1 |
商仲彬,吴锐,赵艳萍,等. 广州水厂感潮水源地水体中重金属季节性分布特征与健康风险评价[J]. 安全与环境工程,2020,27(4):102-109.
|
|
SHANG Zhongbin, WU Rui, ZHAO Yanping,et al. Seasonal distribution characteristic and health risk assessment of heavy metals in tidal drinking water sources of Guangzhou waterworks[J]. Safety and Environmental Engineering,2020,27(4):102-109.
|
2 |
DU Haiyan, LIU Shaoze, YOU Feng,et al. Flexible free-standing polyaniline/poly(vinyl alcohol) composite electrode with good capacitance performance and shape memory behavior[J]. Progress in Natural Science:Materials International, 2021, 31(4):557-566. doi: 10.1016/j.pnsc.2021.06.011
|
3 |
陈红菊,王慧,孔维祎,等. 氨氮降解菌的筛选、鉴定与复合菌水质调控效果研究[J]. 水生生物学报, 2019, 43(4):875-883. doi: 10.7541/2019.104
|
|
CHEN Hongju, WANG Hui, KONG Weiyi,et al. Screening and identirication of degreading ammonia-nitrogen bacteria and its effect on water quality control[J]. Acta Hydrobiologica Sinica, 2019, 43(4):875-883. doi: 10.7541/2019.104
|
4 |
|
|
JIANG Shuhui, HOU Haozheng, LIANG Zilu,et al. Preparation of g-C 3N 4/MoS 2/Fe 2O 3 composite photocatalyst and its photocatalytic reduction of Cr(Ⅵ)[J]. Science & Technology in Chemical Industry, 2021, 29(5):19-24. doi: 10.3969/j.issn.1008-0511.2021.05.004
|
5 |
熊威,葛建华,陈羽冲,等. g-C3N4光催化还原Cr(Ⅵ)研究进展[J]. 广州化工,2018,46(1):12-14.
|
|
XIONG Wei, GE Jianhua, CHEN Yuchong,et al. Research progress on photocatalytic reduction of Cr(Ⅵ) by using g-C3N4 [J]. Guangzhou Chemical Industry,2018,46(1):12-14.
|
6 |
陈慕华,魏尚,李京润,等. 金属有机骨架材料ZIF‒67对四环素选择性吸附研究[J]. 工业水处理,2022,42(3):76-81.
|
|
CHEN Muhua, WEI Shang, LI Jingrun,et al. Selective adsorption of tetracycline using metal organic framework ZIF-67[J]. Industrial Water Treatment,2022,42(3):76-81.
|
7 |
JANMOHAMMADI M, BAGHDADI M, ADYEL T M,et al. Waste plastic filter modified with polyaniline and polypyrrole nanoparticles for hexavalent chromium removal[J]. Science of the Total Environment, 2021, 752:141850. doi: 10.1016/j.scitotenv.2020.141850
|
8 |
BELLAMKONDA S, RANGA RAO G .Nanojunction-mediated visible light photocatalytic enhancement in heterostructured ternary BiOCl/CdS/g-C 3N 4 nanocomposites[J]. Catalysis Today, 2019, 321/322:18-25. doi: 10.1016/j.cattod.2018.03.025
|
9 |
ZHAO Xingqing, TANG Ding, JIANG Yi .Effect of the reduction-mineralization synergistic mechanism of Bacillus on the remediation of hexavalent chromium[J]. Science of the Total Environment, 2021, 777:146190. doi: 10.1016/j.scitotenv.2021.146190
|
10 |
HAN Changcun, SU Pengfei, TAN Baohua,et al. Defective ultra-thin two-dimensional g-C 3N 4 photocatalyst for enhanced photocatalytic H 2 evolution activity[J]. Journal of Colloid and Interface Science, 2021, 581:159-166. doi: 10.1016/j.jcis.2020.07.119
|
11 |
LI Tingting, ZHAO Leihong, HE Yiming,et al. Synthesis of g-C 3N 4/SmVO 4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation[J]. Applied Catalysis B:Environmental, 2013, 129:255-263. doi: 10.1016/j.apcatb.2012.09.031
|
12 |
王衍坤,方元行,王心晨.氮化碳光催化分解水的研究进展[J]. 福州大学学报(自然科学版),2021,49(5):577-587.
|
|
WANG Yankun, FANG Yuanxing, WANG Xinchen .Progresses of carbon nitride polymers for water splitting[J]. Journal of Fuzhou University(Natural Science Edition),2021,49(5):577-587.
|
13 |
QIU Pengyuan, LIANG Zhangqian, LIU Xiang, et al. Synthesis of salicylic acid-modified graphite carbon nitride for enhancing photocatalytic nitrogen fixation[J]. Journal of Colloid and Interface Science, 2020, 571:318-325. doi: 10.1016/j.jcis.2020.03.062
|
14 |
WANG Chongchen, YI Xiaohong, WANG Peng.Powerful combination of MOFs and C 3N 4 for enhanced photocatalytic performance[J]. Applied Catalysis B:Environmental, 2019, 247:24-48. doi: 10.1016/j.apcatb.2019.01.091
|
15 |
ZHANG Xin, YANG Weiwei, GAO Manyi,et al. Room-temperature solid phase surface engineering of BiOI sheets stacking g-C 3N 4 boosts photocatalytic reduction of Cr(Ⅵ)[J]. Green Energy & Environment, 2022, 7(1):66-74. doi: 10.1016/j.gee.2020.07.024
|
16 |
LIANG Juan, JING Chengjun, WANG Jiarong,et al. Photocatalytic reduction of Cr(Ⅵ) over g-C 3N 4 photocatalysts synthesized by different precursors[J]. Molecules(Basel,Switzerland), 2021, 26(22):7054. doi: 10.3390/molecules26227054
|
17 |
FENG Jing, GAO Mingming, ZHANG Zhiqiang,et al. Comparing the photocatalytic properties of g-C 3N 4 treated by thermal decomposition,solvothermal and protonation[J]. Results in Physics, 2018, 11:331-334. doi: 10.1016/j.rinp.2018.09.014
|
18 |
GAO Ying, DUAN Jizhou, ZHAI Xiaofan,et al. Extraordinary photodegradation performance of graphitic carbon nitride derived from tin foil-wrapped urea[J]. Journal of Nanoparticle Research, 2021, 23(2):44. doi: 10.1007/s11051-020-05111-2
|
19 |
He Bin, FENG Mi, CHEN Xinyan,et al. Multidimensional (0D-3D) functional nanocarbon:Promising material to strengthen the photocatalytic activity of graphitic carbon nitride[J]. Green Energy & Environment, 2021, 6(6):23. doi: 10.1016/j.gee.2020.07.011
|
20 |
MARI E, TSAI P C, ESWARAN M,et al. Efficient electro-catalytic oxidation of ethylene glycol using flower-like graphitic carbon nitride/iron oxide/palladium nanocomposite for fuel cell application[J]. Fuel, 2020, 280:118646. doi: 10.1016/j.fuel.2020.118646
|
21 |
WANG Wenjun, NIU Qiuya, ZENG Guangming,et al. 1D porous tubular g-C 3N 4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction[J]. Applied Catalysis B:Environmental, 2020, 273:119051. doi: 10.1016/j.apcatb.2020.119051
|
22 |
GE Jianhua, ZHANG Long, XU Jing,et al. Nitrogen photofixation on holey g-C 3N 4 nanosheets with carbon vacancies under visible-light irradiation[J]. Chinese Chemical Letters, 2020, 31(3):792-796. doi: 10.1016/j.cclet.2019.05.030
|
23 |
|
|
WEI Bangqi, RAN Guoxia, SONG Qijun,et al. Preparation of g-C 3N 4 with particular morphology and their application for pollutant degradation[J]. Applied Chemical Industry, 2022, 51(1):33-38. doi: 10.3969/j.issn.1671-3206.2022.01.007
|
24 |
DONG Xiyuan, HUANG Xianqing, WANG Dongbo,et al. Constructing crystalline needle-mushroom-like/amorphous nanosheet carbon nitride homojunction by molten salt method for photocatalytic degradation of tetracycline hydrochloride[J]. Journal of Materials Science:Materials in Electronics, 2022, 33(8):6043-6058. doi: 10.1007/s10854-022-07783-z
|
25 |
WU Ting, HE Qingyun, LIU Zhifeng,et al. Tube wall delamination engineering induces photogenerated carrier separation to achieve photocatalytic performance improvement of tubular g-C 3N 4 [J]. Journal of Hazardous Materials, 2022, 424(Pt A):127177. doi: 10.1016/j.jhazmat.2021.127177
|
26 |
LI Lingfeng, ZHANG Juhua, ZHANG Quan,et al. Superior sponge-like carbon self-doping graphitic carbon nitride nanosheets derived from supramolecular pre-assembly of a melamine-cyanuric acid complex for photocatalytic H 2 evolution[J]. Nanotechnology, 2021, 32(15):155604. doi: 10.1088/1361-6528/abd6d1
|
27 |
WANG Dongbo, HUANG Xianqing, HUANG Ying,et al. Self-assembly synthesis of petal-like Cl-doped g-C 3N 4 nanosheets with tunable band structure for enhanced photocatalytic activity[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 611:125780. doi: 10.1016/j.colsurfa.2020.125780
|
28 |
LI Shanshan, PENG Yannan, HU Chun,et al. Self-assembled synthesis of benzene-ring-grafted g-C 3N 4 nanotubes for enhanced photocatalytic H 2 evolution[J]. Applied Catalysis B:Environmental, 2020, 279:119401. doi: 10.1016/j.apcatb.2020.119401
|
29 |
FEI Ting, QIN Chaochao, ZHANG Yiwei,et al. A 3D peony-like sulfur-doped carbon nitride synthesized by self-assembly for efficient photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(39):20481-20491. doi: 10.1016/j.ijhydene.2021.03.148
|
30 |
LI Bo, FANG Qian, SI Yuan,et al. Ultra-thin tubular graphitic carbon nitride-carbon dot lateral heterostructures:One-step synthesis and highly efficient catalytic hydrogen generation[J]. Chemical Engineering Journal, 2020, 397:125470. doi: 10.1016/j.cej.2020.125470
|
31 |
WANG Dongbo, HUANG Ying, YU Xin,et al. Template-free synthesis of high specific surface area gauze-like porous graphitic carbon nitride for efficient photocatalytic degradation of tetracycline hydrochloride[J]. Journal of Materials Science, 2021, 56(7):4641-4653. doi: 10.1007/s10853-020-05550-1
|
32 |
VINESH V, ASHOKKUMAR M, NEPPOLIAN B .rGO supported self-assembly of 2D nano sheet of(g-C 3N 4) into rod-like nano structure and its application in sonophotocatalytic degradation of an antibiotic[J]. Ultrasonics Sonochemistry, 2020, 68:105218. doi: 10.1016/j.ultsonch.2020.105218
|
33 |
ZHAO Shuo, FANG Jiasheng, WANG Yanyun,et al. Construction of three-dimensional mesoporous carbon nitride with high surface area for efficient visible-light-driven hydrogen evolution[J]. Journal of Colloid and Interface Science, 2020, 561:601-608. doi: 10.1016/j.jcis.2019.11.035
|
34 |
李强,石伟,徐会君,等. Fe/g-C3N4催化剂的制备及其在可见光下的降解性能[J]. 工业水处理,2021,41(6):211-215.
|
|
LI Qiang, SHI Wei, XU Huijun,et al. Preparation of Fe/g-C3N4 catalyst and its degradation performance under visible light[J]. Industrial Water Treatment,2021,41(6):211-215.
|
35 |
|
|
YANG Zhongxue, CHEN Jianjun, WANG Rongrong,et al. Preparation of Ag/porous g-C 3N 4 composite photocatalyst and its degradation performance of tetracycline[J]. Chemical Research and Application, 2022, 34(2):335-340. doi: 10.3969/j.issn.1004-1656.2022.02.016
|
36 |
彭小明,吴健群,戴红玲,等. Fe、N共掺杂原子级分散Fe-g-C3N4催化剂活化过硫酸盐降解亚甲基蓝的机制[J]. 环境科学学报,2022,42(5):225-236.
|
|
PENG Xiaoming, WU Jianqun, DAI Hongling,et al. Degradation mechanism of methylene blue by Fe-g-C3N4(600)catalyst activation peroxymonosulfate[J]. Acta Scientiae Circumstantiae,2022,42(5):225-236.
|
37 |
VIGNESH S, ENIYA P, SRINIVASAN M,et al. Fabrication of Ag/Ag 2O incorporated graphitic carbon nitride based ZnO nanocomposite for enhanced Z-scheme photocatalytic performance of various organic pollutants and bacterial disinfection[J]. Journal of Environmental Chemical Engineering, 2021, 9(5):105996. doi: 10.1016/j.jece.2021.105996
|
38 |
ASHIQ H, NADEEM N, MANSHA A,et al. g-C 3N 4/Ag@CoWO 4:A novel sunlight active ternary nanocomposite for potential photocatalytic degradation of rhodamine B dye[J]. Journal of Physics and Chemistry of Solids, 2022, 161:110437. doi: 10.1016/j.jpcs.2021.110437
|
39 |
CONG Hongjin, LI Xinyi, HE Tingting,et al. Photocatalytic degradation of organic pollutants using porous g-C 3N 4 nanosheets decorated with gold nanoparticles[J]. ChemistrySelect, 2021, 6(35):9458-9466. doi: 10.1002/slct.202102241
|
40 |
LIU Banghai, GUO Wanqian, JIA Wenrui,et al. Novel nonradical oxidation of sulfonamide antibiotics with Co(Ⅱ)-doped g-C 3N 4-activated peracetic acid:Role of high-valent cobalt-oxo species[J]. Environmental Science & Technology, 2021, 55(18):12640-12651. doi: 10.1021/acs.est.1c04091
|
41 |
GÖRMEZ Ö, YAKAR E, GÖZMEN B,et al. CoFe 2O 4 nanoparticles decorated onto graphene oxide and graphitic carbon nitride layers as a separable catalyst for ultrasound-assisted photocatalytic degradation of Bisphenol-A[J]. Chemosphere, 2022, 288:132663. doi: 10.1016/j.chemosphere.2021.132663
|
42 |
WANG H, ALMATRAFI E, WANG Z,et al. Self-assembly hybridization of COFs and g-C 3N 4:Decipher the charge transfer channel for enhanced photocatalytic activity[J]. Journal of Colloid and Interface Science, 2022, 608(pt 1):1051-1063. doi: 10.1016/j.jcis.2021.10.036
|
43 |
SHI Weilong, SHU Keke, SUN Haoran,et al. Dual enhancement of capturing photogenerated electrons by loading CoP nanoparticles on N-deficient graphitic carbon nitride for efficient photocatalytic degradation of tetracycline under visible light[J]. Separation and Purification Technology, 2020, 246:116930. doi: 10.1016/j.seppur.2020.116930
|
44 |
LIU Ying, LIU Yi, XU Yingying,et al. Phenanthroline bridging graphitic carbon nitride framework and Fe(Ⅱ) ions to promote transfer of photogenerated electrons for selective photocatalytic reduction of nitrophenols[J]. Journal of Colloid and Interface Science, 2022, 608(Pt 2):2088-2099. doi: 10.1016/j.jcis.2021.10.146
|
45 |
SRIDHARAN K, KURIAKOSE T, PHILIP R,et al. Transition metal(Fe,Co and Ni) oxide nanoparticles grafted graphitic carbon nitrides as efficient optical limiters and recyclable photocatalysts[J]. Applied Surface Science, 2014, 308:139-147. doi: 10.1016/j.apsusc.2014.04.121
|
46 |
ABDUL H A, NASIR R, RAJAN A K H,et al. Graphitic carbon nitride engineered α-Fe 2O 3/rGO heterostructure for visible-light-driven photochemical oxidation of sulfamethoxazole[J]. Chemical Engineering Journal, 2023, 451:138630. doi: 10.1016/j.cej.2022.138630
|
47 |
ZHAO Gang, LI Wenchao, ZHANG Huayu,et al. Single atom Fe-dispersed graphitic carbon nitride(g-C 3N 4) as a highly efficient peroxymonosulfate photocatalytic activator for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2022, 430:132937. doi: 10.1016/j.cej.2021.132937
|
48 |
LI Tingting, ZHAO Leihong, HE Yiming,et al. Synthesis of g-C 3N 4/SmVO 4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation[J]. Applied Catalysis B:Environmental, 2013, 129:255-263. doi: 10.1016/j.apcatb.2012.09.031
|
49 |
LU Hui, LI Xiaoran, LI Feng,et al. Construction of single-atom Ag embedded O,K co-doped g-C 3N 4 with enhanced photocatalytic efficiency for tetracycline degradation and Escherichia coli disinfection under visible light[J]. Journal of Molecular Liquids, 2022, 352:118655. doi: 10.1016/j.molliq.2022.118655
|
50 |
LIU Yajing, JIN Yuling, CHENG Xiangxiang,et al. K +-doped ZnO/g-C 3N 4 heterojunction:Controllable preparation,efficient charge separation,and excellent photocatalytic VOC degradation performance[J]. Industrial & Engineering Chemistry Research, 2022, 61(1):187-197. doi: 10.1021/acs.iecr.1c03413
|
51 |
WANG Yu, FANG Lianhu, WANG Zhen,et al. Peroxymonosulfate activation by graphitic carbon nitride co-doped with manganese,cobalt,and oxygen for degradation of trichloroethylene:Effect of oxygen precursors,kinetics,and mechanism[J]. Separation and Purification Technology, 2021, 278:119580. doi: 10.1016/j.seppur.2021.119580
|
52 |
李金英,孙海峰,赵旭,等. 改性类石墨相氮化碳复合催化剂可见光催化还原水中Cr6+的研究[J]. 化工新型材料,2020,48(2):267-271.
|
|
LI Jinying, SUN Haifeng, ZHAO Xu,et al. Study on visible photocatalytic reduction of Cr6+ in water with modified graphite-like carbon nitride composite catalyst[J]. New Chemical Materials,2020,48(2):267-271.
|
53 |
焦莉,徐金妹,张秋亚,等. 氨基修饰片状氮化碳的制备及光催化性能[J]. 化工进展,2020,39(5):1866-1874.
|
|
JIAO Li, XU Jinmei, ZHANG Qiuya,et al. Preparation and photocatalytic activity of amino-modified sheet-like carbon nitride[J]. Chemical Industry and Engineering Progress,2020,39(5):1866-1874.
|
54 |
DING Jing, XU Wei, WAN Hui,et al. Nitrogen vacancy engineered graphitic C 3N 4-based polymers for photocatalytic oxidation of aromatic alcohols to aldehydes[J]. Applied Catalysis B:Environmental, 2018, 221:626-634. doi: 10.1016/j.apcatb.2017.09.048
|
55 |
GUAN Keke, LI Junyi, LEI Wen,et al. Synthesis of sulfur doped g-C 3N 4 with enhanced photocatalytic activity in molten salt[J]. Journal of Materiomics, 2021, 7(5):1131-1142. doi: 10.1016/j.jmat.2021.01.008
|
56 |
KIM D, YONG K .Boron doping induced charge transfer switching of a C 3N 4/ZnO photocatalyst from Z-scheme to type II to enhance photocatalytic hydrogen production[J]. Applied Catalysis B:Environmental, 2021, 282:119538. doi: 10.1016/j.apcatb.2020.119538
|
57 |
LI Jinqiao, LIU Xiaoteng, CHE Huinan,et al. Facile construction of O-doped crystalline/non-crystalline g-C 3N 4 embedded nano-homojunction for efficiently photocatalytic H 2 evolution[J]. Carbon, 2021, 172:602-612. doi: 10.1016/j.carbon.2020.10.051
|
58 |
KALISAMY P, LALLIMATHI M, SURYAMATHI M,et al. ZnO-embedded S-doped g-C 3N 4 heterojunction:Mediator-free Z-scheme mechanism for enhanced charge separation and photocatalytic degradation[J]. RSC Advances, 2020, 10(47):28365-28375. doi: 10.1039/d0ra04642f
|
59 |
KUMAR S, TONDA S, BARUAH A,et al. Synthesis of novel and stable g-C3N4/N-doped SrTiO3 hybrid nanocomposites with improved photocurrent and photocatalytic activity under visible light irradiation[J]. Dalton Transactions(Cambridge,England: 2003),2014, 4342:16105-16114.
|
60 |
LI Daguang, WEN Chenghui, HUANG Jiaxing,et al. High-efficiency ultrathin porous phosphorus-doped graphitic carbon nitride nanosheet photocatalyst for energy production and environmental remediation[J]. Applied Catalysis B:Environmental, 2022, 307:121099. doi: 10.1016/j.apcatb.2022.121099
|
61 |
ZHANG Jungang, ZHU Qiaohong, MA Yunfei,et al. Photo-generated charges escape from P + center through the chemical bridges between P-doped g-C 3N 4 and Ru x P nanoparticles to enhance the photocatalytic hydrogen evolution[J]. Catalysis Today, 2021, 380:223-229. doi: 10.1016/j.cattod.2020.12.037
|
62 |
WEI Bo, NIU Chenxi, ZHOU Gang,et al. Nonmetal doped carbon nitride nanosheet as photocatalyst for degradation of 4,5-dichloroguaiacol[J]. Environmental Research, 2022, 207:112623. doi: 10.1016/j.envres.2021.112623
|
63 |
WANG Shizong, XU Lejin, WANG Jianlong .Enhanced activation of peroxymonosulfate through exfoliated oxygen-doping graphitic carbon nitride for degradation of organic pollutants[J]. Chemical Engineering Journal, 2022, 428:131066. doi: 10.1016/j.cej.2021.131066
|
64 |
YAN Zhaoli, YANG Mengnan, CHEN Yanmin,et al. Hydroxyl-rich porous silica nanosheets decorated with oxygen-doped carbon nitride nanoparticles for photocatalytic degradation of rhodamine B[J]. ACS Applied Nano Materials, 2022, 5(1):818-831. doi: 10.1021/acsanm.1c03549
|
65 |
ZHAO Wei, SHE Tiantian, ZHANG Jingyi,et al. A novel Z-scheme CeO 2/g-C 3N 4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism[J]. Journal of Materials Science & Technology, 2021, 85:18-29. doi: 10.1016/j.jmst.2020.12.064
|
66 |
傅炀杰,张可欣,毛惠秀,等. AgI/NH2-UiO-66(Zr)异质结制备及其可见光催化性能[J]. 复合材料学报,2022,39(7):3369-3375.
|
|
FU Yangjie, ZHANG Kexin, MAO Huixiu,et al. Preparation and photocatalytic performance of AgI/NH2-UiO-66(Zr) heterojunction[J]. Acta Materiae Compositae Sinica,2022,39(7):3369-3375.
|
67 |
HAO Liang, ZHANG Yan, ZHAO Qian,et al. Comparative study of MoS 2/MoO 3,g-C 3N 4/MoO 3 heterojunction films and their improved photocatalytic activity[J]. Applied Physics A, 2021, 127(10):767. doi: 10.1007/s00339-021-04925-8
|
68 |
|
|
LI Dongmei, LU Wencong, LIANG Yicong,et al. Room-temperature precipitation synthesis and photocatalysis of Bi 5O 7I/g-C 3N 4 Z-scheme heterojunction[J]. China Environmental Science, 2021, 41(9):4120-4126. doi: 10.3969/j.issn.1000-6923.2021.09.017
|
69 |
ZHU Kaili, LUAN Xinxin, MATRAS-POSTOLEK K,et al. 2D/2D MoS 2/g-C 3N 4 layered heterojunctions with enhanced interfacial electron coupling effect[J]. Journal of Electroanalytical Chemistry, 2021, 893:115350. doi: 10.1016/j.jelechem.2021.115350
|
70 |
ZHAO Liming, GUO Lijun, TANG Yuling,et al. Novel g-C 3N 4/C/Fe 2O 3 composite for efficient photocatalytic reduction of aqueous Cr(Ⅵ) under light irradiation[J]. Industrial & Engineering Chemistry Research, 2021, 60(37):13594-13603. doi: 10.1021/acs.iecr.1c02411
|
71 |
HE Rongan, Sijiao OU, LIU Yexuan,et al. In situ fabrication of Bi 2Se 3/g-C 3N 4 S-scheme photocatalyst with improved photocatalytic activity[J]. Chinese Journal of Catalysis, 2022, 43(2):370-378. doi: 10.1016/s1872-2067(21)63911-6
|
72 |
ZHANG Bin, HU Xiaoyun, LIU Enzhou,et al. Novel S-scheme 2D/2D BiOBr/g-C 3N 4 heterojunctions with enhanced photocatalytic activity[J]. Chinese Journal of Catalysis, 2021, 42(9):1519-1529. doi: 10.1016/s1872-2067(20)63765-2
|
73 |
KADI M W, MOHAMED R M, BAHNEMANN D W .Controlled synthesis of Ag 2O/g-C 3N 4 heterostructures using soft and hard templates for efficient and enhanced visible-light degradation of ciprofloxacin[J]. Ceramics International, 2021, 47(22):31073-31083. doi: 10.1016/j.ceramint.2021.07.281
|
74 |
ALSHAIKH H, SHAWKY A, ROSELIN L S .Promoted visible-light photocatalytic reduction of Hg 2+ over CuAl 2O 4-decorated g-C 3N 4 nanoheterojunctions synthesized by solution process[J]. Journal of Environmental Chemical Engineering, 2021, 9(6):106778. doi: 10.1016/j.jece.2021.106778
|
75 |
QI Shuyan, LIU Xueting, ZHANG Ruiyan,et al. Preparation and photocatalytic properties of g-C 3N 4/BiOCl heterojunction[J]. Inorganic Chemistry Communications, 2021, 133:108907. doi: 10.1016/j.inoche.2021.108907
|
76 |
MOUSAVI M, MORADIAN S, POURHAKKAK P,et al. Fabrication of S-scheme heterojunction g-C 3N 4-nanosheet/ZnMoO 4 nanocomposite with high efficiency in photocatalytic N 2 fixation and Cr(Ⅵ) detoxification[J]. Journal of Materials Science, 2022, 57(20):9145-9163. doi: 10.1007/s10853-022-07225-5
|
77 |
VAN VIET P, NGUYEN T D, BUI D P,et al. Combining SnO 2- x and g-C 3N 4 nanosheets toward S-scheme heterojunction for high selectivity into green products of NO degradation reaction under visible light[J]. Journal of Materiomics, 2022, 8(1):1-8. doi: 10.1016/j.jmat.2021.06.006
|
78 |
BAIRAMIS F, KONSTANTINOU I .WO 3 fibers/g-C 3N 4 Z-scheme heterostructure photocatalysts for simultaneous oxidation/reduction of phenol/Cr(Ⅵ) in aquatic media[J]. Catalysts, 2021, 11(7):792. doi: 10.3390/catal11070792
|
79 |
SHI Hongfei, JIN Tao, LI Jianping,et al. Construction of Z-scheme Cs 3PMo 12O 40/g-C 3N 4 composite photocatalyst with highly efficient photocatalytic performance under visible light irradiation[J]. Journal of Solid State Chemistry, 2022, 311:123069. doi: 10.1016/j.jssc.2022.123069
|
80 |
ZHANG Mingxi, DU Hanxiao, JI Juan,et al. Highly efficient Ag 3PO 4/g-C 3N 4 Z-scheme photocatalyst for its enhanced photocatalytic performance in degradation of rhodamine B and phenol[J]. Molecules, 2021, 26(7):2062. doi: 10.3390/molecules26072062
|
81 |
XUE Wenhua, HU Xiaoyun, LIU Enzhou,et al. Novel reduced graphene oxide-supported Cd 0. 5Zn 0. 5S/g-C 3N 4 Z-scheme heterojunction photocatalyst for enhanced hydrogen evolution[J]. Applied Surface Science, 2018, 447:783-794. doi: 10.1016/j.apsusc.2018.04.048
|
82 |
YU Weilai, CHEN Junxiang, SHANG Tongtong,et al. Direct Z-scheme g-C 3N 4/WO 3 photocatalyst with atomically defined junction for H 2 production[J]. Applied Catalysis B:Environmental, 2017, 219:693-704. doi: 10.1016/j.apcatb.2017.08.018
|
83 |
DONG Guohui, CHEN Dong, LUO Jianmin,et al. Voids padding induced further enhancement in photocatalytic performance of porous graphene-like carbon nitride[J]. Journal of Hazardous Materials, 2017, 335:66-74. doi: 10.1016/j.jhazmat.2017.04.033
|
84 |
GE Lei, HAN Changcun, LIU Jing .Novel visible light-induced g-C 3N 4/Bi 2WO 6 composite photocatalysts for efficient degradation of methyl orange[J]. Applied Catalysis B:Environmental, 2011, 108/109:100-107. doi: 10.1016/j.apcatb.2011.08.014
|
85 |
WANG Zehu, LIU Fang, SUN Mingming,et al. Rapid visible light catalytic reduction of Cr(Ⅵ) over amorphous g-C 3N 4 modified palygorskite composite via a charge-transfer-surface complex-mediated pathway[J]. FlatChem, 2020, 20:100153. doi: 10.1016/j.flatc.2020.100153
|
86 |
ONG W J, TAN L L, NG Y H,et al. Graphitic carbon nitride(g-C 3N 4)-based photocatalysts for artificial photosynthesis and environmental remediation:Are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12):7159-7329. doi: 10.1021/acs.chemrev.6b00075
|
87 |
ZHANG Huiqing, YANG Jingxia, GUO Lei,et al. Microwave-aided synthesis of BiOI/g-C 3N 4 composites and their enhanced catalytic activities for Cr(Ⅵ) removal[J]. Chemical Physics Letters, 2021, 762:138143. doi: 10.1016/j.cplett.2020.138143
|
88 |
YU Huijuan, MA Qiang, GAO Cuiping,et al. Petal-like g-C 3N 4 enhances the photocatalyst removal of hexavalent chromium[J]. Catalysts, 2023, 13:641. doi: 10.3390/catal13030641
|
89 |
WANG Zhao, MURUGANANTHAN M, ZHANG Yanrong .Graphitic carbon nitride based photocatalysis for redox conversion of arsenic(Ⅲ) and chromium(Ⅵ) in acid aqueous solution[J]. Applied Catalysis B:Environmental, 2019, 248:349-356. doi: 10.1016/j.apcatb.2019.02.041
|
90 |
KADI M W, MOHAMED R M, ISMAIL A A,et al. Performance of mesoporous α-Fe 2O 3/g-C 3N 4 heterojunction for photoreduction of Hg(Ⅱ) under visible light illumination[J]. Ceramics International, 2020, 46(14):23098-23106. doi: 10.1016/j.ceramint.2020.06.087
|
91 |
GHATTAVI S, NEZAMZADEH-EJHIEH A .A visible light driven AgBr/g-C 3N 4 photocatalyst composite in methyl orange photodegradation:Focus on photoluminescence,mole ratio,synthesis method of g-C 3N 4 and scavengers[J]. Composites Part B:Engineering, 2020, 183:107712. doi: 10.1016/j.compositesb.2019.107712
|
92 |
|
|
HU Jinjuan, MA Chunyu, WANG Jialin,et al. Preparation and photocatalytic properties of GO/TiO 2-g-C 3N 4 nanocomposites[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(12):2240-2248. doi: 10.11862/CJIC.2020.241
|
93 |
LEE S J, BEGILDAYEVA T, JUNG H J,et al. Plasmonic ZnO/Au/g-C 3N 4 nanocomposites as solar light active photocatalysts for degradation of organic contaminants in wastewater[J]. Chemosphere, 2021, 263:128262. doi: 10.1016/j.chemosphere.2020.128262
|
94 |
STURINI M, SPELTINI A, MARASCHI F,et al. G-C 3N 4-promoted degradation of ofloxacin antibiotic in natural waters under simulated sunlight[J]. Environmental Science and Pollution Research, 2017, 24(4):4153-4161. doi: 10.1007/s11356-016-8156-1
|
95 |
吴健博,石亮,郑小强,等. g-C3N4/BiOCl复合光催化剂作为2D/2D异质结用于光催化降解染料性能研究[J]. 复合材料学报,2023,40(1):323-333.
|
|
WU Jianbo, SHI Liang, ZHENG Xiaoqiang,et al. g-C3N4/BiOCl composite photocatalyst used as 2D/2D heterojunction for photocatalytic degradation of dyes[J]. Acta Materiae Compositae Sinica,2023,40(1):323-333.
|
96 |
SUN Juzheng, HUANG Yangrui, LI Huaizheng,et al. Silver nanoparticle-loaded graphitic carbon nitride/multiwall carbon nanotube composite with improved denitrification to nitrogen gas for the photocatalytic removal of aqueous ammonia nitrogen[J]. Environmental Technology & Innovation, 2021, 24,101815. doi: 10.1016/j.eti.2021.101815
|
97 |
ZHAO Jianhui, LI Ning, YU Ruixin,et al. Magnetic field enhanced denitrification in nitrate and ammonia contaminated water under 3D/2D Mn 2O 3/g-C 3N 4 photocatalysis[J]. Chemical Engineering Journal, 2018, 349:530-538. doi: 10.1016/j.cej.2018.05.124
|
98 |
孟佳意,文剑平,陈亦力,等. g-C3N4-Bi2WO6/沸石复合光催化材料的制备及氨氮降解研究[J]. 水处理技术,2021,47(8):43-47.
|
|
MENG Jiayi, WEN Jianping, CHEN Yili,et al. Preparation and ammonia nitrogen degradation of g-C3N4-Bi2WO6/zeolite composite photocatalytic materials[J]. Technology of Water Treatment,2021,47(8):43-47.
|
99 |
|
|
CAO Yajie, YUE Xiuping, LI Houfen,et al. The photocatalytic property of g-C 3N 4/rGO/TiO 2 photocatalyst for ammonia nitrogen degradation in simulated wastewater[J]. China Environmental Science, 2020, 40(10):4370-4377. doi: 10.3969/j.issn.1000-6923.2020.10.022
|
100 |
YU Limin, MO Zhao, ZHU Xianglin,et al. Construction of 2D/2D Z-scheme MnO 2-x/g-C 3N 4 photocatalyst for efficient nitrogen fixation to ammonia[J]. Green Energy & Environment, 2021, 6(4):538-545. doi: 10.1016/j.gee.2020.05.011
|