1 |
SMIL V. Enriching the earth:Fritz Haber,Carl Bosch,and the transformation of world food production[J]. Technology and Culture, 43(3):622-623. doi: 10.1353/tech.2002.0114
|
2 |
REES N V, COMPTON R G. Carbon-free energy:A review of ammonia-and hydrazine-based electrochemical fuelcells[J]. Energy & Environmental Science, 2011, 4(4):1255-1260. doi: 10.1039/c0ee00809e
|
3 |
LAN Rong, IRVINE J T S, TAO Shanwen. Ammonia and related chemicals as potential indirect hydrogen storage materials[J]. International Journal of Hydrogen Energy, 2012, 37(2):1482-1494. doi: 10.1016/j.ijhydene.2011.10.004
|
4 |
SUZUKI S, MUROYAMA H, MATSUI T,et al. Fundamental studies on direct ammonia fuel cell employing anion exchange membrane[J]. Journal of Power Sources, 2012, 208:257-262. doi: 10.1016/j.jpowsour.2012.02.043
|
5 |
VALERA-MEDINA A, XIAO H, OWEN-JONES M,et al. Ammonia for power[J]. Progress in Energy and Combustion Science, 2018, 69:63-102. doi: 10.1016/j.pecs.2018.07.001
|
6 |
CHOI J, SURYANTO B H R, WANG Dabin,et al. Identification and elimination of false positives in electrochemical nitrogen reduction studies[J]. Nature Communications, 2020, 11(1):5546. doi: 10.1038/s41467-020-19130-z
|
7 |
WANG Lu, XIA Meikun, WANG Hong,et al. Greening ammonia toward the solar ammonia refinery[J]. Joule, 2018, 2(6):1055-1074. doi: 10.1016/j.joule.2018.04.017
|
8 |
|
|
LAN Mei, DONG Meng, WU Hongju. Research progress in-situ remediation technology of groundwater nitrate nitrogen pollution[J]. Industrial Water Treatment, 2015, 35(8):15-17. doi: 10.11894/1005-829x.2015.35(8).015
|
9 |
DUCA M, KOPER M T M. Powering denitrification:The perspectives of electrocatalytic nitrate reduction[J]. Energy & Environmental Science, 2012, 5(12):9726-9742. doi: 10.1039/c2ee23062c
|
10 |
BHATNAGAR A, SILLANPÄÄ M. A review of emerging adsorbents for nitrate removal from water[J]. Chemical Engineering Journal, 2011, 168(2):493-504. doi: 10.1016/j.cej.2011.01.103
|
11 |
COMER B M, FUENTES P, DIMKPA C O,et al. Prospects and challenges for solar fertilizers[J]. Joule, 2019, 3(7):1578-1605. doi: 10.1016/j.joule.2019.05.001
|
12 |
ZHAI Yuanzheng, ZHAO Xiaobing, TENG Yanguo,et al. Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area,NE China[J]. Ecotoxicology and Environmental Safety, 2017, 137:130-142. doi: 10.1016/j.ecoenv.2016.11.010
|
13 |
CHAUHAN R, SRIVASTAVA V C. Electrochemical denitrification of highly contaminated actual nitrate wastewater by Ti/RuO 2 anode and iron cathode[J]. Chemical Engineering Journal, 2020, 386:122065. doi: 10.1016/j.cej.2019.122065
|
14 |
VAN LANGEVELDE P H, KATSOUNAROS I, KOPER M T M. Electrocatalytic nitrate reduction for sustainable ammonia production[J]. Joule, 2021, 5(2):290-294. doi: 10.1016/j.joule.2020.12.025
|
15 |
LU Xingmei, SONG Haoqiang, CAI Jinmeng,et al. Recent development of electrochemical nitrate reduction to ammonia:A mini review[J]. Electrochemistry Communications, 2021, 129:107094. doi: 10.1016/j.elecom.2021.107094
|
16 |
GHIMIRE U, SARPONG G, GUDE V G. Transitioning wastewater treatment plants toward circular economy and energy sustainability[J]. ACS Omega, 2021, 6(18):11794-11803. doi: 10.1021/acsomega.0c05827
|
17 |
WHITE R E, VAGENAS C G, CAMBOA-ALDECO M. Modern aspects of electrochemistry,No.45[M]. New York:Springer New York, 2009:10-20. doi: 10.1007/978-1-4419-0655-7
|
18 |
MCENANEY J M, BLAIR S J, NIELANDER A C,et al. Electrolyte engineering for efficient electrochemical nitrate reduction to ammonia on a titanium electrode[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7):2672-2681. doi: 10.1021/acssuschemeng.9b05983
|
19 |
LIU Jinxun, RICHARDS D, SINGH N,et al. Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals[J]. ACS Catalysis, 2019, 9(8):7052-7064. doi: 10.1021/acscatal.9b02179
|
20 |
IARCHUK A, DUTTA A, BROEKMANN P. Novel Ni foam catalysts for sustainable nitrate to ammonia electroreduction[J]. Journal of Hazardous Materials, 2022, 439:129504. doi: 10.1016/j.jhazmat.2022.129504
|
21 |
NIU Huan, ZHANG Zhaofu, WANG Xiting,et al. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts[J]. Advanced Functional Materials, 2021, 31(11):2008533. doi: 10.1002/adfm.202008533
|
22 |
WANG Yuhang, XU Aoni, WANG Ziyun,et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption[J]. Journal of the American Chemical Society, 2020, 142(12):5702-5708. doi: 10.1021/jacs.9b13347
|
23 |
JIA Ranran, WANG Yuting, WANG Changhong,et al. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO 2 [J]. ACS Catalysis, 2020, 10(6):3533-3540. doi: 10.1021/acscatal.9b05260
|
24 |
YANG Bing, DING Weilu, ZHANG Honghua,et al. Recent progress in electrochemical synthesis of ammonia from nitrogen:Strategies to improve the catalytic activity and selectivity[J]. Energy & Environmental Science, 2021, 14(2):672-687. doi: 10.1039/d0ee02263b
|
25 |
郑沐云,万宇驰,吕瑞涛. 电催化氮气还原合成氨催化材料研究进展[J]. 化工学报,2020,71(6):2481-2491.
|
|
ZHENG Muyun, WAN Yuchi, Ruitao LÜ. Research progress on electrocatalytic nitrogen reduction reaction catalysts for ammonia synthesis[J]. CIESC Journal,2020,71(6):2481-2491.
|
26 |
REYTER D, CHAMOULAUD G, BÉLANGER D,et al. Electrocatalytic reduction of nitrate on copper electrodes prepared by high-energy ball milling[J]. Journal of Electroanalytical Chemistry, 2006, 596(1):13-24. doi: 10.1016/j.jelechem.2006.06.012
|
27 |
FU Xianbiao, ZHAO Xingang, HU Xiaobing,et al. Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets[J]. Applied Materials Today, 2020, 19:100620. doi: 10.1016/j.apmt.2020.100620
|
28 |
WANG Xiaodan, ZHU Mengqi, ZENG Guoshen,et al. A three-dimensional Cu nanobelt cathode for highly efficient electrocatalytic nitrate reduction[J]. Nanoscale, 2020, 12(17):9385-9391. doi: 10.1039/c9nr10743f
|
29 |
SUN Jing, ALAM D, DAIYAN R,et al. A hybrid plasma electrocatalytic process for sustainable ammonia production[J]. Energy & Environmental Science, 2021, 14(2):865-872. doi: 10.1039/d0ee03769a
|
30 |
WANG Yuting, ZHOU Wei, JIA Ranran,et al. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia[J]. Angewandte Chemie(International Ed. in English), 2020, 59(13):5350-5354. doi: 10.1002/anie.201915992
|
31 |
GAO Jianan, SHI Ning, LI Yifan,et al. Electrocatalytic upcycling of nitrate wastewater into an ammonia fertilizer via an electrified membrane[J]. Environmental Science & Technology, 2022, 56(16):11602-11613. doi: 10.1021/acs.est.1c08442
|
32 |
YIN Haibo, CHEN Zhen, XIONG Shangchao,et al. Alloying effect-induced electron polarization drives nitrate electroreduction to ammonia[J]. Chem Catalysis, 2021, 1(5):1088-1103. doi: 10.1016/j.checat.2021.08.014
|
33 |
WANG Yuhang, XU Aoni, WANG Ziyun,et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption[J]. Journal of the American Chemical Society, 2020, 142(12):5702-5708. doi: 10.1021/jacs.9b13347
|
34 |
MATTAROZZI L, CATTARIN S, COMISSO N,et al. Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes[J]. Electrochimica Acta, 2013, 89:488-496. doi: 10.1016/j.electacta.2012.11.074
|
35 |
WANG Changhong, LIU Zhengyang, HU Tao,et al. Metasequoia-like nanocrystal of iron-doped copper for efficient electrocatalytic nitrate reduction into ammonia in neutral media[J]. ChemSusChem, 2021, 14(8):1825-1829. doi: 10.1002/cssc.202100127
|
36 |
REYTER D, BÉLANGER D, ROUÉ L. Elaboration by high-energy ball milling of copper/palladium composite materials-characterization and electrocatalytic activity for the reduction of nitrate in alkaline medium[J]. Journal of Electroanalytical Chemistry, 2008, 622(1):64-72. doi: 10.1016/j.jelechem.2008.05.002
|
37 |
ZHU Tonghe, CHEN Qiongshan, LIAO Peng,et al. Single-atom Cu catalysts for enhanced electrocatalytic nitrate reduction with significant alleviation of nitrite production[J]. Small(Weinheim an Der Bergstrasse,Germany), 2020, 16(49):e2004526. doi: 10.1002/smll.202070264
|
38 |
WU Tianyi, KONG Xiangang, TONG Siyuan,et al. Self-supported Cu nanosheets derived from CuCl-CuO for highly efficient electrochemical degradation of NO 3 - [J]. Applied Surface Science, 2019, 489:321-329. doi: 10.1016/j.apsusc.2019.05.358
|
39 |
ABDALLAH R, GENESTE F, LABASQUE T,et al. Selective and quantitative nitrate electroreduction to ammonium using a porous copper electrode in an electrochemical flow cell[J]. Journal of Electroanalytical Chemistry, 2014, 727:148-153. doi: 10.1016/j.jelechem.2014.06.016
|
40 |
CHEN Gaofeng, YUAN Yifei, JIANG Haifeng,et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst[J]. Nature Energy, 2020, 5(8):605-613. doi: 10.1038/s41560-020-0654-1
|
41 |
PÉREZ-GALLENT E, FIGUEIREDO M C, KATSOUNAROS I,et al. Electrocatalytic reduction of Nitrate on Copper single crystals in acidic and alkaline solutions[J]. Electrochimica Acta, 2017, 227:77-84. doi: 10.1016/j.electacta.2016.12.147
|
42 |
LIN Yunxiao, ZHANG Shinan, XUE Zhonghua,et al. Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles[J]. Nature Communications, 2019, 10:4380. doi: 10.1038/s41467-019-12312-4
|
43 |
YU Yu, WANG Changhong, YU Yifu,et al. Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts[J]. Science China Chemistry, 2020, 63(10):1469-1476. doi: 10.1007/s11426-020-9795-x
|
44 |
DENG Xiaohui, YANG Yongpeng, WANG Lei,et al. Metallic Co nanoarray catalyzes selective NH 3 production from electrochemical nitrate reduction at current densities exceeding 2 A/cm 2 [J]. Advanced Science, 2021, 8(7):2004523. doi: 10.1002/advs.202004523
|
45 |
LI Jiacheng, LI Miao, AN Ning,et al. Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(29):e2123450119. doi: 10.1073/pnas.2123450119
|
46 |
LI Chen, LI Kan, CHEN Chen,et al. Electrochemical removal of nitrate using a nanosheet structured Co 3O 4/Ti cathode:Effects of temperature,current and pH adjusting[J]. Separation and Purification Technology, 2020, 237:116485. doi: 10.1016/j.seppur.2019.116485
|
47 |
孙兴伟,白杰,李春萍,等. 钴基电极材料的改性策略及其应用研究[J]. 复合材料学报,2022,10.13801/j.cnki.fhclxb.20220929.002.
|
|
SUN Xingwei, BAI Jie, LI Chunping,et al. Modification strategy and application of cobalt-based electrode materials[J]. Acta Materiae Compositae Sinica,2022,10.13801/j.cnki.fhclxb.20220929.002.
|
48 |
CHEN Yiwen, HE Junguo, PANG Heliang,et al. New insight into electrochemical denitrification using a self-organized nanoporous VO-Co 3O 4/Co cathode:Plasma-assistant oxygen vacancies catalyzed efficient nitrate reduction[J]. Science of the Total Environment, 2022, 850:157845. doi: 10.1016/j.scitotenv.2022.157845
|
49 |
WANG Yuting, YU Yifu, JIA Ranran,et al. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization[J]. National Science Review, 2019, 6(4):730-738. doi: 10.1093/nsr/nwz019
|
50 |
WANG Yuting, LIU Cuibo, ZHANG Bin,et al. Self-template synthesis of hierarchically structured Co 3O 4@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi-dehydrogenation[J]. Science China Materials, 2020, 63(12):2530-2538. doi: 10.1007/s40843-020-1365-0
|
51 |
TANG Cheng, QIAO Shizhang. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully[J]. Chemical Society Reviews, 2019, 48(12):3166-3180. doi: 10.1039/c9cs00280d
|
52 |
WAN Yuchi, XU Jichu, Ruitao LÜ. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions[J]. Materials Today, 2019, 27:69-90. doi: 10.1016/j.mattod.2019.03.002
|
53 |
|
|
REN Kecheng, XU Yantong, CAO Yan. Iron-based inorganic materials for new energy-based electrocatalytic nitrate-to-ammonia reduction reaction[J]. Advances in New and Renewable Energy, 2022, 10(3):209-217. doi: 10.3969/j.issn.2095-560X.2022.03.004
|
54 |
LI Panpan, JIN Zhaoyu, FANG Zhiwei,et al. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate[J]. Energy & Environmental Science, 2021, 14(6):3522-3531. doi: 10.1039/d1ee00545f
|
55 |
WU Zhenyu, KARAMAD M, YONG Xue,et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst[J]. Nature Communications, 2021, 12(1):2870. doi: 10.1038/s41467-021-23115-x
|
56 |
张承帅,李莉,张长青. 中国铁资源利用现状述评[C]//第一届全国青年地质大会论文集. 北京:中国地质学会,2013:69-71.
|
57 |
BAO Jian, ZHANG Xiaodong, FAN Bo,et al. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation[J]. Angewandte Chemie(International Ed. in English), 2015, 54(25):7399-7404. doi: 10.1002/anie.201502226
|
58 |
XU Lei, JIANG Qianqian, XIAO Zhaohui,et al. Plasma-engraved Co 3O 4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction[J]. Angewandte Chemie(International Ed. in English), 2016, 55(17):5277-5281. doi: 10.1002/anie.201600687
|
59 |
SHI Run, ZHAO Yunxuan, WATERHOUSE G I N,et al. Defect engineering in photocatalytic nitrogen fixation[J]. ACS Catalysis, 2019, 9(11):9739-9750. doi: 10.1021/acscatal.9b03246
|
60 |
TAO Huabing, FANG Liwen, CHEN Jiazang,et al. Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction[J]. Journal of the American Chemical Society, 2016, 138(31):9978-9985. doi: 10.1021/jacs.6b05398
|
61 |
WANG Lele, LI Miao, LIU Xiang,et al. Electrochemical behavior of Ti-based nano-electrode for highly efficient denitrification in synthetic groundwater[J]. Journal of the Electrochemical Society, 2017, 164(12):E326-E331. doi: 10.1149/2.0821712jes
|
62 |
ZHENG Wenxiao, ZHU Liuyi, YAN Zhang,et al. Self-activated Ni cathode for electrocatalytic nitrate reduction to ammonia:From fundamentals to scale-up for treatment of industrial wastewater[J]. Environmental Science & Technology,2021,55(19):13231-13243.
|
63 |
WANG Changhong, ZHOU Wei, SUN Zhaojun,et al. Integrated selective nitrite reduction to ammonia with tetrahydroisoquinoline semi-dehydrogenation over a vacancy-rich Ni bifunctional electrode[J]. Journal of Materials Chemistry A, 2021, 9(1):239-243. doi: 10.1039/d0ta09590g
|
64 |
GUO Sujin, HECK K N, KASIRAJU S,et al. Insights into nitrate reduction over indium-decorated palladium nanoparticle catalysts[J]. ACS Catalysis, 2018, 8:503-515. doi: 10.1021/acscatal.7b01371
|
65 |
BAE S E, STEWART K L, GEWIRTH A A. Nitrate adsorption and reduction on Cu(100) in acidic solution[J]. Journal of the American Chemical Society, 2007, 129(33):10171-10180. doi: 10.1021/ja071330n
|
66 |
LIU Jinxun, RICHARDS D, SINGH N,et al. Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals[J]. ACS Catalysis, 2019, 9(8):7052-7064. doi: 10.1021/acscatal.9b02179
|
67 |
LI Jie, ZHAN Guangming, YANG Jianhua,et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters[J]. Journal of the American Chemical Society, 2020, 142(15):7036-7046. doi: 10.1021/jacs.0c00418
|
68 |
CHEN Fengyang, WU Zhenyu, GUPTA S,et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst[J]. Nature Nanotechnology, 2022, 17(7):759-767. doi: 10.1038/s41565-022-01121-4
|
69 |
DIMA G E, DE VOOYS A C A, KOPER M T M. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions[J]. Journal of Electroanalytical Chemistry, 2003, 554/555:15-23. doi: 10.1016/s0022-0728(02)01443-2
|
70 |
LIU Huimin, LANG Xiuyao, ZHU Chao,et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts[J]. Angewandte Chemie(International Ed. in English), 2022, 61(23):e202202556. doi: 10.1002/ange.202202556
|
71 |
SHI Yanmei, ZHANG Bin. Recent advances in transition metal phosphide nanomaterials:Synthesis and applications in hydrogen evolution reaction[J]. Chemical Society Reviews, 2016, 45(6):1529-1541. doi: 10.1039/c5cs00434a
|
72 |
WANG Zixuan, YOUNG S D, GOLDSMITH B R,et al. Increasing electrocatalytic nitrate reduction activity by controlling adsorption through PtRu alloying[J]. Journal of Catalysis, 2021, 395:143-154. doi: 10.1016/j.jcat.2020.12.031
|
73 |
DING Jing, LI Wei, ZHAO Qingliang,et al. Electroreduction of nitrate in water:Role of cathode and cell configuration[J]. Chemical Engineering Journal, 2015, 271:252-259. doi: 10.1016/j.cej.2015.03.001
|
74 |
REYTER D, BÉLANGER D, ROUÉ L. Study of the electroreduction of nitrate on copper in alkaline solution[J]. Electrochimica Acta, 2008, 53(20):5977-5984. doi: 10.1016/j.electacta.2008.03.048
|
75 |
ROSCA V, DUCA M, DE GROOT M T,et al. Nitrogen cycle electrocatalysis[J]. Chemical Reviews, 2009, 109(6):2209-2244. doi: 10.1021/cr8003696
|
76 |
YANG Jian, SEBASTIAN P, DUCA M,et al. pH dependence of the electroreduction of nitrate on Rh and Pt polycrystalline electrodes[J]. Chemical Communications(Cambridge,England), 2014, 50(17):2148-2151. doi: 10.1039/c3cc49224a
|
77 |
DORTSIOU M, KATSOUNAROS I, POLATIDES C,et al. Influence of the electrode and the pH on the rate and the product distribution of the electrochemical removal of nitrate[J]. Environmental Technology, 2013, 34(3):373-381. doi: 10.1080/09593330.2012.696722
|
78 |
GAO Jianan, JIANG Bo, NI Congcong,et al. Non-precious Co 3O 4-TiO 2/Ti cathode based electrocatalytic nitrate reduction:Preparation,performance and mechanism[J]. Applied Catalysis B:Environmental, 2019, 254:391-402. doi: 10.1016/j.apcatb.2019.05.016
|
79 |
GAO Jianan, JIANG Bo, NI Congcong,et al. Enhanced reduction of nitrate by noble metal-free electrocatalysis on P-doped three-dimensional Co 3O 4 cathode:Mechanism exploration from both experimental and DFT studies[J]. Chemical Engineering Journal, 2020, 382:123034. doi: 10.1016/j.cej.2019.123034
|
80 |
KATSOUNAROS I, KYRIACOU G. Influence of the concentration and the nature of the supporting electrolyte on the electrochemical reduction of nitrate on tin cathode[J]. Electrochimica Acta, 2007, 52(23):6412-6420. doi: 10.1016/j.electacta.2007.04.050
|
81 |
TALHI B, MONETTE F, AZZOUZ A. Effective and selective nitrate electroreduction into nitrogen through synergistic parameter interactions[J]. Electrochimica Acta, 2011, 58:276-284. doi: 10.1016/j.electacta.2011.09.044
|
82 |
GENDERS J D, HARTSOUGH D, HOBBS D T. Electrochemical reduction of nitrates and nitrites in alkaline nuclear waste solutions[J]. Journal of Applied Electrochemistry, 1996, 26(1):1-9. doi: 10.1007/bf00248182
|
83 |
DASH B P, CHAUDHARI S. Electrochemical denitrificaton of simulated ground water[J]. Water Research, 2005, 39(17):4065-4072. doi: 10.1016/j.watres.2005.07.032
|
84 |
CHAPLIN B P, REINHARD M, SCHNEIDER W F,et al. Critical review of Pd-based catalytic treatment of priority contaminants in water[J]. Environmental Science & Technology, 2012, 46(7):3655-3670. doi: 10.1021/es204087q
|
85 |
KYRIAKOU V, GARAGOUNIS I, VOURROS A,et al. An electrochemical Haber-Bosch process[J]. Joule, 2020, 4(1):142-158. doi: 10.1016/j.joule.2019.10.006
|
86 |
ZHANG Xi, WANG Yuting, LIU Cuibo,et al. Recent advances in non-noble metal electrocatalysts for nitrate reduction[J]. Chemical Engineering Journal, 2021, 403:126269. doi: 10.1016/j.cej.2020.126269
|