1 |
EVICH M G, DAVIS M J B, MCCORD J P,et al. Per- and polyfluoroalkyl substances in the environment[J]. Science, 2022, 375(6580):eabg9065. doi: 10.1126/science.abg9065
|
2 |
BUCK R C, FRANKLIN J, BERGER U,et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment:Terminology,classification,and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4):513-541. doi: 10.1002/ieam.258
|
3 |
ROSATO I, BONATO T, FLETCHER T,et al. Estimation of per- and polyfluoroalkyl substances(PFAS) half-lives in human studies:A systematic review and meta-analysis[J]. Environmental Research, 2024, 242:117743. doi: 10.1016/j.envres.2023.117743
|
4 |
KURWADKAR S, DANE J, KANEL S R,et al. Per- and polyfluoroalkyl substances in water and wastewater:A critical review of their global occurrence and distribution[J]. Science of the Total Environment, 2022, 809:151003. doi: 10.1016/j.scitotenv.2021.151003
|
5 |
WANG Guoguang, XING Ziao, LIU Shuaihao,et al. Emerging and legacy per- and polyfluoroalkyl substances in Daling River and its estuary,Northern China[J]. Marine Pollution Bulletin, 2024, 199:115953. doi: 10.1016/j.marpolbul.2023.115953
|
6 |
CHEN Changer, YANG Yuanyuan, ZHAO Jianliang,et al. Legacy and alternative per- and polyfluoroalkyl substances(PFASs) in the West River and North River,South China:Occurrence,fate,spatio-temporal variations and potential sources[J]. Chemosphere, 2021, 283:131301. doi: 10.1016/j.chemosphere.2021.131301
|
7 |
WANG Xiaowei, ZHANG Hongwei, HE Xiaosong,et al. Contamination of per- and polyfluoroalkyl substances in the water source from a typical agricultural area in North China[J]. Frontiers in Environmental Science, 2023, 10:1071134. doi: 10.3389/fenvs.2022.1071134
|
8 |
XU Sisi, ZHANG Cunliang, ZHOU Yuanhang,et al. Occurrence and transport of novel and legacy poly- and perfluoroalkyl substances in coastal rivers along the Laizhou Bay,Northern China[J]. Marine Pollution Bulletin, 2024, 198:115909. doi: 10.1016/j.marpolbul.2023.115909
|
9 |
CALAFAT A M, WONG L Y, KUKLENYIK Z,et al. Polyfluoroalkyl chemicals in the U. S. population:Data from the national health and nutrition examination survey(NHANES) 2003-2004 and comparisons with NHANES 1999-2000[J]. Environmental Health Perspectives, 2007, 115(11):1596-1602. doi: 10.1289/ehp.10598
|
10 |
PODDER A, SADMANI A H M A, REINHART D,et al. Per and poly-fluoroalkyl substances(PFAS) as a contaminant of emerging concern in surface water:A transboundary review of their occurrences and toxicity effects[J]. Journal of Hazardous Materials, 2021, 419:126361. doi: 10.1016/j.jhazmat.2021.126361
|
11 |
SHA Bo, JOHANSSON J H, TUNVED P,et al. Sea spray aerosol (SSA) as a source of perfluoroalkyl acids (PFAAs) to the atmosphere:Field evidence from long-term air monitoring [J]. Environmental Science & Technology, 2021, 56(1):228-238. doi: 10.1021/acs.est.1c04277
|
12 |
BLAKE B E, FENTON S E. Early life exposure to per- and polyfluoroalkyl substances(PFAS) and latent health outcomes:A review including the placenta as a target tissue and possible driver of peri- and postnatal effects[J]. Toxicology, 2020, 443:152565. doi: 10.1016/j.tox.2020.152565
|
13 |
KANNAN K, CORSOLINI S, FALANDYSZ J,et al. Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries[J]. Environmental Science & Technology, 2004, 38(17):4489-4495. doi: 10.1021/es0493446
|
14 |
苏佳惠,周群芳,江桂斌. 母乳中全氟/多氟烷基化合物的健康风险评估[C]//中国毒理学会第十次全国毒理学大会论文集. 广东珠海,中国毒理学会,2023.
|
|
SU Jiahui, ZHOU Qunfang, JIANG Guibin. Health risk assessment of perfluorinated/polyfluoroalkyl compounds in breast milk[C]//Proceedings of the 10th National Toxicology Conference of Chinese Society of Toxicology. Zhuhai,Chinese Society of Toxicology,2023.
|
15 |
BACH C C, VESTED A, JØRGENSEN K T,et al. Perfluoroalkyl and polyfluoroalkyl substances and measures of human fertility:A systematic review[J]. Critical Reviews in Toxicology, 2016, 46(9):735-755. doi: 10.1080/10408444.2016.1182117
|
16 |
STEENLAND K, WINQUIST A. PFAS and cancer,a scoping review of the epidemiologic evidence[J]. Environmental Research, 2021, 194:110690. doi: 10.1016/j.envres.2020.110690
|
17 |
VAN GERWEN M, COLICINO E, GUAN Haibin,et al. Per- and polyfluoroalkyl substances(PFAS) exposure and thyroid cancer risk[J]. EBioMedicine, 2023, 97:104831. doi: 10.1016/j.ebiom.2023.104831
|
18 |
CARBERRY C K, BANGMA J, KOVAL L,et al. Extracellular vesicles altered by a per- and polyfluoroalkyl substance mixture:In vitro dose-dependent release,chemical content,and microRNA signatures involved in liver health[J]. Toxicological Sciences, 2024, 197(2):155-169. doi: 10.1093/toxsci/kfad108
|
19 |
黄柳青,王雯冉,张浴曈,等. 地表水中全氟及多氟烷基化合物(PFASs)的污染现状研究进展[J]. 环境化学,2024,43(3):693-710.
|
|
HUANG Liuqing, WANG Wenran, ZHANG Yutong,et al. Research progress on pollution status of perfluorinated and polyfluoroalkyl compounds(PFASs) in surface water[J]. Environmental Chemistry,2024,43(3):693-710.
|
20 |
刘浩然,邢静怡,任文杰. 中国土壤中全氟和多氟烷基物质的分布、迁移及管控研究进展[J]. 环境科学,2024,45(1):376-385.
|
|
LIU Haoran, XING Jingyi, REN Wenjie. Research progress on distribution,migration and control of perfluorinated and polyfluoroalkyl substances in Chinese soil[J]. Environmental Science,45(1):376-385.
|
21 |
LIN Yongfeng, LIU Runzeng, HU Fanbao,et al. Simultaneous qualitative and quantitative analysis of fluoroalkyl sulfonates in riverine water by liquid chromatography coupled with Orbitrap high resolution mass spectrometry[J]. Journal of Chromatography A, 2016, 1435:66-74. doi: 10.1016/j.chroma.2016.01.039
|
22 |
PAN Yitao, ZHANG Hongxia, CUI Qianqian,et al. Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water[J]. Environmental Science & Technology, 2018, 52(14):7621-7629. doi: 10.1021/acs.est.8b00829
|
23 |
GAGLIANO E, SGROI M, FALCIGLIA P P,et al. Removal of poly- and perfluoroalkyl substances(PFAS) from water by adsorption:Role of PFAS chain length,effect of organic matter and challenges in adsorbent regeneration[J]. Water Research, 2020, 171:115381. doi: 10.1016/j.watres.2019.115381
|
24 |
|
25 |
APPLEMAN T D, DICKENSON E R V, BELLONA C,et al. Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids[J]. Journal of Hazardous Materials, 2013, 260:740-746. doi: 10.1016/j.jhazmat.2013.06.033
|
26 |
LU Dingnan, SHA Sha, LUO Jiayue,et al. Treatment train approaches for the remediation of per- and polyfluoroalkyl substances(PFAS):A critical review[J]. Journal of Hazardous Materials, 2020, 386:121963. doi: 10.1016/j.jhazmat.2019.121963
|
27 |
刘煦,杨田,雷秋霞,等. 全氟和多氟烷基化合物去除进展[J]. 环境化学,2024,43(8):2517-2538.
|
|
LIU Xu, YANG Tian, LEI Qiuxia,et al. Advances in removal of per- and polyfluoroalkyl substances[J]. Environmental Chemistry,2024,43(8):2517-2538.
|
28 |
VARDON D R, SHARMA B K, SCOTT J,et al. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae,swine manure,and digested anaerobic sludge[J]. Bioresource Technology, 2011, 102(17):8295-8303. doi: 10.1016/j.biortech.2011.06.041
|
29 |
WU Boran, HAO Shilai, CHOI Y,et al. Rapid destruction and defluorination of perfluorooctanesulfonate by alkaline hydrothermal reaction[J]. Environmental Science & Technology Letters, 2019, 6(10):630-636. doi: 10.1021/acs.estlett.9b00506
|
30 |
ZHANG Weilan, CAO Huimin, MAHADEVAN SUBRAMANYA S,et al. Destruction of perfluoroalkyl acids accumulated in Typha latifolia through hydrothermal liquefaction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(25):9257-9262. doi: 10.1021/acssuschemeng.0c03249
|
31 |
HAO Shilai, CHOI Y J, WU Boran,et al. Hydrothermal alkaline treatment for destruction of per- and polyfluoroalkyl substances in aqueous film-forming foam[J]. Environmental Science & Technology, 2021, 55(5):3283-3295. doi: 10.1021/acs.est.0c06906
|
32 |
ZHANG Weilan, CAO Huimin, LIANG Yanna. Degradation by hydrothermal liquefaction of fluoroalkylether compounds accumulated in cattails( Typha latifolia)[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105363. doi: 10.1016/j.jece.2021.105363
|
33 |
PINKARD B R. Aqueous film-forming foam treatment under alkaline hydrothermal conditions[J]. Journal of Environmental Engineering, 2022, 148(2):05021007. doi: 10.1061/(asce)ee.1943-7870.0001974
|
34 |
HAO Shilai, CHOI Y J, DEEB R A,et al. Application of hydrothermal alkaline treatment for destruction of per- and polyfluoroalkyl substances in contaminated groundwater and soil[J]. Environmental Science & Technology, 2022, 56(10):6647-6657. doi: 10.1021/acs.est.2c00654
|
35 |
TRANG B, LI Yuli, XUE Xiaosong,et al. Low-temperature mineralization of perfluorocarboxylic acids[J]. Science, 2022, 377(6608):839-845. doi: 10.1126/science.abm8868
|
36 |
PINKARD B R, AUSTIN C, PUROHIT A L,et al. Destruction of PFAS in AFFF-impacted fire training pit water,with a continuous hydrothermal alkaline treatment reactor[J]. Chemosphere, 2023, 314:137681. doi: 10.1016/j.chemosphere.2022.137681
|
37 |
SOKER O, HAO Shilai, TREWYN B G,et al. Application of hydrothermal alkaline treatment to spent granular activated carbon:Destruction of adsorbed PFASs and adsorbent regeneration[J]. Environmental Science & Technology Letters, 2023, 10(5):425-430. doi: 10.1021/acs.estlett.3c00161
|
38 |
YANG Min, DU Zhongcheng, BAO Hongjia,et al. Experimental and theoretical insight of perfluorooctanoic acid destruction by alkaline hydrothermal treatment enhanced with zero-valent iron in biochar[J]. ACS ES&T Water, 2023, 3(5):1286-1293. doi: 10.1021/acsestwater.2c00614
|
39 |
HAO Shilai, REARDON P N, CHOI Y J,et al. Hydrothermal alkaline treatment(HALT) of foam fractionation concentrate derived from PFAS-contaminated groundwater[J]. Environmental Science & Technology, 2023, 57(44):17154-17165. doi: 10.1021/acs.est.3c05140
|
40 |
SHIH C H, KIM J, YANG S H,et al. Remediation of PFAS-impacted soils using magnetic activated carbon(MAC) and hydrothermal alkaline treatment(HALT)[J]. Science of the Total Environment, 2024, 912:168931. doi: 10.1016/j.scitotenv.2023.168931
|
41 |
ENDO J, FUNAZUKURI T. Hydrothermal alkaline defluorination rate of perfluorocarboxylic acids(PFCAs)[J]. Journal of Chemical Technology & Biotechnology, 2023, 98(5):1215-1221. doi: 10.1002/jctb.7333
|
42 |
ZHANG Lei, LIU Zizhong, ZHAO Ruisheng,et al. Theoretical study on the degradation mechanism of perfluoro-ethanesulfonic acid under subcritical hydrothermal alkaline conditions[J]. Physical Chemistry Chemical Physics:PCCP, 2024, 26(9):7446-7457. doi: 10.1039/d4cp00123k
|
43 |
HOUTZ E F, SUTTON R, PARK J S,et al. Poly- and perfluoroalkyl substances in wastewater:Significance of unknown precursors,manufacturing shifts,and likely AFFF impacts[J]. Water Research, 2016, 95:142-149. doi: 10.1016/j.watres.2016.02.055
|
44 |
GUELFO J L, ADAMSON D T. Evaluation of a national data set for insights into sources,composition,and concentrations of per- and polyfluoroalkyl substances(PFASs) in U. S. drinking water[J]. Environmental Pollution, 2018, 236:505-513. doi: 10.1016/j.envpol.2018.01.066
|
45 |
YI Shan, HARDING-MARJANOVIC K C, HOUTZ E F,et al. Biotransformation of AFFF component 6∶2 fluorotelomer thioether amido sulfonate generates 6∶2 fluorotelomer thioether carboxylate under sulfate-reducing conditions[J]. Environmental Science & Technology Letters, 2018, 5(5):283-288. doi: 10.1021/acs.estlett.8b00148
|
46 |
HARDING-MARJANOVIC K C, HOUTZ E F, YI Shan,et al. Aerobic biotransformation of fluorotelomer thioether amido sulfonate(lodyne) in AFFF-amended microcosms[J]. Environmental Science & Technology, 2015, 49(13):7666-7674. doi: 10.1021/acs.est.5b01219
|
47 |
LIU Wei, LIU Danyu, YIN Hao,et al. Foam fractionation for the separation of SDBS from its aqueous solution:Process optimization and property test[J]. Separation and Purification Technology, 2021, 262:118305. doi: 10.1016/j.seppur.2021.118305
|
48 |
HUSSENOT J, LEFEBVRE S, BROSSARD N. Open-air treatment of wastewater from land-based marine fish farms in extensive and intensive systems:Current technology and future perspectives[J]. Aquatic Living Resources, 1998, 11(4):297-304. doi: 10.1016/s0990-7440(98)80015-6
|
49 |
PARK M, WU Shimin, LOPEZ I J,et al. Adsorption of perfluoroalkyl substances(PFAS) in groundwater by granular activated carbons:Roles of hydrophobicity of PFAS and carbon characteristics[J]. Water Research, 2020, 170:115364. doi: 10.1016/j.watres.2019.115364
|
50 |
CANTONI B, TUROLLA A, WELLMITZ J,et al. Perfluoroalkyl substances(PFAS) adsorption in drinking water by granular activated carbon:Influence of activated carbon and PFAS characteristics[J]. Science of the Total Environment, 2021, 795:148821. doi: 10.1016/j.scitotenv.2021.148821
|
51 |
XIAO Feng, SASI P C, YAO Bin,et al. Thermal decomposition of PFAS:Response to comment on “thermal stability and decomposition of perfluoroalkyl substances on spent granular activated carbon”[J]. Environmental Science & Technology Letters, 2021, 8(4):364-365. doi: 10.1021/acs.estlett.1c00061
|
52 |
SONMEZ BAGHIRZADE B, ZHANG Yi, REUTHER J F,et al. Thermal regeneration of spent granular activated carbon presents an opportunity to break the forever PFAS cycle[J]. Environmental Science & Technology, 2021, 55(9):5608-5619. doi: 10.1021/acs.est.0c08224
|
53 |
XIANG Wei, ZHANG Xueyang, CHEN Jianjun,et al. Biochar technology in wastewater treatment:A critical review[J]. Chemosphere, 2020, 252:126539. doi: 10.1016/j.chemosphere.2020.126539
|
54 |
XU Jianhong, LIU Zuwen, ZHAO Dongye,et al. Enhanced adsorption of perfluorooctanoic acid(PFOA) from water by granular activated carbon supported magnetite nanoparticles[J]. Science of the Total Environment, 2020, 723:137757. doi: 10.1016/j.scitotenv.2020.137757
|
55 |
LECHNER M, KNAPP H. Carryover of perfluorooctanoic acid(PFOA) and perfluorooctane sulfonate(PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots( Daucus carota ssp. Sativus),potatoes( Solanum tuberosum),and cucumbers( Cucumis Sativus)[J]. Journal of Agricultural and Food Chemistry, 2011, 59(20):11011-11018. doi: 10.1021/jf201355y
|
56 |
BLAINE A C, RICH C D, SEDLACKO E M,et al. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils[J]. Environmental Science & Technology, 2014, 48(14):7858-7865. doi: 10.1021/es500016s
|
57 |
ZHANG Dongqing, ZHANG Weilan, LIANG Yanna. Distribution of eight perfluoroalkyl acids in plant-soil-water systems and their effect on the soil microbial community[J]. Science of the Total Environment, 2019, 697:134146. doi: 10.1016/j.scitotenv.2019.134146
|
58 |
ZHANG Weilan, LIANG Yanna. Removal of eight perfluoroalkyl acids from aqueous solutions by aeration and duckweed[J]. Science of the Total Environment, 2020, 724:138357. doi: 10.1016/j.scitotenv.2020.138357
|
59 |
VYMAZAL J. Emergent plants used in free water surface constructed wetlands:A review[J]. Ecological Engineering, 2013, 61:582-592. doi: 10.1016/j.ecoleng.2013.06.023
|
60 |
YU Jie, NICKERSON A, LI Yalin,et al. Fate of per- and polyfluoroalkyl substances(PFAS) during hydrothermal liquefaction of municipal wastewater treatment sludge[J]. Environmental Science:Water Research & Technology, 2020, 6(5):1388-1399. doi: 10.1039/c9ew01139k
|
61 |
BAO Yixiang, HUANG Jun, CAGNETTA G,et al. Removal of F-53B as PFOS alternative in chrome plating wastewater by UV/sulfite reduction[J]. Water Research, 2019, 163:114907. doi: 10.1016/j.watres.2019.114907
|
62 |
WATANABE N, TAKATA M, TAKEMINE S,et al. Thermal mineralization behavior of PFOA,PFHxA,and PFOS during reactivation of granular activated carbon(GAC) in nitrogen atmosphere[J]. Environmental Science and Pollution Research, 2018, 25(8):7200-7205. doi: 10.1007/s11356-015-5353-2
|
63 |
TANG C Y, FU Q S, CRIDDLE C S,et al. Effect of flux(transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater[J]. Environmental Science & Technology, 2007, 41(6):2008-2014. doi: 10.1021/es062052f
|