1 |
AHMED M B, ZHOU J L, NGO H H,et al. Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water[J]. Chemical Engineering Journal, 2017, 311:348-358. doi: 10.1016/j.cej.2016.11.106
|
2 |
|
3 |
TIAN Suhong, ZHANG Chen, HUANG Danlian,et al. Recent progress in sustainable technologies for adsorptive and reactive removal of sulfonamides[J]. Chemical Engineering Journal, 2020, 389:123423. doi: 10.1016/j.cej.2019.123423
|
4 |
LIU Xiaohui, LU Shaoyong, GUO Wei,et al. Antibiotics in the aquatic environments:A review of lakes,China[J]. Science of the Total Environment, 2018, 627:1195-1208. doi: 10.1016/j.scitotenv.2018.01.271
|
5 |
BARAN W, ADAMEK E, ZIEMIAŃSKA J,et al. Effects of the presence of sulfonamides in the environment and their influence on human health[J]. Journal of Hazardous Materials, 2011, 196:1-15. doi: 10.1016/j.jhazmat.2011.08.082
|
6 |
ZHANG Pengyu, ZHANG Xianfa, ZHAO Xiaodan,et al. Activation of peracetic acid with zero-valent iron for tetracycline abatement:The role of Fe(Ⅱ) complexation with tetracycline[J]. Journal of Hazardous Materials, 2022, 424:127653. doi: 10.1016/j.jhazmat.2021.127653
|
7 |
HU Jun, LI Tong, ZHANG Xuxiang,et al. Degradation of steroid estrogens by UV/peracetic acid:Influencing factors,free radical contribution and toxicity analysis[J]. Chemosphere, 2022, 287:132261. doi: 10.1016/j.chemosphere.2021.132261
|
8 |
WANG Jingwen, WAN Ying, DING Jiaqi,et al. Thermal activation of peracetic acid in aquatic solution:The mechanism and application to degrade sulfamethoxazole[J]. Environmental Science & Technology, 2020, 54(22):14635-14645. doi: 10.1021/acs.est.0c02061
|
9 |
CAI Meiquan, SUN Peizhe, ZHANG Liqiu,et al. UV/peracetic acid for degradation of pharmaceuticals and reactive species evaluation[J]. Environmental Science & Technology, 2017, 51(24):14217-14224. doi: 10.1021/acs.est.7b04694
|
10 |
赵迎新,麻泽浩,杨知凡,等. 污泥生物炭催化高级氧化过程进展[J]. 化工进展,2021,40(7):3984-3994.
|
|
ZHAO Yingxin, MA Zehao, YANG Zhifan,et al. Progress of advanced oxidation process catalyzed by sludge biochar[J]. Chemical Industry and Engineering Progress,2021,40(7):3984-3994.
|
11 |
裴轩瑗,任宏宇,任南琪,等. 污泥生物炭处理水环境新兴污染物研究进展[J]. 给水排水,2021,57(S2):545-552.
|
|
PEI Xuanyuan, REN Hongyu, REN Nanqi,et al. Research progress on treatment of emerging pollutants in water environment by sludge biochar[J]. Water & Wastewater Engineering,2021,57(S2):545-552.
|
12 |
莫官海,农海杜,胡青,等. 硝酸改性污泥基生物炭除U(Ⅵ)效果及机理分析[J]. 精细化工,2021,38(2):395-403.
|
|
MO Guanhai, NONG Haidu, HU Qing,et al. U(Ⅵ) removal efficiency and mechanism by acidified sewage sludge-derived biochar[J]. Fine Chemicals,2021,38(2):395-403.
|
13 |
MA Yongfei, LI Ping, YANG Lie,et al. Iron/zinc and phosphoric acid modified sludge biochar as an efficient adsorbent for fluoroquinolones antibiotics removal[J]. Ecotoxicology and Environmental Safety, 2020, 196:110550. doi: 10.1016/j.ecoenv.2020.110550
|
14 |
|
15 |
WANG Shizong, WANG Jianlong. Nitrogen doping sludge-derived biochar to activate peroxymonosulfate for degradation of sulfamethoxazole:Modulation of degradation mechanism by calcination temperature[J]. Journal of Hazardous Materials, 2021, 418:126309. doi: 10.1016/j.jhazmat.2021.126309
|
16 |
REN Dajun, YU Hongyan, WU Jian,et al. The study on adsorption behavior of 2,4-DCP in solution by biomass carbon modified with CTAB-KOH[J]. Water Science and Technology, 2020, 82(8):1535-1546. doi: 10.2166/wst.2020.418
|
17 |
FIGUEIREDO C, LOPES H, COSER T,et al. Influence of pyrolysis temperature on chemical and physical properties of biochar from sewage sludge[J]. Archives of Agronomy and Soil Science, 2018, 64(6):881-889. doi: 10.1080/03650340.2017.1407870
|
18 |
ZHANG Xin, ZHAO Baowei, LIU Hui,et al. Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars[J]. Environmental Technology & Innovation, 2022, 26:102288. doi: 10.1016/j.eti.2022.102288
|
19 |
ZHANG Zongcheng, TIAN Xiaochun, ZHANG Binwei,et al. Engineering phase and surface composition of Pt 3Co nanocatalysts:A strategy for enhancing CO tolerance[J]. Nano Energy, 2017, 34:224-232. doi: 10.1016/j.nanoen.2017.02.023
|
20 |
ZHANG Wenguang, XI Jingyu, LI Zhaohua,et al. Electrochemical activation of graphite felt electrode for VO 2+/VO 2 + redox couple application[J]. Electrochimica Acta, 2013, 89:429-435. doi: 10.1016/j.electacta.2012.11.072
|
21 |
ZHAO Guixia, JIANG Lang, HE Yudong,et al. Sulfonated graphene for persistent aromatic pollutant management[J]. Advanced Materials, 2011, 23(34):3959-3963. doi: 10.1002/adma.201101007
|
22 |
WANG Jia, SHEN Min, WANG Hailong,et al. Red mud modified sludge biochar for the activation of peroxymonosulfate:Singlet oxygen dominated mechanism and toxicity prediction[J]. Science of the Total Environment, 2020, 740:140388. doi: 10.1016/j.scitotenv.2020.140388
|
23 |
EYVAZI B, JAMSHIDI-ZANJANI A, KHODADADI DARBAN A. Immobilization of hexavalent chromium in contaminated soil using nano-magnetic MnFe 2O 4 [J]. Journal of Hazardous Materials, 2019, 365:813-819. doi: 10.1016/j.jhazmat.2018.11.041
|
24 |
WILSON D, LANGELL M A. XPS analysis of oleylamine/oleic acid capped Fe 3O 4 nanoparticles as a function of temperature[J]. Applied Surface Science, 2014, 303:6-13. doi: 10.1016/j.apsusc.2014.02.006
|
25 |
YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8):2441-2449. doi: 10.1016/j.apsusc.2007.09.063
|
26 |
TU Yuting, PENG Zhiping, HUANG Jichuan,et al. Preparation and characterization of magnetic biochar nanocomposites via a modified solvothermal method and their use as efficient heterogeneous Fenton-like catalysts[J]. Industrial & Engineering Chemistry Research, 2020, 59(5):1809-1821. doi: 10.1021/acs.iecr.9b04590
|
27 |
SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity(Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4):603-619. doi: 10.1351/pac198557040603
|
28 |
WANG Yanbin, ZHAO Xu, CAO Di,et al. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C 3N 4 hybrid[J]. Applied Catalysis B:Environmental, 2017, 211:79-88. doi: 10.1016/j.apcatb.2017.03.079
|
29 |
JORFI S, KAKAVANDI B, MOTLAGH H R,et al. A novel combination of oxidative degradation for benzotriazole removal using TiO 2 loaded on Fe ⅡFe 2 ⅢO 4@C as an efficient activator of peroxymonosulfate[J]. Applied Catalysis B:Environmental, 2017, 219:216-230. doi: 10.1016/j.apcatb.2017.07.035
|
30 |
田丹,吴玮,沈芷璇,等. Co(Ⅱ)活化过氧乙酸降解有机染料研究[J]. 环境科学学报,2018,38(10):4023-4031.
|
|
TIAN Dan, WU Wei, SHEN Zhixuan,et al. Degradation of organic dyes with peracetic acid activated by Co(Ⅱ)[J]. Acta Scientiae Circumstantiae,2018,38(10):4023-4031.
|
31 |
宋江燕,李方鸿,吴根义,等. 氯咪巴唑在臭氧降解过程中的影响因素及其降解产物[J]. 环境科学研究,2022,35(2):478-487.
|
|
SONG Jiangyan, LI Fanghong, WU Genyi,et al. Degradation of climbazole by ozonation:Influencing factors and degradation products[J]. Research of Environmental Sciences,2022,35(2):478-487.
|
32 |
ZHANG Li, FU Yongsheng, WANG Zhenran,et al. Removal of diclofenac in water using peracetic acid activated by zero valent copper[J]. Separation and Purification Technology, 2021, 276:119319. doi: 10.1016/j.seppur.2021.119319
|
33 |
SUN Xiaoming, LI Yadong. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angewandte Chemie, 2004, 43(5):116. doi: 10.1002/ange.200352386
|
34 |
PENG Lijing, DUAN Xiaoguang, SHANG Yanan,et al. Engineered carbon supported single iron atom sites and iron clusters from Fe-rich Enteromorpha for Fenton-like reactions via nonradical pathways[J]. Applied Catalysis B:Environmental, 2021, 287:119963. doi: 10.1016/j.apcatb.2021.119963
|