1 |
KAIRIGO P, NGUMBA E, SUNDBERG L R,et al. Occurrence of antibiotics and risk of antibiotic resistance evolution in selected Kenyan wastewaters,surface waters and sediments[J]. Science of the Total Environment, 2020, 720:137580. doi: 10.1016/j.scitotenv.2020.137580
|
2 |
GE Linke, ZHANG Peng, HALSALL C,et al. The importance of reactive oxygen species on the aqueous phototransformation of sulfonamide antibiotics:Kinetics,pathways,and comparisons with direct photolysis[J]. Water Research, 2019, 149:243-250. doi: 10.1016/j.watres.2018.11.009
|
3 |
林靖钧,李瑞雪,林华,等. 我国水产养殖水体中抗生素的污染特征[J]. 净水技术,2022,41(3):12-19.
|
|
LIN Jingjun, LI Ruixue, LIN Hua,et al. Pollution characteristics of antibiotics in aquaculture water at home[J]. Water Purification Technology,2022,41(3):12-19.
|
4 |
胡伟,牛耀岚,董堃,等. 甘蔗渣生物炭对典型抗生素的去除机理研究[J]. 水处理技术,2022,48(11):52-56.
|
|
HU Wei, NIU Yaolan, DONG Kun,et al. Study on removal mechanism of typical antibiotics by bagasse biochar[J]. Technology of Water Treatment,2022,48(11):52-56.
|
5 |
白杨. 污水厂中磺胺类抗生素的去除效率与残留特征[D]. 哈尔滨:哈尔滨工程大学,2012.
|
|
BAI Yang. Removal efficiency and residue characteristics of sulfonamides in sewage plants[D]. Harbin:Harbin Engineering University,2012.
|
6 |
MARTINI J, ORGE C A, FARIA J L,et al. Sulfamethoxazole degradation by combination of advanced oxidation processes[J]. Journal of Environmental Chemical Engineering, 2018, 6(4):4054-4060. doi: 10.1016/j.jece.2018.05.047
|
7 |
LI Chenxu, WU Jiaen, PENG Wei,et al. Peroxymonosulfate activation for efficient sulfamethoxazole degradation by Fe 3O 4/ β-FeOOH nanocomposites:Coexistence of radical and non-radical reactions[J]. Chemical Engineering Journal, 2019, 356:904-914. doi: 10.1016/j.cej.2018.09.064
|
8 |
|
|
CHEN Qingkong, LEI Yifei, CHEN Zhijun,et al. Degradation of methyl orange in water by persulfate catalyzed with carbonized ZIF-67[J]. Industrial Water Treatment, 2023, 43(8):89-96. doi: 10.19965/j.cnki.iwt.2022-0855
|
9 |
XIAO Ruiyang, LUO Zonghao, WEI Zongsu,et al. Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies[J]. Current Opinion in Chemical Engineering, 2018, 19:51-58. doi: 10.1016/j.coche.2017.12.005
|
10 |
BODHANKAR P M, SARAWADE P B, SINGH G,et al. Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting[J]. Journal of Materials Chemistry A, 2021, 9(6):3180-3208. doi: 10.1039/d0ta10712c
|
11 |
AHMED A A ALI, TALIB Z A, HUSSEIN M Z BIN,et al. Zn-Al layered double hydroxide prepared at different molar ratios:Preparation,characterization,optical and dielectric properties[J]. Journal of Solid State Chemistry, 2012, 191:271-278. doi: 10.1016/j.jssc.2012.03.013
|
12 |
LI Xu, LIU Shuangyi, BAI Sihan,et al. Zeolitic-imidazolate framework derived Ni-Co layered double hydroxide hollow microspheres with enhanced pseudocapacitive properties for hybrid supercapacitors[J]. Journal of Materials Chemistry C, 2022, 10(16):6348-6357. doi: 10.1039/d1tc05792h
|
13 |
JIANG Tingting, WANG Xi, CHEN Jiazhi,et al. Hierarchical Ni/Co-LDHs catalyst for catalytic oxidation of indoor formaldehyde at ambient temperature[J]. Journal of Materials Science:Materials in Electronics, 2020, 31(4):3500-3509. doi: 10.1007/s10854-020-02898-7
|
14 |
QIAN Junfeng, SUN Fuan, QIN Lizhen. Hydrothermal synthesis of zeolitic imidazolate framework-67(ZIF-67) nanocrystals[J]. Materials Letters, 2012, 82:220-223. doi: 10.1016/j.matlet.2012.05.077
|
15 |
CHEN Yuzhen, WANG Chengming, WU Zhenyu,et al. From bimetallic metal-organic framework to porous carbon:High surface area and multicomponent active dopants for excellent electrocatalysis[J]. Advanced Materials, 2015, 27(34):5010-5016. doi: 10.1002/adma.201502315
|
16 |
MA Wenjie, WANG Na, FAN Yanan,et al. Non-radical-dominated catalytic degradation of bisphenol A by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate[J]. Chemical Engineering Journal, 2018, 336:721-731. doi: 10.1016/j.cej.2017.11.164
|
17 |
HUANG Cheng, SU Xiaoyan, GU Xiangyu,et al. Bimetallic oxide nanoparticles confined in ZIF-67-derived carbon for highly selective oxidation of saturated C-H bond in alkyl arenes[J]. Applied Organometallic Chemistry, 2021, 35(1):e6047. doi: 10.1002/aoc.6047
|
18 |
|
|
LIU Mingming, Wenmiao LÜ, SHI Xiufeng,et al. Characterization and catalytic performence of zeolitic imidazolate framework-8(ZIF-8) synthesized by different methods[J]. Chinese Journal of Inorganic Chemistry, 2014, 30(3):579-584. doi: 10.11862/CJIC.2014.009
|
19 |
NAGARAJU G, CHANDRA SEKHAR S, KRISHNA BHARAT L,et al. Wearable fabrics with self-branched bimetallic layered double hydroxide coaxial nanostructures for hybrid supercapacitors[J]. ACS Nano, 2017, 11(11):10860-10874. doi: 10.1021/acsnano.7b04368
|
20 |
HU Haojun, LIU Jiyan, XU Zhihua,et al. Hierarchical porous Ni/Co-LDH hollow dodecahedron with excellent adsorption property for Congo red and Cr(Ⅵ) ions[J]. Applied Surface Science, 2019, 478:981-990. doi: 10.1016/j.apsusc.2019.02.008
|
21 |
CHEN Liwei, YANG Shengjiong, ZUO Xu,et al. Biochar modification significantly promotes the activity of Co 3O 4 towards heterogeneous activation of peroxymonosulfate[J]. Chemical Engineering Journal, 2018, 354:856-865. doi: 10.1016/j.cej.2018.08.098
|
22 |
TAHIR M U, ARSHAD H, ZHANG Heng,et al. Room temperature and aqueous synthesis of bimetallic ZIF derived CoNi layered double hydroxides and their applications in asymmetric supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 579:195-204. doi: 10.1016/j.jcis.2020.06.050
|
23 |
HE Yongli, ZHANG Jiali, ZHOU Hongyu,et al. Synergistic multiple active species for the degradation of sulfamethoxazole by peroxymonosulfate in the presence of CuO@FeO x @Fe 0 [J]. Chemical Engineering Journal, 2020, 380:122568. doi: 10.1016/j.cej.2019.122568
|
24 |
JIA Muhan, FAN Yan, SUN Zhirong,et al. ZrO 2 supported perovskite activation of peroxymonosulfate for sulfamethoxazole removal from aqueous solution[J]. Chemosphere, 2022, 298:134339. doi: 10.1016/j.chemosphere.2022.134339
|
25 |
HUANG Wen, TANG Yaxin, ZHANG Xueping,et al. nZVI-biochar derived from Fe 3O 4-loaded rabbit manure for activation of peroxymonosulfate to degrade sulfamethoxazole[J]. Journal of Water Process Engineering, 2022, 45:102470. doi: 10.1016/j.jwpe.2021.102470
|
26 |
苏冰琴,温宇涛,林昱廷,等. 活性碳纤维-过硫酸盐体系处理焦化废水生化出水的实验研究[J]. 环境科学学报,2022,42(7):182-195.
|
|
SU Bingqin, WEN Yutao, LIN Yuting,et al. Advanced treatment of bio-treated coking wastewater with peroxymonosulfate activated by activated carbon fiber system[J]. Acta Scientiae Circumstantiae,2022,42(7):182-195.
|
27 |
DURAIRAJ A, SAM D K, SAKTHIVEL T,et al. Synthesis of bi-functional Ni/Co phosphate nanocomposites for Peroxymonosulphate activation and supercapacitor electrode[J]. Journal of Environmental Chemical Engineering, 2021, 9(6):106426. doi: 10.1016/j.jece.2021.106426
|
28 |
LIU Li, LI Yunong, LI Wei,et al. The efficient degradation of sulfisoxazole by singlet oxygen( 1O 2) derived from activated peroxymonosulfate(PMS) with Co 3O 4-SnO 2/RSBC[J]. Environmental Research, 2020, 187:109665. doi: 10.1016/j.envres.2020.109665
|