1 |
SHANNON M A, BOHN P W, ELIMELECH M,et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452:301-310. doi: 10.1038/nature06599
|
2 |
XING Wenle, LIANG Jie, TANG Wangwang,et al. Versatile applications of capacitive deionization(CDI)-based technologies[J]. Desalination, 2020, 482:114390. doi: 10.1016/j.desal.2020.114390
|
3 |
ELIMELECH M, PHILLIP W A. The future of seawater desalination:Energy,technology,and the environment[J]. Science, 2011, 333(6043):712-717. doi: 10.1126/science.1200488
|
4 |
TANG Wangwang, HE Di, ZHANG Changyong,et al. Comparison of Faradaic reactions in capacitive deionization(CDI) and membrane capacitive deionization(MCDI) water treatment processes[J]. Water Research, 2017, 120:229-237. doi: 10.1016/j.watres.2017.05.009
|
5 |
GAO Ming, CHEN Wenqing. Engineering strategies toward electrodes stabilization in capacitive deionization[J]. Coordination Chemistry Reviews, 2024, 505:215695. doi: 10.1016/j.ccr.2024.215695
|
6 |
ZHANG Changyong, HE Di, MA Jinxing,et al. Faradaic reactions in capacitive deionization(CDI)—problems and possibilities:A review[J]. Water Research, 2018, 128:314-330. doi: 10.1016/j.watres.2017.10.024
|
7 |
王苗. 电容去离子技术脱盐稳定性的机制研究和改进[D]. 上海:华东师范大学,2018.
|
|
WANG Miao. Mechanism research and improvement of desalting stability of capacitive deionization technology[D]. Shanghai:East China Normal University,2018.
|
8 |
LUO Jiayan, CUI Wangjun, HE Ping,et al. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte[J]. Nature Chemistry, 2010, 2:760-765. doi: 10.1038/nchem.763
|
9 |
LI Yuquan, LI Renyuan, WU Mengchun,et al. Faradaic rectification in electrochemical deionization and its influence on cyclic stability[J]. American Chemical Society Energy and Sustainbility Technology Engineering, 2024, 4: 956-965. doi: 10.1021/acsestengg.3c00517
|
10 |
LI Yuquan, DING Zibiao, LI Junfeng,et al. Highly efficient and stable desalination via novel hybrid capacitive deionization with redox-active polyimide cathode[J]. Desalination, 2019, 469:114098. doi: 10.1016/j.desal.2019.114098
|
11 |
DUAN Feng, DU Xuan, LI Yuping,et al. Desalination stability of capacitive deionization using ordered mesoporous carbon:Effect of oxygen-containing surface groups and pore properties[J]. Desalination, 2015, 376:17-24. doi: 10.1016/j.desal.2015.08.009
|
12 |
|
13 |
CEN Benqiang, YANG Rui, LI Kexun,et al. Covalently-bonded quaternized activated carbon for selective removal of NO 3 - in capacitive deionization[J]. Chemical Engineering Journal, 2021, 425:130573. doi: 10.1016/j.cej.2021.130573
|
14 |
TANG Wangwang, LIANG Jie, HE Di,et al. Various cell architectures of capacitive deionization:Recent advances and future trends[J]. Water Research, 2019, 150:225-251. doi: 10.1016/j.watres.2018.11.064
|
15 |
PORADA S, ZHAO R, VAN DER WAL A,et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8):1388-1442. doi: 10.1016/j.pmatsci.2013.03.005
|
16 |
GAO Ming, WANG Zhen, XIAO Weilong,et al. Capacitive deionization toward fluoride elimination:Selective advantage,state of the art,and future perspectives[J]. Desalination, 2024, 577:117392. doi: 10.1016/j.desal.2024.117392
|
17 |
ZENG Jinjue, WANG Tao, WANG Yue,et al. Large-surface-area porous monolith of graphene for electrochemical capacitive deionization[J]. Journal of Materials Chemistry A, 2023, 11(43):23430-23437. doi: 10.1039/d3ta04476a
|
18 |
喻舰,胡绅,张须媚,等. 提升电容去离子效能的电极材料功能化策略[J]. 工业水处理,2021,41(11):32-39.
|
|
YU Jian, HU Shen, ZHANG Xumei,et al. Functionalization strategy of electrode materials to improve the performance of capacitor deionization[J]. Industrial Water Treatment,2021,41(11):32-39.
|
19 |
YANG Feng, WANG Meng, ZHANG Daqi,et al. Chirality pure carbon nanotubes:Growth,sorting,and characterization[J]. Chemical Reviews, 2020, 120(5):2693-2758. doi: 10.1021/acs.chemrev.9b00835
|
20 |
WANG Chengyi, QIU Yangbo, WANG Chao,et al. Efficient groundwater defluorination over a wide concentration gradient through capacitive deionization with a three-layer structured membrane coating electrode[J]. Journal of Hazardous Materials, 2024, 462:132703. doi: 10.1016/j.jhazmat.2023.132703
|
21 |
GAO Ming, LI Jiaxin, WANG Zhen,et al. Hierarchical nickel cobaltite nanoneedle arrays armored flexible electrospinning carbon nanofibers membrane for electrochemical deionization[J]. Separation and Purification Technology, 2024, 328:125084. doi: 10.1016/j.seppur.2023.125084
|
22 |
董旭明,张胜寒,狄杰,等. 电吸附电极材料的研究进展[J]. 工业水处理,2022,42(1):48-55.
|
|
DONG Xuming, ZHANG Shenghan, DI Jie,et al. Research progress of electro-adsorption electrode materials[J]. Industrial Water Treatment,2022,42(1):48-55.
|
23 |
CHU Meile, TIAN Weijun, ZHAO Jing,et al. Dual-activated biochar with a multichannel structure enhanced electrosorption capacity of capacitive deionization for sulfate removal from mining wastewater[J]. Desalination, 2023, 556:116588. doi: 10.1016/j.desal.2023.116588
|
24 |
YU Fei, ZHANG Xiaochen, YANG Zhengqu,et al. Carbon aerogel electrode for excellent dephosphorization via flow capacitive deionization[J]. Desalination, 2022, 528:115614. doi: 10.1016/j.desal.2022.115614
|
25 |
HAN Bing, CHENG Gong, WANG Yunkai,et al. Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization[J]. Chemical Engineering Journal, 2019, 360:364-384. doi: 10.1016/j.cej.2018.11.236
|
26 |
ZHANG Yuanbin, HAN Yan, LUAN Binquan, et al. Metal-organic framework with space-partition pores by fluorinated anions for benchmark C 2H 2/CO 2 separation[J]. Journal of the American Chemical Society. 2024, 146: 17220-17229. doi: 10.1021/jacs.4c03442
|
27 |
ANDREI I, JULIUS J. O, SUN Chenyue, et al. Conceptual and practical aspects of metal-organic frameworks for solid-gas reactions[J]. Chemical Reviews. 2023, 123: 6197-6232. doi: 10.1021/acs.chemrev.2c00537
|
28 |
CAI Guorui, YAN Peng, ZHANG Liangliang,et al. Metal-organic framework-based hierarchically porous materials:Synthesis and applications[J]. Chemical Reviews, 2021, 121(20):12278-12326. doi: 10.1021/acs.chemrev.1c00243
|
29 |
SONG Xiang, CHEN Xing, CHEN Wenqing,et al. ZrO 2 nanoparticles embedded in biochar modified with layered double oxides nanosheets for phosphorus removal by capacitive deionization[J]. Separation and Purification Technology, 2024, 328:125117. doi: 10.1016/j.seppur.2023.125117
|
30 |
KUMAR S, ALDAQQA N M, ALHSEINAT E,et al. Electrode materials for desalination of water via capacitive deionization[J]. Angewandte Chemie International Edition, 2023, 62(35):e202302180. doi: 10.1002/ange.202302180
|
31 |
KANG Hu, ZHANG Dan, CHEN Xiuping,et al. Preparation of MOF/polypyrrole and flower-like MnO 2 electrodes by electrodeposition:High-performance materials for hybrid capacitive deionization defluorination[J]. Water Research, 2023, 229:119441. doi: 10.1016/j.watres.2022.119441
|
32 |
XIONG Jingjing, YE Wenkai, MU Liwen,et al. Separation of mono-/ divalent ions via controlled dynamic adsorption/desorption at polythiophene coated carbon surface with flow-electrode capacitive deionization[J]. Small, 2024, 20(34):2400288. doi: 10.1002/smll.202400288
|
33 |
LI Youlin, WANG Yue, CAI Yanmeng,et al. The exploration and comparison of adsorption mechanisms in MnO 2 with different crystal structures for capacitive deionization[J]. Desalination, 2024, 577:117387. doi: 10.1016/j.desal.2024.117387
|
34 |
SRIMUK P, SU Xiao, YOON J,et al. Charge-transfer materials for electrochemical water desalination,ion separation and the recovery of elements[J]. Nature Reviews Materials, 2020, 5:517-538. doi: 10.1038/s41578-020-0193-1
|
35 |
WANG Shiyong, PAN Zhihao, LI Zhuo,et al. CNT/copper hexacyanoferrate:A superior Faradic electrode for ammonium ion removal with stable performance and high capacity[J]. Chemical Engineering Journal, 2023, 466:143163. doi: 10.1016/j.cej.2023.143163
|
36 |
ZHAO Zhibo, ZHAO Jingxuan, SUN Yang,et al. In-situ construction of 3D hierarchical MoS 2/CoS 2@TiO 2 nanotube hybrid electrodes with superior capacitive performance toward water treatment[J]. Chemical Engineering Journal, 2022, 429:132582. doi: 10.1016/j.cej.2021.132582
|
37 |
SHAPIRA B, AVRAHAM E, AURBACH D. Side reactions in capacitive deionization(CDI) processes:The role of oxygen reduction[J]. Electrochimica Acta, 2016, 220:285-295. doi: 10.1016/j.electacta.2016.10.127
|
38 |
HE Di, WONG C E, TANG Wangwang,et al. Faradaic reactions in water desalination by batch-mode capacitive deionization[J]. Environmental Science & Technology Letters, 2016, 3(5):222-226. doi: 10.1021/acs.estlett.6b00124
|
39 |
杨群,徐子阳,张常勇. 电容去离子技术在选择性分离中的应用和挑战[J]. 能源环境保护,2024,38(1):38-51.
|
|
YANG Qun, XU Ziyang, ZHANG Changyong. Applications and challenges of capacitive deionization technology in selective separation[J]. Energy Environmental Protection,2024,38(1):38-51.
|
40 |
ZHANG Changyong, HE Di, MA Jinxing,et al. Comparison of Faradaic reactions in flow-through and flow-by capacitive deionization(CDI) systems[J]. Electrochimica Acta, 2019, 299:727-735. doi: 10.1016/j.electacta.2019.01.058
|
41 |
GAO Xin, OMOSEBI A, LANDON J,et al. Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption-desorption behavior[J]. Energy & Environmental Science, 2015, 8(3):897-909. doi: 10.1039/c4ee03172e
|
42 |
WU Tingting, WANG Gang, WANG Shiyong,et al. Highly stable hybrid capacitive deionization with a MnO 2 anode and a positively charged cathode[J]. Environmental Science & Technology Letters, 2018, 5(2):98-102. doi: 10.1021/acs.estlett.7b00540
|
43 |
NIE Pengfei, WANG Shiping, SHANG Xiaohong,et al. Self-supporting porous carbon nanofibers with opposite surface charges for high-performance inverted capacitive deionization[J]. Desalination, 2021, 520:115340. doi: 10.1016/j.desal.2021.115340
|
44 |
OMOSEBI A, GAO Xin, LANDON J,et al. Asymmetric electrode configuration for enhanced membrane capacitive deionization[J]. ACS Applied Materials & Interfaces, 2014, 6(15):12640-12649. doi: 10.1021/am5026209
|
45 |
KANG J S, KIM S, KANG J,et al. Surface electrochemistry of carbon electrodes and faradaic reactions in capacitive deionization[J]. Environmental Science & Technology, 2022, 56(17):12602-12612. doi: 10.1021/acs.est.2c03913
|
46 |
JEON S I, PARK H R, YEO J G,et al. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes[J]. Energy & Environmental Science, 2013, 6(5):1471-1475. doi: 10.1039/c3ee24443a
|
47 |
NATIV P, BADASH Y, GENDEL Y. New insights into the mechanism of flow-electrode capacitive deionization[J]. Electrochemistry Communications, 2017, 76:24-28. doi: 10.1016/j.elecom.2017.01.008
|
48 |
HA Y, LEE H, YOON H,et al. Enhanced salt removal performance of flow electrode capacitive deionization with high cell operational potential[J]. Separation and Purification Technology, 2021, 254:117500. doi: 10.1016/j.seppur.2020.117500
|
49 |
CHEN Zeqiu, XU Xingtao, LIU Yong,et al. Ultra-durable and highly-efficient hybrid capacitive deionization by MXene confined MoS 2 heterostructure[J]. Desalination, 2022, 528:115616. doi: 10.1016/j.desal.2022.115616
|
50 |
LIU Xiaohong, XU Xingtao, XUAN Xiaoxu,et al. Unlocking enhanced capacitive deionization of NaTi 2(PO 4) 3/carbon materials by the yolk-shell design[J]. Journal of the American Chemical Society, 2023, 145(16):9242-9253. doi: 10.1021/jacs.3c01755
|
51 |
GUO Xin, ZHANG Hao, CHEN Ke,et al. Ultrathin nitrogen-doped carbon Ti 3C 2T x -TiN heterostructure derived from ZIF-8 nanoparticles sandwiched MXene for high-performance capacitive deionization[J]. Journal of Colloid and Interface Science, 2024, 661:358-365. doi: 10.1016/j.jcis.2024.01.144
|
52 |
ZHANG Le, WANG Yue, CAI Yanmeng,et al. Heterostructure of NiCoAl-layered double hydroxide nanosheet arrays assembled on MXene coupled with CNT as conductive bridge for enhanced capacitive deionization[J]. Chemical Engineering Journal, 2023, 478:147270. doi: 10.1016/j.cej.2023.147270
|
53 |
SRIMUK P, ZEIGER M, JÄCKEL N,et al. Enhanced performance stability of carbon/titania hybrid electrodes during capacitive deionization of oxygen saturated saline water[J]. Electrochimica Acta, 2017, 224:314-328. doi: 10.1016/j.electacta.2016.12.060
|
54 |
TAHA M M, ANWAR S E, RAMADAN M,et al. Controlled fabrication of mesoporous electrodes with unprecedented stability for water capacitive deionization under harsh conditions in large size cells[J]. Desalination, 2021, 511:115099. doi: 10.1016/j.desal.2021.115099
|
55 |
NTAKIRUTIMANA S, TAN Wei, ANDERSON M A,et al. Editors’ choice—review—activated carbon electrode design:Engineering tradeoff with respect to capacitive deionization performance[J]. Journal of the Electrochemical Society, 2020, 167(14):143501. doi: 10.1149/1945-7111/abbfd7
|
56 |
YANG Juan, ZOU Linda, CHOUDHURY N R. Ion-selective carbon nanotube electrodes in capacitive deionisation[J]. Electrochimica Acta, 2013, 91:11-19. doi: 10.1016/j.electacta.2012.12.089
|
57 |
GAO X, OMOSEBI A, HOLUBOWITCH N,et al. Polymer-coated composite anodes for efficient and stable capacitive deionization[J]. Desalination, 2016, 399:16-20. doi: 10.1016/j.desal.2016.08.006
|
58 |
JUNG Y, YANG Y, KIM T,et al. Enhanced electrochemical stability of a zwitterionic-polymer-functionalized electrode for capacitive deionization[J]. ACS Applied Materials & Interfaces, 2018, 10(7):6207-6217. doi: 10.1021/acsami.7b14609
|
59 |
GONG Siqi, LIU Huibin, ZHAO Fan,et al. Vertically aligned bismuthene nanosheets on MXene for high-performance capacitive deionization[J]. ACS Nano, 2023, 17(5):4843-4853. doi: 10.1021/acsnano.2c11430
|
60 |
LU Ding, CAI Wangfeng, WANG Yan. Optimization of the voltage window for long-term capacitive deionization stability[J]. Desalination, 2017, 424:53-61. doi: 10.1016/j.desal.2017.09.026
|
61 |
COHEN I, AVRAHAM E, BOUHADANA Y,et al. The effect of the flow-regime,reversal of polarization,and oxygen on the long term stability in capacitive de-ionization processes[J]. Electrochimica Acta, 2015, 153:106-114. doi: 10.1016/j.electacta.2014.12.007
|
62 |
COHEN I, AVRAHAM E, BOUHADANA Y,et al. Long term stability of capacitive de-ionization processes for water desalination:The challenge of positive electrodes corrosion[J]. Electrochimica Acta, 2013, 106:91-100. doi: 10.1016/j.electacta.2013.05.029
|
63 |
GAO X, OMOSEBI A, HOLUBOWITCH N,et al. Capacitive deionization using alternating polarization:Effect of surface charge on salt removal[J]. Electrochimica Acta, 2017, 233:249-255. doi: 10.1016/j.electacta.2017.03.021
|
64 |
ZHANG Helan, LIANG Peng, BIAN Yanhong,et al. Enhancement of salt removal in capacitive deionization cell through periodically alternated oxidation of electrodes[J]. Separation and Purification Technology, 2018, 194:451-456. doi: 10.1016/j.seppur.2017.11.048
|
65 |
ALGURAINY Y, CALL D F. Improving long-term anode stability in capacitive deionization using asymmetric electrode mass ratios[J]. ACS ES&T Engineering, 2022, 2(1):129-139. doi: 10.1021/acsestengg.1c00348
|
66 |
ZORNITTA R L, SRIMUK P, LEE Juhan,et al. Charge and potential balancing for optimized capacitive deionization using lignin-derived,low-cost activated carbon electrodes[J]. ChemSusChem, 2018, 11(13):2101-2113. doi: 10.1002/cssc.201800689
|
67 |
QU Yatian, CAMPBELL P G, GU Lei,et al. Energy consumption analysis of constant voltage and constant current operations in capacitive deionization[J]. Desalination, 2016, 400:18-24. doi: 10.1016/j.desal.2016.09.014
|
68 |
ZHAO R, SATPRADIT O, RIJNAARTS H H M,et al. Optimization of salt adsorption rate in membrane capacitive deionization[J]. Water Research, 2013, 47(5):1941-1952. doi: 10.1016/j.watres.2013.01.025
|
69 |
SON M, YOON N, JEONG K,et al. Deep learning for pH prediction in water desalination using membrane capacitive deionization[J]. Desalination, 2021, 516:115233. doi: 10.1016/j.desal.2021.115233
|
70 |
HOLUBOWITCH N, OMOSEBI A, GAO Xin,et al. Quasi-steady-state polarization reveals the interplay of capacitive and faradaic processes in capacitive deionization[J]. ChemElectroChem, 2017, 4(9):2404-2413. doi: 10.1002/celc.201700082
|