1 |
张照荷,陈典,赵微,等. 水环境中药物与个人护理品(PPCPs)的环境水平及降解行为研究进展[J]. 岩矿测试,2023,42(4):649-666.
|
|
ZHANG Zhaohe, CHEN Dian, ZHAO Wei,et al. Research progress on environmental levels and degradation behavior of pharmaceuticals and personal care products(PPCPs) in water environment[J]. Rock and Mineral Testing,2023,42(4):649-666.
|
2 |
朴海涛. 京杭运河及沿岸区域地表水中药物及个人护理品污染地理分布特征及来源辨析[D]. 北京:中国地质科学院,2017.
|
|
PIAO Haitao. Geographical distribution and source analysis of pollution of drugs and personal care products in surface water of the Beijing-Hangzhou Canal and its coastal area[D]. Beijing:Chinese Academy of Geological Sciences,2017.
|
3 |
潘丹琳,王飞飞,曹文志,等. 22种药品与个人护理产品在河流中的污染特征研究[J]. 生态环境学报,2022,31(6):1200-1207.
|
|
PAN Danlin, WANG Feifei, CAO Wenzhi,et al. The study on characteristics of 22 pharmaceuticals and personal care products in rivers[J]. Ecology and Environmental Sciences,2022,31(6):1200-1207.
|
4 |
朱金浩,张戈,陈思宇,等. 污水中PPCPs处理技术的研究进展[J]. 应用化工,2024,53(1):190-194.
|
|
ZHU Jinhao, ZHANG Ge, CHEN Siyu,et al. Treatment technologies for PPCPs in wastewater:A review[J]. Applied Chemical Industry,2024,53(1):190-194.
|
5 |
谢咏柳,黄河,赵志伟,等. 真空紫外/氯高级氧化法去除水中卡马西平试验研究[J].土木与环境工程学报(中英文),2022,44(3):133-140.
|
|
XIE Yongliu, HUANG He, ZHAO Zhiwei,et al. Experimental study on the synergistic removal of carbamazepine from water by vacuum ultraviolet/chlorine advanced oxidation method[J]. Journal of Civil and Environmental Engineering,2022,44(3):133-140.
|
6 |
翟俊,胡炜,王泉峰,等. 异化Mn(Ⅳ)还原耦合降解卡马西平及双氯芬酸[J]. 中国环境科学,2021,41(4):1704-1710.
|
|
ZHAI Jun, HU Wei, WANG Quanfeng,et al. Degradation of carbamazepine and diclofenac via dissimilatory Mn(Ⅳ) reduction[J]. China Environmental Science,2021,41(4):1704-1710.
|
7 |
王毅博,冯民权,刘永红,等. 铁碳微电解技术在难治理废水中的研究进展[J]. 化工进展,2018,37(8):3188-3196.
|
|
WANG Yibo, FENG Minquan, LIU Yonghong,et al. Recent advances on iron-carbon micro-electrolysis technology for refractory wastewater[J]. Chemical Industry and Engineering Progress,2018,37(8):3188-3196.
|
8 |
陈科. 微电解-Fenton试剂法预处理生物难降解制药废水的实验研究[D]. 衡阳:南华大学,2019.
|
|
CHEN Ke. Experimental study on pretreatment of biodegrdable pharmaceutical wastewater by microelectrolysis-Fenton reagent[D]. Hengyang:University of South China,2019.
|
9 |
张佳扬,常明. 微电解+芬顿组合工艺对农药废水预处理效果分析[J]. 地下水,2022,44(4):86-87.
|
|
ZHANG Jiayang, CHANG Ming. Analysis of pretreatment effect of micro-electrolysis+Fenton process on pesticide wastewater[J]. Ground Water,2022,44(4):86-87.
|
10 |
崔晓光. 铁碳微电解+Fenton氧化联合工艺处理某制药废水的研究[D]. 青岛:青岛理工大学,2021.
|
|
CUI Xiaoguang. Treatment of pharmaceutical wastewater by iron carbon micro electrolysis+fentonoxidation process[D]. Qingdao:Qingdao Tehcnology University,2021.
|
11 |
余丽胜,焦纬洲,刘有智,等. 超声强化铁碳微电解-Fenton法降解硝基苯废水[J]. 化工学报,2017,68(1):297-304.
|
|
YU Lisheng, JIAO Weizhou, LIU Youzhi,et al. Degradation of nitrobenzene wastewater under Fe0/GAC-Fenton enhanced by ultrasound[J]. CIESC Journal,2017,68(1):297-304.
|
12 |
姚小文. 铁碳微电解-Fenton+两级A/O工艺处理抗生素废水的应用研究[D]. 南昌:南昌大学,2019.
|
|
YAO Xiaowen. Study and application of the treatment of pharmaceutical wastewater containing antibiotics by combination process of Fe/C microelectrolysis-Fenton+ two-stage A/O[D]. Nanchang:Nanchang University,2019.
|
13 |
陈志强,别旭峰,温沁雪. 铁铜微电解处理Cu2+-EDTA溶液及其机理研究[J]. 哈尔滨工业大学学报,2018,50(8):33-38.
|
|
CHEN Zhiqiang, BIE Xufeng, WEN Qinxue. Study on the treatment of Cu2+-EDTA solution by iron-copper microelectrolysis and its mechanism[J]. Journal of Harbin Institute of Technology,2018,50(8):33-38.
|
14 |
孙振华. 碳-铁-铜三元内电解体系的构建及其处理对硝基氯苯废水研究[D]. 上海:上海理工大学,2020.
|
|
SUN Zhenhua. Construction of carbon-iron-copper ternary micro-electrolysis system for the treatment of p-chloronitrobenzene wastewater[D]. Shanghai:University of Shanghai for Science & Technology,2020.
|
15 |
马嘉敏,宋伟,张小磊,等. 铁碳微电解降解磺胺甲 唑和卡马西平[J]. 环境化学,2019,38(5):985-990.
|
|
MA Jiamin, SONG Wei, ZHANG Xiaolei,et al. Degradation of sulfamethoxazole and carbamazepine by iron-carbon microelectrolysis[J]. Environmental Chemistry,2019,38(5):985-990.
|
16 |
|
|
WANG Xinyu. Degradation of tetracycline hydrochloride and sulfamethoxazole in water by photocatalytic activation of persulfate with ZnFe 2O 4-based materials[D]. Xi’an:Changan University, 2023. doi: 10.1016/j.chemosphere.2023.138546
|
17 |
王宇峰,俞言文,杨尚源,等. 铁碳微电解耦合芬顿高级氧化技术对高盐废水COD去除性能的影响研究[J]. 水处理技术,2017,43(6):65-67.
|
|
WANG Yufeng, YU Yanwen, YANG Shangyuan,et al. Effect of Fe-carbon micro-electrolysis coupled Fenton advanced oxidation technology on COD removal performance of high salt wastewater[J]. Water Treatment Technology,2017,43(6):65-67.
|
18 |
DONG Hongyu, WEI Guangfeng, YIN Daqiang,et al. Mechanistic insight into the generation of reactive oxygen species in sulfite activation with Fe(Ⅲ) for contaminants degradation[J]. Journal of Hazardous Materials, 2020, 384:121497. doi: 10.1016/j.jhazmat.2019.121497
|
19 |
程俊杰. Fe/Co氧化物修饰石墨毡阴极电Fenton法降解卡马西平和甲氧苄啶[D]. 长沙:湖南大学,2020.
|
|
CHENG Junjie. Degradation of carbamazepine and trimethoprim by the electrofenton method using Fe/Co oxide modified graphite felt cathode[D]. Changsha:Hunan University,2020.
|
20 |
DE AMORIM K P, ROMUALDO L L, ANDRADE L S. Electrochemical degradation of sulfamethoxazole and trimethoprim at boron-doped diamond electrode:Performance,kinetics and reaction pathway[J]. Separation and Purification Technology, 2013, 120:319-327. doi: 10.1016/j.seppur.2013.10.010
|