 |
POURKIAEI S M, AHMADI M H, GHAZVINI M,et al. Status of direct and indirect solar desalination methods:Comprehensive review[J]. The European Physical Journal Plus, 2021, 136(5):602. doi: 10.1140/epjp/s13360-021-01560-3
|
66 |
GÜVENSOY-MORKOYUN A, KÜRKLÜ-KOCAOĞLU S, YıLDıRıM C,et al. Carbon nanotubes integrated into polyamide membranes by support pre-infiltration improve the desalination performance[J]. Carbon, 2021, 185:546-557. doi: 10.1016/j.carbon.2021.09.021
|
67 |
FUWAD A,RYU H, JEON T J,et al. Aquaporin biomimetic membrane for energy conservative water desalination[J]. Biophysical Journal, 2017, 112(3):589a. doi: 10.1016/j.bpj.2016.11.3171
|
68 |
WEI Huijie, ZHAO Shujing, ZHANG Xiaoyuan,et al. The future of freshwater access:Functional material-based nano-membranes for desalination[J]. Materials Today Energy, 2021, 22:100856. doi: 10.1016/j.mtener.2021.100856
|
69 |
ZHAO Weijie, LIANG Lijun, KONG Zhe,et al. A review on desalination by graphene-based biomimetic nanopore:From the computational modelling perspective[J]. Journal of Molecular Liquids, 2021, 342:117582. doi: 10.1016/j.molliq.2021.117582
|
70 |
GUDE G G. Renewable energy powered desalination handbook:Application and thermodynamics,Chapter 10-Energy Storage for Desalination[M]. Butterworth-Heinemann, 2018:377-410. doi: 10.1016/b978-0-12-815244-7.00010-6
|
71 |
PRAJAPATI M, SHAH M, SONI B. A review of geothermal integrated desalination:A sustainable solution to overcome potential freshwater shortages[J]. Journal of Cleaner Production, 2021, 326:129412. doi: 10.1016/j.jclepro.2021.129412
|
72 |
LIANG Mengjun, KARTHICK R, WEI Qiang,et al. The progress and prospect of the solar-driven photoelectrochemical desalination[J]. Renewable and Sustainable Energy Reviews, 2022, 155:111864. doi: 10.1016/j.rser.2021.111864
|
73 |
KHOSHGOFTAR M M K, AGHDAM M H, MODABBER H,et al. Techno-economic,environmental and emergy analysis and optimization of integrated solar parabolic trough collector and multi effect distillation systems with a combined cycle power plant[J]. Energy, 2022, 240:122499. doi: 10.1016/j.energy.2021.122499
|
74 |
BENAISSA M, ROUANE-HACENE O, BOUTIBA Z,et al. Ecotoxicological impact assessment of the brine discharges from a desalination plant in the marine waters of the Algerian west coast, using a multibiomarker approach in a limpet, Patella rustica[J]. Environmental Science and Pollution Research, 2017, 24(31):24521-24532. doi: 10.1007/s11356-017-0081-4
|
75 |
RAHMANI K, JADIDIAN R, HAGHTALAB S. Evaluation of inhibitors and biocides on the corrosion,scaling and biofouling control of carbon steel and copper-nickel alloys in a power plant cooling water system[J]. Desalination, 2016, 393:174-185. doi: 10.1016/j.desal.2015.07.026
|
76 |
PINEL I S M, MOED D H, VROUWENVELDER J S,et al. Bacterial community dynamics and disinfection impact in cooling water systems[J]. Water Research, 2020, 172:115505. doi: 10.1016/j.watres.2020.115505
|
77 |
LI Xiaobao, CHOPP D L, RUSSIN W A,et al. In situ biomineralization and particle deposition distinctively mediate biofilm susceptibility to chlorine[J]. Applied and Environmental Microbiology, 2016, 82(10):2886-2892. doi: 10.1128/aem.03954-15
|
78 |
LITTLE B J, HINKS J, BLACKWOOD D J. Microbially influenced corrosion:Towards an interdisciplinary perspective on mechanisms[J]. International Biodeterioration & Biodegradation, 2020, 154:105062. doi: 10.1016/j.ibiod.2020.105062
|
79 |
LI Xiaolei, NARENKUMAR J, RAJASEKAR A,et al. Biocorrosion of mild steel and copper used in cooling tower water and its control[J]. 3 Biotech, 2018, 8(3):178. doi: 10.1007/s13205-018-1196-0
|
80 |
ZHOU Ming, GU Yinhua, YI Rongjun. Preparation and performance evaluation of a new ter-polymer scale inhibitor[J]. Journal of Macromolecular Science,Part A, 2019, 56(11):1060-1070. doi: 10.1080/10601325.2019.1652544
|
81 |
IERVOLINO M, MANCINI B, CRISTINO S. Industrial cooling tower disinfection treatment to prevent Legionella spp.[J]. International Journal of Environmental Research and Public Health, 2017, 14(10):1125. doi: 10.3390/ijerph14101125
|
82 |
FUKUZAKI Y S. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes[J]. Biocontrol Science, 2006, 11:147-157. doi: 10.4265/bio.11.147
|
83 |
MOHD ZAINUDIN F, HASAN H ABU, SHEIKH ABDULLAH S R. An overview of the technology used to remove trihalomethane(THM),trihalomethane precursors,and trihalomethane formation potential(THMFP) from water and wastewater[J]. Journal of Industrial and Engineering Chemistry, 2018, 57:1-14. doi: 10.1016/j.jiec.2017.08.022
|
84 |
VENKATNARAYANAN S, SRIYUTHA MURTHY P, KIRUBAGARAN R,et al. Chlorine dioxide as an alternative antifouling biocide for cooling water systems:Toxicity to larval barnacle Amphibalanus reticulatus(Utinomi)[J]. Marine Pollution Bulletin, 2017, 124(2):803-810. doi: 10.1016/j.marpolbul.2017.01.023
|
85 |
AL-BLOUSHI M, SATHTHASIVAM J, AL-SAYEGHC S,et al. Performance assessment of oxidants as a biocide for biofouling control in industrial seawater cooling towers[J]. Journal of Industrial and Engineering Chemistry, 2018, 59:127-133. doi: 10.1016/j.jiec.2017.10.015
|
86 |
KWAŚNIEWSKA D, CHEN Y L, WIECZOREK D. Biological activity of quaternary ammonium salts and their derivatives[J]. Pathogens, 2020, 9:459. doi: 10.3390/pathogens9060459
|
87 |
ALKHALIFA S, Jennings M-C, Granata D,et al. Analysis of the destabilization of bacterial membranes by quaternary ammonium compounds: A combined experimental and computational study[J]. ChemBioChem. 2019, 21:1510-1516. doi: 10.1002/cbic.201900698
|
88 |
JIAO Yang, Niu Li’na, Ma Sai,et al. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance[J]. Prog. Polym. Sci. 2017, 71:53-90. doi: 10.1016/j.progpolymsci.2017.03.001
|
89 |
DELEO P C, HUYNH C, PATTANAYEK M,et al. Assessment of ecological hazards and environmental fate of disinfectant quaternary ammonium compounds[J]. Ecotoxicology and Environmental Safety, 206,111116. doi: 10.1016/j.ecoenv.2020.111116
|
90 |
DO V Q, SEO Y S, PARK J M,et al. A mixture of chloromethylisothiazolinone and methylisothiazolinone impairs rat vascular smooth muscle by depleting thiols and thereby elevating cytosolic Zn 2+ and generating reactive oxygen species[J]. Archives of Toxicology, 2021, 95,541-556. doi: 10.1007/s00204-020-02930-z
|
91 |
CHATTERJEE N, LEE H, KIM J,et al. Critical window of exposure of CMIT/MIT with respect to developmental effects on zebrafish embryos: Multi-level endpoint and proteomics analysis[J]. Environmental Pollution, 2021, 268:115784. doi: 10.1016/j.envpol.2020.115784
|
92 |
KHAN A H, TOPP E, SCOTT A,et al. Biodegradation of benzalkonium chlorides singly and in mixtures by a Pseudomonas sp. isolated from returned activated sludge[J]. Journal of Hazardous Materials, 2015, 299:595-602. doi: 10.1016/j.jhazmat.2015.07.073
|
93 |
CUI J, CAI S, ZHANG S,et al.Degradation of a non-oxidizing biocide in circulating cooling water using UV/persulfate: Kinetics, pathways, and cytotoxicity[J]. Chemosphere, 2022, 289:133064. doi: 10.1016/j.chemosphere.2021.133064
|
94 |
YRSA L, ANDREA M, VAIDOTAS K,et al. Microbial biofilm metabolization of benzalkonium compounds (benzyl dimethyl dodecyl ammonium & benzyl dimethyl tetradecyl ammonium chloride)[J]. Journal of Hazardous Materials, 2024, 463:132834. doi: 10.1016/j.jhazmat.2023.132834
|
95 |
NOWAK M, ZAWADZKA K, LISOWSKA K. Occurrence of methylisothiazolinone in water and soil samples in Poland and its biodegradation by Phanerochaete chrysosporium[J]. Chemosphere, 2020, 254:126723. doi: 10.1016/j.chemosphere.2020.126723
|
96 |
YE Bei, LEE Minyong, WANG Wenlong,et al. Graphene oxide enhanced ozonation of 5-chloro-2-methyl-4-isothiazolin-3-one: Kinetics, degradation pathway, and toxicity. ScienceDirect[J]. Journal of Hazardous Materials, 2020, 394:122563. doi: 10.1016/j.jhazmat.2020.122563
|
97 |
LI Xinzheng, LI Zhining, XING Zhihui,et al. UV-LED/P25-based photocatalysis for effective degradation of isothiazolone biocide[J]. Frontiers of Environmental Science & Engineering, 2021, 15:85. doi: 10.1007/s11783-020-1379-x
|
98 |
WANG Yingcai, CHEN Min, WANG Can,et al. Electrochemical degradation of methylisothiazolinone by using Ti/SnO 2-Sb 2O 3/ α, β-PbO 2 electrode: Kinetics, energy efficiency, oxidation mechanism and degradation pathway[J]. Chemical Engineering Journal, 2019, 374:626-636. doi: 10.1016/j.cej.2019.05.217
|
99 |
KHAN A H, KIM J, SUMARAH M,et al. Toxicity reduction and improved biodegradability of benzalkonium chlorides by ozone/hydrogen peroxide advanced oxidation process[J]. Separation and Purification Technology, 2017, 185:72-82. doi: 10.1016/j.seppur.2017.05.010
|
100 |
PENG Lu, LIU Hai, WANG Wenlong,et al. Degradation of methylisothiazolinone biocide using a carbon fiber felt-based flow-through electrode system(FES) via anodic oxidation[J]. Chemical Engineering Journal, 2020, 384:123239. doi: 10.1016/j.cej.2019.123239
|
101 |
LEE Minyong, WANG Wenlong, DU Ye,et al. Enhancement effect among a UV,persulfate,and copper(UV/PS/Cu 2+) system on the degradation of nonoxidizing biocide:The kinetics,radical species,and degradation pathway[J]. Chemical Engineering Journal, 2020, 382:122312. doi: 10.1016/j.cej.2019.122312
|
102 |
RUBIO D, CASANUEVA J F, NEBOT E. Assessment of the antifouling effect of five different treatment strategies on a seawater cooling system[J]. Applied Thermal Engineering, 2015, 85:124-134. doi: 10.1016/j.applthermaleng.2015.03.080
|
103 |
JAYARAMAN N, SANDHANASAMY D, ALSALHI MOHAMAD S,et al. Biofilm formation on copper and its control by inhibitor/biocide in cooling water environment[J]. Saudi Journal of Biological Sciences, 2021, 28(12):7588-7594. doi: 10.1016/j.sjbs.2021.10.012
|
104 |
ZHANG Chiqian, BROWN P J B, MILES R J,et al. Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid disinfection[J]. Water Research, 2019, 149:640-649. doi: 10.1016/j.watres.2018.10.062
|
105 |
LUO Xueru, ZHANG Baoping, LU Yinghua,et al. Advances in application of ultraviolet irradiation for biofilm control in water and wastewater infrastructure[J]. Journal of Hazardous Materials, 2022, 421:126682. doi: 10.1016/j.jhazmat.2021.126682
|
106 |
MOHAMMED A B, RAJU A K S, LEE J,et al. Non-chemical biofouling mitigation systems for seawater cooling tower using granular activated carbon biofiltration and ultrafiltration[J]. Journal of Environmental Chemical Engineering, 2021, 9(6):106784. doi: 10.1016/j.jece.2021.106784
|
107 |
MPELWA M, TANG Shanfa. State of the art of synthetic threshold scale inhibitors for mineral scaling in the petroleum industry:A review[J]. Petroleum Science, 2019, 16(4):830-849. doi: 10.1007/s12182-019-0299-5
|
108 |
ZHANG Xiaojuan, ZHAO Xiaowei, ZHANG Menglong,et al. Synthesis,scale inhibition performance evaluation and mechanism study of 3-amino-1-propane sulfonic acid modified polyaspartic acid copolymer[J]. Journal of Molecular Structure, 2023, 1272:134141. doi: 10.1016/j.molstruc.2022.134141
|
109 |
LIU Guangqing, XUE Mengwei, LIU Qinpu,et al. Linear-dendritic block copolymers as a green scale inhibitor for calcium carbonate in cooling water systems[J]. Designed Monomers and Polymers, 2017, 20(1):397-405. doi: 10.1080/15685551.2017.1296530
|
110 |
MOHAMMADI Z, RAHSEPAR M. The use of green Bistorta Officinalis extract for effective inhibition of corrosion and scale formation problems in cooling water system[J]. Journal of Alloys and Compounds, 2019, 770:669-678. doi: 10.1016/j.jallcom.2018.08.198
|
111 |
ABD-EL-NABEY B A, ABD-EL-KHALEK D E, EL-HOUSSEINY S,et al. Plant extracts as corrosion and scale inhibitors:A review[J]. International Journal of Corrosion and Scale Inhibition,2020,9(4):1287-1328.
|
112 |
KIOKA A, NAKAGAWA M. Theoretical and experimental perspectives in utilizing nanobubbles as inhibitors of corrosion and scale in geothermal power plant[J]. Renewable and Sustainable Energy Reviews, 2021, 149:111373. doi: 10.1016/j.rser.2021.111373
|
113 |
NOEMI P, FEDERICO V, ANDREA B,et al. Microbial biofilm monitoring by electrochemical transduction methods[J]. Trends in Analytical Chemistry, 2021, 134:116134. doi: 10.1016/j.trac.2020.116134
|
114 |
TINHAM P, BOTT T R. Biofouling assessment using an infrared monitor[J]. Water Science and Technology, 2003, 47(5):39-43. doi: 10.2166/wst.2003.0275
|
115 |
BRUCHMANN J, SACHSENHEIMER K, RAPP B E,et al. Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity[J]. PLoS One, 2015, 10(2):e0117300. doi: 10.1371/journal.pone.0117300
|
116 |
CRISTIANI P, PERBONI G. Antifouling strategies and corrosion control in cooling circuits[J]. Bioelectrochemistry, 2014, 97:120-126. doi: 10.1016/j.bioelechem.2014.01.002
|
117 |
BARKER Z A, STILLWELL A S. Implications of transitioning from de facto to engineered water reuse for power plant cooling[J]. Environmental Science & Technology, 2016, 50(10):5379-5388. doi: 10.1021/acs.est.5b05753
|
118 |
HENRY C L, PRATSON L F. Differentiating the effects of climate change-induced temperature and streamflow changes on the vulnerability of once-through thermoelectric power plants[J]. Environmental Science & Technology, 2019, 53(7):3969-3976. doi: 10.1021/acs.est.8b05718
|
119 |
LI Panni, LIN Zhongguo, DU Huibin,et al. Do environmental taxes reduce air pollution? Evidence from fossil-fuel power plants in China[J]. Journal of Environmental Management, 2021, 295:113112. doi: 10.1016/j.jenvman.2021.113112
|
120 |
YALEW S G, VAN VLIET M T H, GERNAAT D E H J,et al. Impacts of climate change on energy systems in global and regional scenarios[J]. Nature Energy, 2020, 5(10):794-802. doi: 10.1038/s41560-020-0664-z
|
121 |
TIDWELL V C, GUNDA T, GAYOSO N. Plant-level characteristics could aid in the assessment of water-related threats to the electric power sector[J]. Applied Energy, 2021, 282:116161. doi: 10.1016/j.apenergy.2020.116161
|
122 |
THOPIL G A, POURIS A. A 20 year forecast of water usage in electricity generation for South Africa amidst water scarce conditions[J]. Renewable and Sustainable Energy Reviews, 2016, 62:1106-1121. doi: 10.1016/j.rser.2016.05.003
|