1 |
任芝军,白莹,王秋稳,等. 膜污染的光学监测技术研究进展[J]. 工业水处理,2024,44(4):10-18.
|
|
REN Zhijun, BAI Ying, WANG Qiuwen,et al. Research progress of optical monitoring technologies for membrane fouling[J]. Industrial Water Treatment,2024,44(4):10-18.
|
2 |
赵冰,王军,田蒙奎. 我国膜分离技术及产业发展现状[J]. 现代化工,2021,41(2):6-10.
|
|
ZHAO Bing, WANG Jun, TIAN Mengkui. China’s development status of membrane separation technology and industry[J]. Modern Chemical Industry,2021,41(2):6-10.
|
3 |
LIU Yongcong, LIN Qingquan, ZENG Guangyong,et al. Nature-inspired green method decorated MXene-based composite membrane for high-efficiency oil/water separation[J]. Separation and Purification Technology, 2022, 283:120218. doi: 10.1016/j.seppur.2021.120218
|
4 |
ZHANG Liyi, LIU Yongcong, ZENG Guangyong,et al. Two-dimensional Na-Bentonite@MXene composite membrane with switchable wettability for selective oil/water separation[J]. Separation and Purification Technology, 2023, 306:122677. doi: 10.1016/j.seppur.2022.122677
|
5 |
ZHANG Runnan, LIU Yanan, HE Mingrui,et al. Antifouling membranes for sustainable water purification:Strategies and mechanisms[J]. Chemical Society Reviews, 2016, 45(21):5888-5924. doi: 10.1039/c5cs00579e
|
6 |
|
|
SHUI Boyang, SONG Xiaosan, FAN Wenjiang. Research progress and challenges of photocatalytic technology in water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(S2):356-363. doi: 10.16085/j.issn.1000-6613.2021-0756
|
7 |
HOU Huilin, ZENG Xiangkang, ZHANG Xiwang. Production of hydrogen peroxide by photocatalytic processes[J]. Angewandte Chemie International Edition, 2020, 59(40):17356-17376. doi: 10.1002/anie.201911609
|
8 |
|
|
SONG Siqing, LUO Jianquan, WAN Yinhua. Research progress on preparation and functions of catalytic membranes based on mussel-inspired chemistry[J]. Membrane Science and Technology, 2021, 41(2):127-133. doi: 10.16159/j.cnki.issn1007-8924.2021.02.017
|
9 |
ZHANG Yangfan, LI Yao, YU Han,et al. Interfacial defective Ti 3+ on Ti/TiO 2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance[J]. Journal of Materials Science & Technology, 2022, 106:139-146. doi: 10.1016/j.jmst.2021.06.081
|
10 |
廖润钱,钱海霞,曾燮榕,等. 用于光催化的金属氧化物多孔材料的研究进展[J]. 材料导报,2018,32(S1):54-62.
|
|
LIAO Runqian, QIAN Haixia, ZENG Xierong,et al. Research progress on metal oxide porous materials used as photocatalyst[J]. Materials Review,2018,32(S1):54-62.
|
11 |
MENG Aiyun, ZHANG Liuyang, CHENG Bei,et al. Dual cocatalysts in TiO 2 photocatalysis[J]. Advanced Materials, 2019, 31(30):1807660. doi: 10.1002/adma.201807660
|
12 |
|
|
YAO Haiwei, WANG Huiqi, PU Zhuolin,et al. Research progress on photocatalytic of two-dimensional materials/titanium dioxide composites[J]. Transactions of Materials and Heat Treatment, 2023, 44(2):13-29. doi: 10.13289/j.issn.1009-6264.2022-0362
|
13 |
LI Mingjie, YU Zebin, LIU Qing,et al. Photocatalytic decomposition of perfluorooctanoic acid by noble metallic nanoparticles modified TiO 2 [J]. Chemical Engineering Journal, 2016, 286:232-238. doi: 10.1016/j.cej.2015.10.037
|
14 |
高鑫椿,李佳昕,宋沐遥,等. ZnO的改性及其在能源催化领域中的应用新进展[J]. 化工新型材料,2022,50(9):65-69.
|
|
GAO Xinchun, LI Jiaxin, SONG Muyao,et al. New progress on modification of ZnO and its application in energy catalysis[J]. New Chemical Materials,2022,50(9):65-69.
|
15 |
何争光,邢雨,张俊明,等. Mg-ZnO光催化剂的合成及其降解卡马西平的研究[J]. 水处理技术,2022,48(12):24-28.
|
|
HE Zhengguang, XING Yu, ZHANG Junming,et al. Synthesis and degradation of carbamazepine by Mg-ZnO photocatalyst[J]. Technology of Water Treatment,2022,48(12):24-28.
|
16 |
ZENG Guangyong, LIU Yongcong, LIN Qingquan,et al. Constructing composite membranes from functionalized metal organic frameworks integrated MXene intended for ultrafast oil/water emulsion separation[J]. Separation and Purification Technology, 2022, 293:121052. doi: 10.1016/j.seppur.2022.121052
|
17 |
LIU Xiaolu, MA Ran, ZHUANG Li,et al. Recent developments of doped g-C 3N 4 photocatalysts for the degradation of organic pollutants[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(8):751-790. doi: 10.1080/10643389.2020.1734433
|
18 |
HUMAYUN M, WANG Chundong, LUO Wei. Recent progress in the synthesis and applications of composite photocatalysts:A critical review[J]. Small Methods, 2022, 6(2):2101395. doi: 10.1002/smtd.202101395
|
19 |
LIN Qingquan, ZENG Guangyong, PU Shengyan,et al. A dual regulation strategy for MXene-based composite membrane to achieve photocatalytic self-cleaning properties and multi-functional applications[J]. Chemical Engineering Journal, 2022, 443:136335. doi: 10.1016/j.cej.2022.136335
|
20 |
LIN Bo, XIA Mengyang, XU Baorong,et al. Bio-inspired nanostructured g-C 3N 4-based photocatalysts:A comprehensive review[J]. Chinese Journal of Catalysis, 2022, 43(8):2141-2172. doi: 10.1016/s1872-2067(22)64110-x
|
21 |
GAO Kexuan, HOU Lian, AN Xiaoqiang,et al. BiOBr/MXene/gC 3N 4 Z-scheme heterostructure photocatalysts mediated by oxygen vacancies and MXene quantum dots for tetracycline degradation:Process,mechanism and toxicity analysis[J]. Applied Catalysis B:Environmental, 2023, 323:122150. doi: 10.1016/j.apcatb.2022.122150
|
22 |
SUBHIKSHA V, KOKILAVANI S, KHAN S S. Recent advances in degradation of organic pollutant in aqueous solutions using bismuth based photocatalysts:A review[J]. Chemosphere, 2022, 290:133228. doi: 10.1016/j.chemosphere.2021.133228
|
23 |
ZHANG Li, LI Yuhan, LI Qin,et al. Recent advances on Bismuth-based Photocatalysts:Strategies and mechanisms[J]. Chemical Engineering Journal, 2021, 419:129484. doi: 10.1016/j.cej.2021.129484
|
24 |
田浩然,刘福跃,邰月辉,等. 铋系异质结光催化剂的研究进展[J]. 现代化工,2022,42(7):42-45.
|
|
TIAN Haoran, LIU Fuyue, TAI Yuehui,et al. Research progress on bismuth-series heterojunction photocatalysts[J]. Modern Chemical Industry,2022,42(7):42-45.
|
25 |
LI Jiajia, ZHAO Ziwei, LI Zhuoning,et al. Construction of immobilized films photocatalysts with CdS clusters decorated by metal Cd and BiOCl for photocatalytic degradation of tetracycline antibiotics[J]. Chinese Chemical Letters, 2022, 33(8):3705-3708. doi: 10.1016/j.cclet.2021.10.080
|
26 |
CHEN Peng, LIU Hongjing, SUN Yanjuan,et al. Bi metal prevents the deactivation of oxygen vacancies in Bi 2O 2CO 3 for stable and efficient photocatalytic NO abatement[J]. Applied Catalysis B:Environmental, 2020, 264:118545. doi: 10.1016/j.apcatb.2019.118545
|
27 |
李孟辉,袁鸣蔚,黄佳,等. 石墨烯及其衍生物在催化领域的应用[J]. 分子催化,2019,33(2):190-200.
|
|
LI Menghui, YUAN Mingwei, HUANG Jia,et al. Application of graphene and its derivatives in catalysis[J]. Journal of Molecular Catalysis(China),2019,33(2):190-200.
|
28 |
ZHANG Huiru, WAN Yinhua, LUO Jianquan,et al. Drawing on membrane photocatalysis for fouling mitigation[J]. ACS Applied Materials & Interfaces, 2021, 13(13):14844-14865. doi: 10.1021/acsami.1c01131
|
29 |
MUKHERJEE D, VAN DER BRUGGEN B, MANDAL B. Advancements in visible light responsive MOF composites for photocatalytic decontamination of textile wastewater:A review[J]. Chemosphere, 2022, 295:133835. doi: 10.1016/j.chemosphere.2022.133835
|
30 |
程荣,姜培文,夏锦程,等. 共价有机骨架材料在膜分离领域的应用进展[J]. 膜科学与技术,2022,42(5):154-163.
|
|
CHENG Rong, JIANG Peiwen, XIA Jincheng,et al. Application progress of covalent organic frameworks in membrane separation field[J]. Membrane Science and Technology,2022,42(5):154-163.
|
31 |
胡俊俊,丁同悦,陈奕桦,等. BiOBr/COF复合材料的制备及其光催化应用研究[J]. 现代化工,2020,40(10):109-114.
|
|
HU Junjun, DING Tongyue, CHEN Yihua,et al. Preparation and photocatalytic application of BiOBr/COF composites[J]. Modern Chemical Industry,2020,40(10):109-114.
|
32 |
ZENG Guangyong, WEI Ke, ZHANG Haiyan,et al. Ultra-high oil-water separation membrane based on two-dimensional MXene(Ti 3C 2T x ) by co-incorporation of halloysite nanotubes and polydopamine[J]. Applied Clay Science, 2021, 211:106177. doi: 10.1016/j.clay.2021.106177
|
33 |
SOLANGI N H, KARRI R R, MAZARI S ALI,et al. MXene as emerging material for photocatalytic degradation of environmental pollutants[J]. Coordination Chemistry Reviews, 2023, 477:214965. doi: 10.1016/j.ccr.2022.214965
|
34 |
LIN Qingquan, LIU Yongcong, YANG Zhaomei,et al. Construction and application of two-dimensional MXene-based membranes for water treatment:A mini-review[J]. Results in Engineering, 2022, 15:100494. doi: 10.1016/j.rineng.2022.100494
|
35 |
ZHOU Weibing, YU Bo, ZHU Jiaoqun,et al. Hierarchical ZnO/MXene(Nb 2C and V 2C) heterostructure with efficient electron transfer for enhanced photocatalytic activity[J]. Applied Surface Science, 2022, 590:153095. doi: 10.1016/j.apsusc.2022.153095
|
36 |
|
|
ZHENG Hongai, LIU Yue, ZHOU Yiheng,et al. Research progress of supported photocatalytic membrane[J]. Journal of Shanghai University of Electric Power, 2021, 37(2):158-164. doi: 10.3969/j.issn.2096-8299.2021.02.011
|
37 |
朱腾义,严和婷,李毛. 聚偏氟乙烯膜改性方法研究进展[J]. 化学通报,2018,81(12):1089-1095.
|
|
ZHU Tengyi, YAN Heting, LI Mao. Progress in polyvinylidene fluoride membrane modification method[J]. Chemistry,2018,81(12):1089-1095.
|
38 |
ZENG Guangyong, HE Zhenzhen, WAN Tao,et al. A self-cleaning photocatalytic composite membrane based on g-C 3N 4@MXene nanosheets for the removal of dyes and antibiotics from wastewater[J]. Separation and Purification Technology, 2022, 292:121037. doi: 10.1016/j.seppur.2022.121037
|
39 |
YANG Zhaomei, LIN Qingquan, ZENG Guangyong,et al. Ternary hetero-structured BiOBr/Bi 2MoO 6@MXene composite membrane:Construction and enhanced removal of antibiotics and dyes from water[J]. Journal of Membrane Science, 2023, 669:121329. doi: 10.1016/j.memsci.2022.121329
|
40 |
HENG Zengwei, CHONG W C, PANG Y L,et al. Novel visible-light responsive NCQDs-TiO 2/PAA/PES photocatalytic membrane with enhanced antifouling properties and self-cleaning performance[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105388. doi: 10.1016/j.jece.2021.105388
|
41 |
JEONG E, BYUN J, BAYARKHUU B,et al. Hydrophilic photocatalytic membrane via grafting conjugated polyelectrolyte for visible-light-driven biofouling control[J]. Applied Catalysis B:Environmental, 2021, 282:119587. doi: 10.1016/j.apcatb.2020.119587
|
42 |
XU Guorong, WANG Shenghui, ZHAO Heli,et al. Layer-by-layer(LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes[J]. Journal of Membrane Science, 2015, 493:428-443. doi: 10.1016/j.memsci.2015.06.038
|
43 |
DING Changkun, QIN Xiwen, TIAN Yingying,et al. PES membrane surface modification via layer-by-layer self-assembly of GO@TiO 2 for improved photocatalytic performance[J]. Journal of Membrane Science, 2022, 659:120789. doi: 10.1016/j.memsci.2022.120789
|
44 |
ERUSAPPAN E, THIRIPURANTHAGAN S, RADHAKRISHNAN R,et al. Fabrication of mesoporous TiO 2/PVDF photocatalytic membranes for efficient photocatalytic degradation of synthetic dyes[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105776. doi: 10.1016/j.jece.2021.105776
|
45 |
MANSAS C, ATFANE-KARFANE L, PETIT E,et al. Functionalized ceramic nanofilter for wastewater treatment by coupling membrane separation and catalytic ozonation[J]. Journal of Environmental Chemical Engineering, 2020, 8(4):104043. doi: 10.1016/j.jece.2020.104043
|
46 |
SUN Tianyu, LIU Ying, SHEN Liguo,et al. Magnetic field assisted arrangement of photocatalytic TiO 2 particles on membrane surface to enhance membrane antifouling performance for water treatment[J]. Journal of Colloid and Interface Science, 2020, 570:273-285. doi: 10.1016/j.jcis.2020.03.008
|
47 |
CHENG Xiaojie, LIAO Jiahui, XUE Yue,et al. Ultrahigh-flux and self-cleaning composite membrane based on BiOCl-PPy modified MXene nanosheets for contaminants removal from wastewater[J]. Journal of Membrane Science, 2022, 644:120188. doi: 10.1016/j.memsci.2021.120188
|
48 |
ZHOU Siyu, FENG Xiaoquan, ZHU Junyong,et al. Self-cleaning loose nanofiltration membranes enabled by photocatalytic Cu-triazolate MOFs for dye/salt separation[J]. Journal of Membrane Science, 2021, 623:119058. doi: 10.1016/j.memsci.2021.119058
|
49 |
|
|
|
50 |
XU Bao, WANG Xianbiao, HUANG Yuanyuan,et al. Electrospinning preparation of PAN/TiO 2/PANI hybrid fiber membrane with highly selective adsorption and photocatalytic regeneration properties[J]. Chemical Engineering Journal, 2020, 399:125749. doi: 10.1016/j.cej.2020.125749
|
51 |
XIE Atian, CUI Jiuyun, YANG Jin,et al. Photo-Fenton self-cleaning PVDF/NH 2-MIL-88B(Fe) membranes towards highly-efficient oil/water emulsion separation[J]. Journal of Membrane Science, 2020, 595:117499. doi: 10.1016/j.memsci.2019.117499
|
52 |
ZHANG Huiru, MANE A U, YANG Xiaobin,et al. Visible-light-activated photocatalytic films toward self-cleaning membranes[J]. Advanced Functional Materials, 2020, 30(34):2002847. doi: 10.1002/adfm.202070230
|
53 |
ZHANG Yuheng, LI Qi, GAO Qing,et al. Preparation of Ag/ β-cyclodextrin co-doped TiO 2 floating photocatalytic membrane for dynamic adsorption and photoactivity under visible light[J]. Applied Catalysis B:Environmental, 2020, 267:118715. doi: 10.1016/j.apcatb.2020.118715
|
54 |
LIN Qingquan, ZENG Guangyong, YAN Guilong,et al. Self-cleaning photocatalytic MXene composite membrane for synergistically enhanced water treatment:Oil/water separation and dyes removal[J]. Chemical Engineering Journal, 2022, 427:131668. doi: 10.1016/j.cej.2021.131668
|
55 |
JI Lingtong, YAN Luke, CHAO Min,et al. Water purification:Sphagnum inspired g-C 3N 4 nano/microspheres with smaller bandgap in heterojunction membranes for sunlight-driven water purification(small 12/2021)[J]. Small, 2021, 17(12):2170054. doi: 10.1002/smll.202170054
|
56 |
SONG Yuefei, LI Yajuan, CHEN Xiaomei,et al. Simultaneous degradation and separation of antibiotics in sewage effluent by photocatalytic nanofiltration membrane in a continuous dynamic process[J]. Water Research, 2023, 229:119460. doi: 10.1016/j.watres.2022.119460
|
57 |
WU C J, VALERIE MAGGAY I, CHIANG C H,et al. Removal of tetracycline by a photocatalytic membrane reactor with MIL-53(Fe)/PVDF mixed-matrix membrane[J]. Chemical Engineering Journal, 2023, 451:138990. doi: 10.1016/j.cej.2022.138990
|
58 |
文湘华,申博. 新兴污染物水环境保护标准及其实用型去除技术[J]. 环境科学学报,2018,38(3):847-857.
|
|
WEN Xianghua, SHEN Bo. Standards of water environmental protection and practical removal technologies of emerging contaminants[J]. Acta Scientiae Circumstantiae,2018,38(3):847-857.
|
59 |
MARCELINO R B, AMORIM C C, RATOVA M,et al. Novel and versatile TiO 2 thin films on PET for photocatalytic removal of contaminants of emerging concern from water[J]. Chemical Engineering Journal, 2019, 370:1251-1261. doi: 10.1016/j.cej.2019.03.284
|
60 |
GAO Jinhao, CHEN Wenqiang, SHI Huaqiang,et al. Co 3O 4@Fe 3O 4/cellulose blend membranes for efficient degradation of perfluorooctanoic acid in the visible light-driven photo-Fenton system[J]. Surfaces and Interfaces, 2022, 34:102302. doi: 10.1016/j.surfin.2022.102302
|