1 |
MARTÍNEZ-HUITLE C A, RODRIGO M A, SIRÉS I,et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants:A critical review[J]. Chemical Reviews, 2015, 115(24):13362-13407. doi: 10.1021/acs.chemrev.5b00361
|
2 |
PARK H, MAMEDA N, CHOO K H. Catalytic metal oxide nanopowder composite Ti mesh for electrochemical oxidation of 1,4-dioxane and dyes[J]. Chemical Engineering Journal, 2018, 345:233-241. doi: 10.1016/j.cej.2018.03.158
|
3 |
|
|
XIAO Yutang, CHEN Yuanmei, WANG Guanping,et al. Advances in electrocatalytic treatment of refractory wastewater[J]. Industrial Water Treatment, 2020, 40(6):1-6. doi: 10.11894/iwt.2019-0672
|
4 |
GHAZOUANI M, AKROUT H, BOUSSELMI L. Nitrate and carbon matter removals from real effluents using Si/BDD electrode[J]. Environmental Science and Pollution Research, 2017, 24(11):9895-9906. doi: 10.1007/s11356-016-7563-7
|
5 |
|
|
XU Hao, QIAO Dan, XU Zhicheng,et al. Application of electro-catalytic oxidation technology in organic wastewater treatment[J]. Industrial Water Treatment, 2021, 41(3):1-9. doi: 10.11894/iwt.2020-0371
|
6 |
HE Zhiqiao, ZHOU Jiajie, HUANG Xinwen,et al. Enhancement of the activity and stability of PbO 2Electrodes by modifying with polydimethylsiloxane[J]. Journal of the Electrochemical Society, 2018, 165(11):H717-H724. doi: 10.1149/2.0791811jes
|
7 |
CHAPLIN B P. Critical review of electrochemical advanced oxidation processes for water treatment applications[J]. Environmental Science. Processes & Impacts, 2014, 16(6):1182-1203. doi: 10.1039/c3em00679d
|
8 |
SANTOS M O, DE O S SANTOS G, MATTEDI S,et al. Influence of the calcination temperature and ionic liquid used during synthesis procedure on the physical and electrochemical properties of Ti/(RuO 2) 0.8-(Sb 2O 4) 0.2 anodes[J]. Journal of Electroanalytical Chemistry, 2018, 829:116-128. doi: 10.1016/j.jelechem.2018.10.013
|
9 |
|
|
XU Mingyue, CHEN Song, ZHOU Jianren,et al. Application status of ruthenium and iridium anodes in environmental electrochemistry[J]. Precious Metals, 2022, 43(S1):128-138. doi: 10.3969/j.issn.1004-0676.2022.z1.022
|
10 |
HONG S, LEE T K, HOFFMANN M R,et al. Enhanced chlorine evolution from dimensionally stable anode by heterojunction with Ti and Bi based mixed metal oxide layers prepared from nanoparticle slurry[J]. Journal of Catalysis, 2020, 389:1-8. doi: 10.1016/j.jcat.2020.04.009
|
11 |
姬颖杰,竺培显,周生刚,等. Sn的掺入对Ru系涂层钛电极性能的影响研究[J]. 热加工工艺,2014,43(6):143-145.
|
|
JI Yingjie, ZHU Peixian, ZHOU Shenggang,et al. Study on effect of Sn-doped on performance of ruthenium titanium coating electrode[J]. Hot Working Technology,2014,43(6):143-145.
|
12 |
ZENG Xinping, ZHANG Min, WANG Xiaodan,et al. Effects of Sn content on Ti/RuO 2-SnO 2-TiO 2 anodes used in the generation of electrolyzed oxidizing water[J]. Journal of Electroanalytical Chemistry, 2012, 677/678/679/680:133-138. doi: 10.1016/j.jelechem.2012.05.008
|
13 |
|
|
ZHAO Xiaomei, HE Ping, PAN Jing,et al. Research on the electro-catalysis degradation of HMX explosive wastewater by the Ti/TiO 2-SnO 2-RuO 2 electrode[J]. Industrial Water Treatment, 2014, 34(4):26-30. doi: 10.3969/j.issn.1005-829X.2014.04.007
|
14 |
梁琳琳,张达光,慕晓炜,等. Sb-SnO2颗粒对钛基体PbO2电极的掺杂改性[J]. 电镀与涂饰,2020,39(21):1495-1500.
|
|
LIANG Linlin, ZHANG Daguang, MU Xiaowei,et al. Modification of PbO2 electrode on titanium by doping Sb-SnO2 particles[J]. Electroplating & Finishing,2020,39(21):1495-1500.
|
15 |
肖涵松,孙佳晨,陈步明. 二氧化铅复合阳极的研究进展[J]. 材料保护,2019,52(6):116-126.
|
|
XIAO Hansong, SUN Jiachen, CHEN Buming. Research progress of lead dioxide composite anode[J]. Materials Protection,2019,52(6):116-126.
|
16 |
|
|
FENG Jianjun, LI Xueming, SU Deshui,et al. Pretreatment of toluene diamine wastewater using PbO 2 composite electrode[J]. Environmental Protection of Chemical Industry, 2017, 37(6):673-678. doi: 10.3969/j.issn.1006-1878.2017.06.013
|
17 |
BI Qiang, ZHANG Zekun, SUN Yifei,et al. Preparation and performance of highly active and long-life mesopore Ti/SnO 2-Sb electrodes for electrochemical degradation of phenol[J]. Journal of Alloys and Compounds, 2021, 889:161657. doi: 10.1016/j.jallcom.2021.161657
|
18 |
ZHOU Jiajie, HUANG Senhui, HE Zhiqiao,et al. Enhanced activity and stability of PbO 2 electrodes by modification with octadecyl phosphonic acid[J]. Journal of the Electrochemical Society, 2021, 168(11):116503. doi: 10.1149/1945-7111/ac3275
|
19 |
|
|
LI Xiaoliang, XU Hao, YAN Wei. Studies on the preparation of high efficient Ti/PbO 2 electrode and degradation of acid red G[J]. China Environmental Science, 2017, 37(7):2591-2598. doi: 10.3969/j.issn.1000-6923.2017.07.022
|
20 |
|
|
CHI Mingchao, YUN Xiaojing, LUO Bin,et al. Research progress on preparation and application of DSA electrode[J]. Applied Chemical Industry, 2021, 50(2):498-503. doi: 10.3969/j.issn.1671-3206.2021.02.048
|
21 |
徐浩,延卫,游莉. 不同酸处理对钛基体性能的影响[J]. 稀有金属材料与工程,2011,40(9):1550-1554.
|
|
XU Hao, YAN Wei, YOU Li. Effects of various acids treatment on the properties of titanium substrate[J]. Rare Metal Materials and Engineering,2011,40(9):1550-1554.
|
22 |
|
|
LI Xiaoliang, XU Hao, YAN Wei,et al. Research progress in the preparation,modification and aplication of Ti-based SnO 2 electrode[J]. Plating & Finishing, 2016, 38(5):16-22. doi: 10.3969/j.issn.1001-3849.2016.05.004
|
23 |
POULADVAND I, ASL S K, HOSEINI M G,et al. Characterization and electrochemical behavior of Ti/TiO 2-RuO 2-IrO 2-SnO 2 anodes prepared by Sol-gel process[J]. Journal of Sol-Gel Science and Technology, 2019, 89(2):553-561. doi: 10.1007/s10971-018-4887-4
|
24 |
王雅琼,童宏扬,许文林. SnO2+Sb2O3中间层的制备条件对Ti/SnO2+Sb2O3/PbO2阳极性能的影响[J]. 应用化学,2004,21(5):437-441.
|
|
WANG Yaqiong, TONG Hongyang, XU Wenlin. Effect of SnO2+Sb2O3 intermediate layer on the performance of Ti/SnO2+Sb2O3/PbO2 anodes[J]. Chinese Journal of Applied Chemistry,2004,21(5):437-441.
|
25 |
|
|
TAN Xiangdong, HAN Peiwei, JIN Chengyu,et al. Preparation of PbO 2 electrode and electrocatalytic oxidation degradation of m-cresol in water[J]. Environmental Protection of Chemical Industry, 2020, 40(3):290-296. doi: 10.3969/j.issn.1006-1878.2020.03.011
|
26 |
AN Hao, LI Qin, TAO Dejing,et al. The synthesis and characterization of Ti/SnO 2-Sb 2O 3/PbO 2 electrodes:The influence of morphology caused by different electrochemical deposition time[J]. Applied Surface Science, 2011, 258(1):218-224. doi: 10.1016/j.apsusc.2011.08.034
|
27 |
|
|
LI Xiaoliang, WANG Xue, QIU Xiaopeng,et al. Preparation of high active anode and its toxicity in amoxicillin degradation[J]. China Environmental Science, 2021, 41(2):727-734. doi: 10.3969/j.issn.1000-6923.2021.02.027
|
28 |
GUO Hua, XU Zhicheng, QIAO Dan,et al. Fabrication and characterization of porous titanium-based PbO 2 electrode through the pulse electrodeposition method:Deposition condition optimization by orthogonal experiment[J]. Chemosphere, 2020, 261:128157. doi: 10.1016/j.chemosphere.2020.128157
|
29 |
HE Zhen, HAYAT M D, HUANG Saifang,et al. PbO 2 electrodes prepared by pulse reverse electrodeposition and their application in benzoic acid degradation[J]. Journal of Electroanalytical Chemistry, 2018, 812:74-81. doi: 10.1016/j.jelechem.2018.01.044
|
30 |
DUAN Ying, CHEN Ye, WEN Qing,et al. Fabrication of dense spherical and rhombic Ti/Sb-SnO 2 electrodes with enhanced electrochemical activity by colloidal electrodeposition[J]. Journal of Electroanalytical Chemistry, 2016, 768:81-88. doi: 10.1016/j.jelechem.2016.02.044
|
31 |
CHAI Shouning, ZHAO Guohua, WANG Yujing,et al. Fabrication and enhanced electrocatalytic activity of 3D highly ordered macroporous PbO 2 electrode for recalcitrant pollutant incineration[J]. Applied Catalysis B:Environmental, 2014, 147:275-286. doi: 10.1016/j.apcatb.2013.08.046
|
32 |
CHEN Yong, TU Yong, ZHANG Yaohui,et al. Fabrication and enhanced electrocatalytic activity of TiO 2 nanotubes based three-dimensionally macroporous SnO 2 with mesoporous walls[J]. Chemical Engineering Journal, 2017, 311:100-110. doi: 10.1016/j.cej.2016.11.071
|
33 |
YAO Yingwu, CHEN Xin, YU Naichuan,et al. Preparation and electrocatalytic performance of three-dimensional porous structure PbO 2 electrodes using oxygen bubble as dynamic templates[J]. Journal of the Electrochemical Society, 2017, 164(4):E48-E52. doi: 10.1149/2.0711704jes
|
34 |
PLOWMAN B J, JONES L A, BHARGAVA S K. Building with bubbles:The formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition[J]. Chemical Communications(Cambridge,England), 2015, 51(21):4331-4346. doi: 10.1039/c4cc06638c
|
35 |
COMISSO N, CATTARIN S, GUERRIERO P,et al. Oxygen bubble-templated anodic deposition of porous PbO 2 [J]. Electrochemistry Communications, 2015, 60:144-147. doi: 10.1016/j.elecom.2015.08.026
|
36 |
COMISSO N, CATTARIN S, GUERRIERO P,et al. Electrochemical behaviour of porous PbO 2 layers prepared by oxygen bubble templated anodic deposition[J]. Electrochimica Acta, 2016, 200:259-267. doi: 10.1016/j.electacta.2016.03.184
|
37 |
YOU Hongjun, CHEN Zhen, YU Qiang,et al. Preparation of a three-dimensional porous PbO 2-CNTs composite electrode and study of the degradation behavior of p-nitrophenol[J]. Separation and Purification Technology, 2021, 276:119406. doi: 10.1016/j.seppur.2021.119406
|
38 |
XUE Juanqin, MA Siwen, BI Qiang,et al. Comparative study on the effects of different structural Ti substrates on the properties of SnO 2 electrodes[J]. Journal of Alloys and Compounds, 2019, 773:1040-1047. doi: 10.1016/j.jallcom.2018.09.227
|
39 |
ZHAO Wei, XING Juntao, CHEN Donghui,et al. Study on the performance of an improved Ti/SnO 2-Sb 2O 3/PbO 2 based on porous titanium substrate compared with planar titanium substrate[J]. RSC Advances, 2015, 5(34):26530-26539. doi: 10.1039/c4ra13492c
|
40 |
ZHANG Yuanyuan, ZHANG Cuiping, SHAO Dan,et al. Magnetically assembled electrodes based on Pt,RuO 2-IrO 2-TiO 2 and Sb-SnO 2 for electrochemical oxidation of wastewater featured by fluctuant Cl - concentration[J]. Journal of Hazardous Materials, 2022, 421:126803. doi: 10.1016/j.jhazmat.2021.126803
|
41 |
SHAO Dan, YAN Wei, LI Xiaoliang,et al. Fe 3O 4/Sb-SnO 2 granules loaded on Ti/Sb-SnO 2 electrode shell by magnetic force:Good recyclability and high electro-oxidation performance[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(8):1777-1785. doi: 10.1021/acssuschemeng.5b00321
|
42 |
SHAO Dan, ZHANG Xinlei, Wei LYU,et al. Magnetic assembled anode combining PbO 2 and Sb-SnO 2 organically as an effective and sustainable electrocatalyst for wastewater treatment with adjustable attribution and construction[J]. ACS Applied Materials & Interfaces, 2018, 10(51):44385-44395. doi: 10.1021/acsami.8b14592
|
43 |
MAMEDA N, PARK H, SHAH S S ALI,et al. Highly robust and efficient Ti-based Sb-SnO 2 anode with a mixed carbon and nitrogen interlayer for electrochemical 1,4-dioxane removal from water[J]. Chemical Engineering Journal, 2020, 393:124794. doi: 10.1016/j.cej.2020.124794
|
44 |
黄琳琳. 电催化氧化用于废水深度处理实验研究[D]. 哈尔滨:哈尔滨工业大学,2012.
|
|
HUANG Linlin. Experimental study on electrocatalytic oxidation for advanced treatment of wastewater[D]. Harbin:Harbin Institute of Technology,2012.
|
45 |
段小月,刘伟,陆丽,等. PbO2/TiO2-NT/Ti电极的制备及电催化性能研究[J]. 环境科学学报,2016,36(9):3237-3242.
|
|
DUAN Xiaoyue, LIU Wei, LU Li,et al. Preparation and electro-catalytic properties of PbO2/TiO2-NT/Ti electrode[J]. Acta Scientiae Circumstantiae,2016,36(9):3237-3242.
|
46 |
ZHAO Guohua, CUI Xiao, LIU Meichuan,et al. Electrochemical degradation of refractory pollutant using a novel microstructured TiO 2 nanotubes/Sb-doped SnO 2 electrode[J]. Environmental Science & Technology, 2009, 43(5):1480-1486. doi: 10.1021/es802155p
|
47 |
SULEJ A M, POLKOWSKA Z, NAMIEŚNIK J. Contamination of runoff water at Gdańsk Airport(Poland) by polycyclic aromatic hydrocarbons(PAHs) and polychlorinated biphenyls(PCBs)[J]. Sensors(Basel,Switzerland), 2011, 11(12):11901-11920. doi: 10.3390/s111211901
|
48 |
WU Jia, ZHU Kai, XU Hao,et al. Electrochemical oxidation of rhodamine B by PbO 2/Sb-SnO 2/TiO 2 nanotube arrays electrode[J]. Chinese Journal of Catalysis, 2019, 40(6):917-927. doi: 10.1016/s1872-2067(19)63342-5
|
49 |
YANG Chao, SHANG Shanshan, LI Xiaoyan. Fabrication of sulfur-doped TiO 2 nanotube array as a conductive interlayer of PbO 2 anode for efficient electrochemical oxidation of organic pollutants[J]. Separation and Purification Technology, 2021, 258:118035. doi: 10.1016/j.seppur.2020.118035
|
50 |
LI Lianghao, HUANG Zhuangpeng, FAN Xiaoxiao,et al. Preparation and Characterization of a Pd modified Ti/SnO 2-Sb anode and its electrochemical degradation of Ni-EDTA[J]. Electrochimica Acta, 2017, 231:354-362. doi: 10.1016/j.electacta.2017.02.072
|
51 |
XIA Yijing, BIAN Xinze, XIA Yi,et al. Effect of indium doping on the PbO 2 electrode for the enhanced electrochemical oxidation of aspirin:An electrode comparative study[J]. Separation and Purification Technology, 2020, 237:116321. doi: 10.1016/j.seppur.2019.116321
|
52 |
ZHANG Junjie, WEI Xuefeng, MIAO Juan,et al. Enhanced performance of an Al-doped SnO 2 anode for the electrocatalytic oxidation of organic pollutants in water[J]. Materials Today Communications, 2020, 24:101164. doi: 10.1016/j.mtcomm.2020.101164
|
53 |
李晓良,路思佳,郑兴,等. 活性碳纤维修饰PbO2电极的制备及其对阿莫西林的降解解毒研究[J]. 环境科学学报,2021,41(10):3985-3992.
|
|
LI Xiaoliang, LU Sijia, ZHENG Xing,et al. Fabrication of PbO2 electrode modified by activated carbon fiber and its degradation and detoxification of amoxicillin[J]. Acta Scientiae Circumstantiae,2021,41(10):3985-3992.
|
54 |
吴梦怡,龙昕,高丛浩,等. 碳纳米管掺杂PbO2复合电极的制备及其催化氧化双酚A[J]. 环境工程,2021,39(4):50-56.
|
|
WU Mengyi, LONG Xin, GAO Conghao,et al. Fabrication of carbon nanotube-doped pbo2 composite electrode and mechanism of catalytic oxidation of bisphenol A[J]. Environmental Engineering,2021,39(4):50-56.
|
55 |
符远航,刘安迪,黄纬斌,等. 负载多壁碳纳米管的多孔Ti/SnO2-Sb-Ni电极电催化氧化双酚A[J]. 环境科学,2022,43(5):2640-2649.
|
|
FU Yuanhang, LIU Andi, HUANG Weibin,et al. Electrocatalytic oxidation of bisphenol A by porous Ti/SnO2-Sb-Ni electrode loaded with multi-wall carbon nanotubes[J]. Environmental Science,2022,43(5):2640-2649.
|
56 |
XU Zesheng, LIU Han, NIU Junfeng,et al. Hydroxyl multi-walled carbon nanotube-modified nanocrystalline PbO 2 anode for removal of pyridine from wastewater[J]. Journal of Hazardous Materials, 2017, 327:144-152. doi: 10.1016/j.jhazmat.2016.12.056
|
57 |
CHEN Yongyang, LI Fulin, DONG Xiaochun,et al. Construction of rGO@Ti/SnO 2-Sb composite electrode for electrochemical degradation of fluoroquinolone antibiotic[J]. Journal of Alloys and Compounds, 2021, 869:159258. doi: 10.1016/j.jallcom.2021.159258
|
58 |
张博文,汤莎莎,宋爽. 碳纳米点掺杂二氧化铅电极电催化降解2,4-D[J]. 水处理技术,2018,44(7):21-25.
|
|
ZHANG Bowen, TANG Shasha, SONG Shuang. Electrochemical degradation of 2,4-D with carbon nanodots doped lead dioxide electrode[J]. Technology of Water Treatment,2018,44(7):21-25.
|
59 |
|
|
LU Sijia, ZHENG Xing, LI Xiaoliang. Chemically reduced graphene oxide modified PbO 2 electrodes and the degradation of acidic red G[J]. China Environmental Science, 2021, 41(8):3635-3641. doi: 10.3969/j.issn.1000-6923.2021.08.019
|
60 |
BERENGUER R, QUIJADA C, MORALLÓN E. Electrochemical characterization of SnO 2 electrodes doped with Ru and Pt[J]. Electrochimica Acta, 2009, 54(22):5230-5238. doi: 10.1016/j.electacta.2009.04.016
|
61 |
FU Xiaolu, HAN Yanhe, XU Han,et al. Electrochemical study of a novel high-efficiency PbO 2 anode based on a cerium-graphene oxide co-doping strategy:Electrodeposition mechanism,parameter optimization,and degradation pathways[J]. Journal of Hazardous Materials, 2022, 422:126890. doi: 10.1016/j.jhazmat.2021.126890
|
62 |
SONG Yanfang, LIU Jiaman, GE Fang,et al. Influence of Nd-doping on the degradation performance of Ti/Sb-SnO 2 electrode[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105409. doi: 10.1016/j.jece.2021.105409
|
63 |
XUE Juanqin, MA Siwen, BI Qiang,et al. Revealing the modification mechanism of La-doped Ti/SnO 2 electrodes related to the microelectronic structure by first-principles calculations[J]. Journal of Alloys and Compounds, 2018, 747:423-430. doi: 10.1016/j.jallcom.2018.03.005
|
64 |
廖蓉,王中琪,汪迎春,等. 改性Ti/SnO2-Sb电极催化降解1,4-二氯苯废水试验研究[J]. 环境科学学报,2016,36(3):850-856.
|
|
LIAO Rong, WANG Zhongqi, WANG Yingchun,et al. The modification of modified Ti/SnO2-Sb electrode for electrochemical catalytic degradation of 1,4-dichlorobenzene[J]. Acta Scientiae Circumstantiae,2016,36(3):850-856.
|
65 |
XIA Yijing, DAI Qizhou. Electrochemical degradation of methyldopa on a Fe doped PbO 2Electrode:Electrode characterization,reaction kinetics and energy demands[J]. Journal of the Electrochemical Society, 2017, 164(13):H877-H884. doi: 10.1149/2.0861713jes
|
66 |
YANG S Y, CHOO Y S, KIM S,et al. Boosting the electrocatalytic activities of SnO 2 electrodes for remediation of aqueous pollutants by doping with various metals[J]. Applied Catalysis B:Environmental, 2012, 111/112:317-325. doi: 10.1016/j.apcatb.2011.10.014
|
67 |
CAO Jianglin, ZHAO Haiyan, CAO Fahe,et al. Electrocatalytic degradation of 4-chlorophenol on F-doped PbO 2 anodes[J]. Electrochimica Acta, 2009, 54(9):2595-2602. doi: 10.1016/j.electacta.2008.10.049
|
68 |
YAO Yingwu, JIAO Limiao, YU Naichuan,et al. Comparison of electrocatalytic characterization of Ti/Sb-SnO 2 and Ti/F-PbO 2 electrodes[J]. Journal of Solid State Electrochemistry, 2016, 20(2):353-359. doi: 10.1007/s10008-015-3053-y
|
69 |
YAO Yingwu, HUANG Chunjiao, YANG Yang,et al. Electrochemical removal of thiamethoxam using three-dimensional porous PbO 2-CeO 2 composite electrode:Electrode characterization,operational parameters optimization and degradation pathways[J]. Chemical Engineering Journal, 2018, 350:960-970. doi: 10.1016/j.cej.2018.06.036
|
70 |
YAO Yingwu, ZHAO Manman, ZHAO Chunmei,et al. Preparation and properties of PbO 2-ZrO 2 nanocomposite electrodes by pulse electrodeposition[J]. Electrochimica Acta, 2014, 117:453-459. doi: 10.1016/j.electacta.2013.11.150
|