| 1 |  LANDRIGAN P J, FULLER R , ACOSTA N J R ,et al. The Lancet commission on pollution and health[J]. Lancet ,2018 ,391 :462-512. doi:10.1016/s0140-6736(17)32345-0 | 
																													
																						| 2 |  WADHAWAN S, JAIN A , NAYYAR J ,et al. Role of nanomaterials as adsorbents in heavy metal ion removal from waste water:A review[J]. Journal of Water Process Engineering ,2020 ,33 :101038. doi:10.1016/j.jwpe.2019.101038 | 
																													
																						| 3 |  MU Yi, JIA Falong , AI Zhihui ,et al. Iron oxide shell mediated environmental remediation properties of nano zero-valent iron[J]. Environmental Science:Nano ,2017 ,4 (1):27-45. doi:10.1039/c6en00398b | 
																													
																						| 4 |  | 
																													
																						|  |  ZHANG Shouqiu, CEN Jie , Deyi LÜ ,et al. Removal of lead and chromium ions in water by nanoscale zero-valent iron[J]. Journal of Chemical Engineering of Chinese Universities ,2019 ,33 (3):524-532. doi:10.3969/j.issn.1003-9015.2019.03.003 | 
																													
																						| 5 |  WANG Wei, HUA Yilong , LI Shaolin ,et al. Removal of Pb(Ⅱ) and Zn(Ⅱ) using lime and nanoscale zero-valent iron(nZVI):A comparative study[J]. Chemical Engineering Journal ,2016 ,304 :79-88. doi:10.1016/j.cej.2016.06.069 | 
																													
																						| 6 |  LING Lan, HUANG Xiaoyue , ZHANG Weixian . Enrichment of precious metals from wastewater with core-shell nanoparticles of iron[J]. Advanced Materials ,2018 ,30 (17):e1705703. doi:10.1002/adma.201705703 | 
																													
																						| 7 |  | 
																													
																						|  |  GU Tianhang, SHI Junming , HUA Yilong ,et al. Enrichment of silver from water using nanoscale zero-valent iron(nZVI)[J]. Acta Chimica Sinica ,2017 ,75 (10):991-997. doi:10.6023/a17070345 | 
																													
																						| 8 |  COSTA D, QUINTEIRO P , DIAS A ,et al. A systematic review of life cycle sustainability assessment:Current state,methodological challenges,and implementation issues[J]. Science of the Total Environment ,2019 ,686 :774-787. doi:10.1016/j.scitotenv.2019.05.435 | 
																													
																						| 9 |  PATI P, MCGINNIS S , VIKESLAND P J . Life cycle assessment of “green” nanoparticle synthesis methods[J]. Environmental Engineering Science ,2014 ,31 (7):410-420. doi:10.1089/ees.2013.0444 | 
																													
																						| 10 | 张礼知,张伟贤. 铁环境化学:环境和地球化学的研究热点[J]. 化学学报,2017,75(6):519-520. | 
																													
																						|  |  ZHANG Lizhi,  ZHANG Weixian. Environmental chemistry of iron:A frontier in environmental chemistry and geochemistry[J]. Acta Chimica Sinica,2017,75(6):519-520. | 
																													
																						| 11 |  WANG Peng, FU Fugang , LIU Tingyi . A review of the new multifunctional nano zero-valent iron composites for wastewater treatment:Emergence,preparation,optimization and mechanism[J]. Chemosphere ,2021 ,285 :131435. doi:10.1016/j.chemosphere.2021.131435 | 
																													
																						| 12 | 束善治,袁勇. 污染地下水原位处理方法:可渗透反应墙[J]. 环境污染治理技术与设备,2002(1):47-51. | 
																													
																						|  |  SHU Shanzhi,  YUAN Yong. In situ remediation of contaminated ground water:Permeable reactive barrier[J]. Technigues and Equipment for Enviropollcont,2002(1):47-51. | 
																													
																						| 13 |  | 
																													
																						|  |  CHEN Zhongru, ZHANG Chengbo , LI Hongyi ,et al. On the structure and design of permeable reactive barrier[J]. Journal of Safety and Environment ,2012 ,12 (4):56-61. doi:10.3969/j.issn.1009-6094.2012.04.013 | 
																													
																						| 14 | 李亮,徐建. 组合材料应用于可渗透反应墙技术的研究进展[J]. 工业水处理,2023,43(2):53-60. | 
																													
																						|  |  LI Liang,  XU Jian. Research progress of combined materials applied in permeable reaction barrier technology[J]. Industrial Water Treatment,2023,43(2):53-60. | 
																													
																						| 15 |  TOSCO T. Nanoscale zerovalent iron particles for groundwater remediation:A review[J]. Journal of Cleaner Production ,2014 ,77 :10-21. doi:10.1016/j.jclepro.2013.12.026 | 
																													
																						| 16 |  WU Yang, GUAN Chungyu , GRISWOLD N ,et al. Zero-valent iron-based technologies for removal of heavy metal(loid)s and organic pollutants from the aquatic environment:Recent advances and perspectives[J]. Journal of Cleaner Production ,2020 ,277 :123478. doi:10.1016/j.jclepro.2020.123478 | 
																													
																						| 17 |  FU Fenglian, DIONYSIOU D , LIU Hong . The use of zero-valent iron for groundwater remediation and wastewater treatment:A review[J]. Journal of Hazardous Materials ,2014 ,267 :194-205. doi:10.1016/j.jhazmat.2013.12.062 | 
																													
																						| 18 |  | 
																													
																						|  |  YANG Yan, ZHU Jingping . Main reactions in denitrification system with zero valent iron addition[J]. Industrial Water Treatment ,2021 ,41 (3):77-82. doi:10.11894/iwt.2020-0411 | 
																													
																						| 19 |  WANG Chuanbao, ZHANG Weixian . Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology ,1997 ,31 (7):2154-2156. doi:10.1021/es970039c | 
																													
																						| 20 |  VARADHI S N,  GILL H,  APOLDO L J,et al. Full-scale nanoiron injection for treatment of groundwater contaminated with chlorinated hydrocarbons[C]// Proceedings of GTI Natural Gas Technologies 2005:What’s New and What’s Next,Orlando,2005. | 
																													
																						| 21 |  CRANE R A. Nanoscale zero-valent iron:Future prospects for an emerging water treatment technology[J]. Journal of Hazardous Materials ,2012 ,211/212 :112-125. doi:10.1016/j.jhazmat.2011.11.073 | 
																													
																						| 22 | 黄潇月,王伟,凌岚,等. 纳米零价铁与重金属的反应:“核-壳”结构在重金属去除中的作用[J]. 化学学报 ,2017 ,75 (6):529-537. doi:10.6023/a17020051 | 
																													
																						|  |  HUANG Xiaoyue, WANG Wei , LING Lan ,et al. Heavy metal-nZVI reactions:The core-shell structure and applications for heavy metal treatment[J]. Acta Chimica Sinica ,2017 ,75 (6):529-537. doi:10.6023/a17020051 | 
																													
																						| 23 |  SONG Yue. Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils:An in situ pilot-scale study[J]. Chemical Engineering Journal ,2019 ,355 :65-75. doi:10.1016/j.cej.2018.08.126 | 
																													
																						| 24 |  | 
																													
																						| 25 |  JAMEI M R, KHOSRAVI M , ANVARIPOUR B ,et al. A novel ultrasound assisted method in synthesis of nZVI particles[J]. Ultrasonics Sonochemistry ,2014 ,21 (1):226-233. doi:10.1016/j.ultsonch.2013.04.015 | 
																													
																						| 26 |  ZHANG Yunxia, LI Tielong , JIN Zhaohui ,et al. Synthesis of nanoiron by microemulsion with Span/Tween as mixed surfactants for reduction of nitrate in water[J]. Frontiers of Environmental Science & Engineering in China ,2007 ,1 (4):466-470. doi:10.1007/s11783-007-0074-5 | 
																													
																						| 27 |  JIAO Weizhou. Simultaneous formation of nanoscale zero-valent iron and degradation of nitrobenzene in wastewater in an impinging stream-rotating packed bed reactor[J]. Chemical Engineering Journal ,2017 ,321 :564-571. doi:10.1016/j.cej.2017.03.141 | 
																													
																						| 28 |  DE A, DE A K , PANDA G S ,et al. Synthesis of zero valent iron nanoparticle and its application as a dephenolization agent for coke oven plant wastewater situated in West Bengal:India[J]. Environmental Progress & Sustainable Energy ,2017 ,36 (6):1700-1708. doi:10.1002/ep.12634 | 
																													
																						| 29 |  CHEN S S, HSU H D , LI Chiwang . A new method to produce nanoscale iron for nitrate removal[J]. Journal of Nanoparticle Research ,2004 ,6 (6):639-647. doi:10.1007/s11051-004-6672-2 | 
																													
																						| 30 |  ZHANG Huimin, RUAN Yang , LIANG Aiping ,et al. Carbothermal reduction for preparing nZVI/BC to extract uranium:Insight into the iron species dependent uranium adsorption behavior[J]. Journal of Cleaner Production ,2019 ,239 :117873. doi:10.1016/j.jclepro.2019.117873 | 
																													
																						| 31 |  HE Jiawei, AI Ling , WANG Yiyan ,et al. Carbothermal synthesis of aerosol-based iron-carbon nanocomposites for adsorption and reduction of Cr(Ⅵ) nanoscale zerovalent iron particles for environmental restoration ,2019 :495-510. doi:10.1007/978-3-319-95340-3_14 | 
																													
																						| 32 |  MASUD A, CUI Yanbin , ATKINSON J D ,et al. Shape matters:Cr(Ⅵ) removal using iron nanoparticle impregnated 1-D vs 2-D carbon nanohybrids prepared by ultrasonic spray pyrolysis[J]. Journal of Nanoparticle Research ,2018 ,20 (3):1-12. doi:10.1007/s11051-018-4172-z | 
																													
																						| 33 |  CHUN Chanlan, BAER D R , MATSON D W ,et al. Characterization and reactivity of iron nanoparticles prepared with added Cu,Pd,and Ni[J]. Environmental Science & Technology ,2010 ,44 (13):5079-5085. doi:10.1021/es903278e | 
																													
																						| 34 |  OROPEZA S, COREA M , GÓMEZ-YÁÑEZ C ,et al. Zero-valent iron nanoparticles preparation[J]. Materials Research Bulletin ,2012 ,47 (6):1478-1485. doi:10.1016/j.materresbull.2012.02.026 | 
																													
																						| 35 |  LI Jie, CHEN Changlun , ZHANG Rui ,et al. Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions[J]. Chemistry-An Asian Journal ,2015 ,10 (6):1410-1417. doi:10.1002/asia.201500242 | 
																													
																						| 36 |  SUN Hongqi, ZHOU Guanliang , LIU Shizhen ,et al. Nano-Fe⁰ encapsulated in microcarbon spheres:Synthesis,characterization,and environmental applications[J]. ACS Applied Materials & Interfaces ,2012 ,4 (11):6235-6241. doi:10.1021/am301829u | 
																													
																						| 37 | 袁明亮,陶加华,余亮,等. 纳米铁-镍合金颗粒的制备及表征[J]. 过程工程学报,2011,11(1):158-161. | 
																													
																						|  |  YUAN Mingliang,  TAO Jiahua,  YU Liang,et al. Preparation and characterization of iron-nickel alloy nanoparticles[J]. The Chinese Journal of Process Engineering,2011,11(1):158-161. | 
																													
																						| 38 | KOO C, HONG H , IM P W ,et al. Magnetic and near-infrared derived heating characteristics of dimercaptosuccinic acid coated uniform Fe@Fe3 O4  core-shell nanoparticles[J]. Nano Convergence ,2020 ,7 (1):20. doi:10.1186/s40580-020-00229-4 | 
																													
																						| 39 |  HU Jun, ZHANG Feng , WANG Jing ,et al. Synthesis of single-crystalline Fe nanowires using catalyst-assisted chemical vapor deposition[J]. Materials Letters ,2015 ,160 :529-532. doi:10.1016/j.matlet.2015.06.043 | 
																													
																						| 40 |  WANG Yinan. Green synthesis of nanoparticles for the remediation of contaminated waters and soils:Constituents,synthesizing methods,and influencing factors[J]. Journal of Cleaner Production ,2019 ,226 :540-549. doi:10.1016/j.jclepro.2019.04.128 | 
																													
																						| 41 | 刘清,邓真宁,滑熠龙,等. 纳米铁的绿色合成及其在环境中的应用研究进展[J]. 化工进展,2020(5):1950-1963. | 
																													
																						|  |  LIU Qing,  DENG Zhenning,  HUA Yilong,et al. Green synthesis of Fe nanoparticles and their environmental applications[J]. Chemical Industry and Engineering Progress,2020(5):1950-1963. | 
																													
																						| 42 |  | 
																													
																						|  |  WANG Peng, WANG Yidong , LIU Tingyi . Research progress of preparation of nano zero-valent iron by ball milling[J]. Environmental Chemistry ,2021 ,40 (9):2924-2933. doi:10.7524/j.issn.0254-6108.2020050601 | 
																													
																						| 43 |  AKHGAR B N, POURGHAHRAMANI P I ,et al. Implementation of sonochemical leaching for preparation of nano zero-valent iron(nZVI) from natural pyrite mechanochemically reacted with Al[J]. International Journal of Mineral Processing ,2017 ,164 :1-5. doi:10.1016/j.minpro.2017.05.002 | 
																													
																						| 44 |  | 
																													
																						|  |  HUANG Kaijin, XIE Changsheng , XU Desheng . Development of nanoparticles synthesis by laser evaporation condensation[J]. Laser Technology ,2004 ,28 (1):5-11. doi:10.3969/j.issn.1001-3806.2004.01.001 | 
																													
																						| 45 |  PATELLI N, CUGINI F , WANG Di ,et al. Structure and magnetic properties of Fe-Co alloy nanoparticles synthesized by pulsed-laser inert gas condensation[J]. Journal of Alloys and Compounds ,2022 ,890 :161863. doi:10.1016/j.jallcom.2021.161863 | 
																													
																						| 46 |  DE BONIS A, LOVAGLIO T , GALASSO A ,et al. Iron and iron oxide nanoparticles obtained by ultra-short laser ablation in liquid[J]. Applied Surface Science ,2015 ,353 :433-438. doi:10.1016/j.apsusc.2015.06.145 | 
																													
																						| 47 |  | 
																													
																						|  |  YE Kai, LIANG Feng , YAO Yaochun ,et al. A survey on preparation of nanomaterials by DC arc plasma[J]. Materials Reports ,2019 ,33 (7):1089-1098. doi:10.11896/cldb.18030013 | 
																													
																						| 48 | 杨晓丹,王玉如,李敏睿. 纳米零价铁的制备、改性及对废水中重金属和有机污染物的去除[J]. 化工进展,2019,38(7):3412-3424. | 
																													
																						|  |  YANG Xiaodan,  WANG Yuru,  LI Minrui. Preparation,modification of nanoscale zero valent iron and its application for the removal of heavy metals and organic pollutants from wastewater[J]. Chemical Industry and Engineering Progress,2019,38(7):3412-3424. | 
																													
																						| 49 | 彭楚才,王金相,童宗保,等. 电爆炸法制备纳米粉体材料的研究进展[J]. 材料科学与工程学报,2013,31(4):608-613. | 
																													
																						|  |  PENG Chucai,  WANG Jinxiang,  TONG Zongbao,et al. Progress in the fabrication of nano powder materials using electrical explosion method[J]. Journal of Materials Science and Engineering,2013,31(4):608-613. | 
																													
																						| 50 |  LI Qian, CHEN Zhongshan , WANG Huihui ,et al. Removal of organic compounds by nanoscale zero-valent iron and its composites[J]. Science of the Total Environment ,2021 ,792 :148546. doi:10.1016/j.scitotenv.2021.148546 | 
																													
																						| 51 |  | 
																													
																						|  |  HUANG Xuezheng, ZHANG Yongxiang , TIAN Zhenjun ,et al. Research progress in synthesis,modification and field application of nano zero-valent iron[J]. Technology of Water Treatment ,2021 ,47 (1):12-18. doi:10.16796/j.cnki.1000-3770.2021.01.003 | 
																													
																						| 52 |  JAMEI M R, KHOSRAVI M R , ANVARIPOUR B . Investigation of ultrasonic effect on synthesis of nano zero valent iron particles and comparison with conventional method[J]. Asia-Pacific Journal of Chemical Engineering ,2013 ,8 (5):767-774. doi:10.1002/apj.1720 | 
																													
																						| 53 |  GARCIA A N, ZHANG Yanyan , GHOSHAL S ,et al. Recent advances in sulfidated zerovalent iron for contaminant transformation[J]. Environmental Science & Technology ,2021 ,55 (13):8464-8483. doi:10.1021/acs.est.1c01251 | 
																													
																						| 54 |  YIN Yaru, ZHENG Wenjuan , YAN An ,et al. A review on montmorillonite-supported nanoscale zerovalent iron for contaminant removal from water and soil[J]. Adsorption Science & Technology ,2021 ,2021 :9340362. doi:10.1155/2021/9340362 | 
																													
																						| 55 |  ZHAO Xiao, LIU Wen , CAI Zhengqing ,et al. Reductive immobilization of uranium by stabilized zero-valent iron nanoparticles:Effects of stabilizers,water chemistry and long-term stability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects ,2020 ,604 :125315. doi:10.1016/j.colsurfa.2020.125315 | 
																													
																						| 56 |  ZHU Yongyang, OUYANG Liuzhang , ZHONG Hao ,et al. Closing the loop for hydrogen storage:Facile regeneration of NaBH4  from its hydrolytic product[J]. Angewandte Chemie:International Ed. in English ,2020 ,59 (22):8623-8629. doi:10.1002/anie.201915988 | 
																													
																						| 57 |  DUYDU Y, BASARAN N , BOLT H ,et al. Reproductive toxicity of boric acid and sodium borates[J]. Toxicology Letters ,2016 ,258 :S29. doi:10.1016/j.toxlet.2016.06.1211 | 
																													
																						| 58 | 刘艳霞. 金属铁电沉积过程中的分形生长与调控规律研究[D]. 重庆:重庆大学,2019. | 
																													
																						|  |  LIU Yanxia. Study on fractal growth and regulation in metallic iron electrodeposition[D]. Chongqing:Chongqing University,2019. | 
																													
																						| 59 | 刘春泉,彭其春,薛正良,等. 电解铁粉的制备及压缩烧结性能[J]. 钢铁研究学报,2019,31(9):822-829. | 
																													
																						|  |  LIU Chunquan,  PENG Qichun,  XUE Zhengliang,et al. Preparation of electrolytic iron powder and its compression sintering properties[J]. Journal of Iron and Steel Research,2019,31(9):822-829. | 
																													
																						| 60 |  | 
																													
																						|  |  HUANG Hongbing, PENG Qichun , QIU Wentao . Preparation of high purity iron by industrial pure iron electrolysis[J]. Journal of Chongqing University ,2017 ,40 (12):59-70. doi:10.11835/j.issn.1000-582X.2017.12.008 | 
																													
																						| 61 |  HOCH L B, MACK E J , HYDUTSKY B W ,et al. Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium[J]. Environmental Science & Technology ,2008 ,42 (7):2600-2605. doi:10.1021/es702589u | 
																													
																						| 62 |  WAN Zhonghao, CHO D W , TSANG D ,et al. Concurrent adsorption and micro-electrolysis of Cr(Ⅵ) by nanoscale zerovalent iron/biochar/Ca-alginate composite[J]. Environmental Pollution ,2019 ,247 :410-420. doi:10.1016/j.envpol.2019.01.047 | 
																													
																						| 63 |  LIANG Weiyu, WANG Gehui , PENG Cheng . Recent advances of carbon-based nano zero valent iron for heavy metals remedia tion in soil and water:A critical review[J]. Journal of Hazardous Materials ,2022 ,426 :127993. doi:10.1016/j.jhazmat.2021.127993 | 
																													
																						| 64 |  ZHOU Long, LI Zheng , YI Yunqiang . Increasing the electron selectivity of nanoscale zero-valent iron in environmental remediation:A review[J]. Journal of Hazardous Materials ,2022 ,421 :126709. doi:10.1016/j.jhazmat.2021.126709 | 
																													
																						| 65 |  KUILA S K, CHATTERJEE R , GHOSH D ,et al. Kinetics of hydrogen reduction of magnetite ore fines[J]. International Journal of Hydrogen Energy ,2016 ,41 (22):9256-9266. doi:10.1016/j.ijhydene.2016.04.075 | 
																													
																						| 66 |  VISENTIN C, TRENTIN A , BRAUN A ,et al. Nano scale zero valent iron production methods applied to contaminated sites remediation:An overview of production and environmental aspects[J]. Journal of Hazardous Materials ,2021 ,410 :124614. doi:10.1016/j.jhazmat.2020.124614 | 
																													
																						| 67 |  VISENTIN C, TRENTIN A , BRAUN A ,et al. Lifecycle assessment of environmental and economic impacts of nano-iron synthesis process for application in contaminated site remediation[J]. Journal of Cleaner Production ,2019 ,231 :307-319. doi:10.1016/j.jclepro.2019.05.236 | 
																													
																						| 68 |  WANG Shengsen. Biochar-supported nZVI(nZVI/BC) for contaminant removal from soil and water:A critical review[J]. Journal of Hazardous Materials ,2019 ,373 :820-834. doi:10.1016/j.jhazmat.2019.03.080 | 
																													
																						| 69 |  XIAO Zhengli. Plant-mediated synthesis of highly active iron nanoparticles for Cr(Ⅵ) removal:Investigation of the leading biomolecules[J]. Chemosphere ,2016 ,150 :357-364. doi:10.1016/j.chemosphere.2016.02.056 | 
																													
																						| 70 |  ESSIEN E A, KAVAZ D , SOLOMON M M . Olive leaves extract mediated zero-valent iron nanoparticles:Synthesis,characterization,and assessment as adsorbent for nickel(Ⅱ) ions in aqueous medium[J]. Chemical Engineering Communications ,2018 ,205 (11):1568-1582. doi:10.1080/00986445.2018.1461089 | 
																													
																						| 71 |  XIAO Zhengli, ZHANG Haidong , XU Yan ,et al. Ultra-efficient removal of chromium from aqueous medium by biogenic iron based nanoparticles[J]. Separation and Purification Technology ,2017 ,174 :466-473. doi:10.1016/j.seppur.2016.10.047 | 
																													
																						| 72 |  LUO Fang, CHEN Zuliang , MEGHARAJ M ,et al. Biomolecules in grape leaf extract involved in one-step synthesis of iron-based nanoparticles[J]. RSC Adv. ,2014 ,4 (96):53467-53474. doi:10.1039/c4ra08808e | 
																													
																						| 73 |  AHMED S F. Green approaches in synthesising nanomaterials for environmental nanobioremediation:Technological advancements,applications,benefits and challenges[J]. Environmental Research ,2022 ,204 :111967. doi:10.1016/j.envres.2021.111967 | 
																													
																						| 74 |  TAVAKOLI A, SOHRABI M , KARGARI A . A review of methods for synthesis of nanostructured metals with emphasis on iron compounds[J]. Chemical Papers ,2007 ,61 (3):151-170. doi:10.2478/s11696-007-0014-7 | 
																													
																						| 75 |  SCOTT T B, DICKINSON M , CRANE R A ,et al. The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles[J]. Journal of Nanoparticle Research ,2010 ,12 (5):1765-1775. doi:10.1007/s11051-009-9732-9 | 
																													
																						| 76 |  LIU Yueqiang, MAJETICH S A , TILTON R D ,et al. TCE dechlorination rates,pathways,and efficiency of nanoscale iron particles with different properties[J]. Environmental Science & Technology ,2005 ,39 (5):1338-1345. doi:10.1021/es049195r | 
																													
																						| 77 |  LI Shaolin, YAN Weile , ZHANG Weixian . Solvent-free production of nanoscale zero-valent iron(nZVI) with precision milling[J]. Green Chemistry ,2009 ,11 (10):1618. doi:10.1039/b913056j | 
																													
																						| 78 |  KÖBER R, HOLLERT H , HORNBRUCH G ,et al. Nanoscale zero-valent iron flakes for groundwater treatment[J]. Environmental Earth Sciences ,2014 ,72 (9):3339-3352. doi:10.1007/s12665-014-3239-0 | 
																													
																						| 79 |  RIBAS D, PEŠKOVÁ K , JUBANY I ,et al. High reactive nano zero-valent iron produced via wet milling through abrasion by alumina[J]. Chemical Engineering Journal ,2019 ,366 :235-245. doi:10.1016/j.cej.2019.02.090 | 
																													
																						| 80 |  GAO Jie, WANG Wei , RONDINONE A ,et al. Degradation of trichloroethene with a novel ball milled Fe-C nanocomposite[J]. Journal of Hazardous Materials ,2015 ,300 :443-450. doi:10.1016/j.jhazmat.2015.07.038 | 
																													
																						| 81 |  GAO Mingxia. FeO/C anode materials of high capacity and cycle stability for lithium-ion batteries synthesized by carbothermal reduction[J]. Journal of Alloys and Compounds ,2013 ,565 :97-103. doi:10.1016/j.jallcom.2013.03.012 | 
																													
																						| 82 |  | 
																													
																						|  |  LIU Yin, QIN Xiaoying , ZHANG Mingxu . Magnetoresistance of nanocrystalline γ -Ni-Fe alloy[J]. Chinese Journal of Materials Research ,2003 ,17 (1):19-24. doi:10.3321/j.issn:1005-3093.2003.01.004 | 
																													
																						| 83 |  MORADI GHIASABADI S, RAYGAN S . In situ production of Fe-TiC nanocomposite by mechanical activation and heat treatment of the Fe2 O3 /TiO2 /C powder[J]. Journal of Materials Engineering and Performance ,2012 ,21 (11):2295-2302. doi:10.1007/s11665-012-0185-4 | 
																													
																						| 84 |  AĞAOĞULLARı D, MADSEN S , ÖGÜT B ,et al. Synthesis and characterization of graphite-encapsulated iron nanoparticles from ball milling-assisted low-pressure chemical vapor deposition[J]. Carbon ,2017 ,124 :170-179. doi:10.1016/j.carbon.2017.08.043 | 
																													
																						| 85 |  | 
																													
																						|  |  ZHANG Zhongliang. Preparation,structure and magnetic properties of carbon-encapsulated magnetite,martensite,and iron nanoparticles by high energy ball milling method[D]. Changchun:Jilin University,2020 . doi:10.1016/j.matchar.2020.110502 | 
																													
																						| 86 |  ZHANG Dongshi, GÖKCE B , BARCIKOWSKI S . Laser synthesis and processing of colloids:Fundamentals and applications[J]. Chemical Reviews ,2017 ,117 (5):3990-4103. doi:10.1021/acs.chemrev.6b00468 | 
																													
																						| 87 | 彭楚才. 电爆炸法制备纳米粉体及其机理研究[D]. 南京:南京理工大学,2017. | 
																													
																						|  |  PENG Chucai. Study on the preparation of nano-powders by electrical explosion of wire and its mechanism[D]. Nanjing:Nanjing University of Science and Technology,2017. | 
																													
																						| 88 |  | 
																													
																						|  |  | 
																													
																						| 89 |  AMENDOLA V, RIELLO P , MENEGHETTI M . Magnetic nanoparticles of iron carbide,iron oxide,Iron@Iron oxide,and metal iron synthesized by laser ablation in organic solvents[J]. The Journal of Physical Chemistry C ,2011 ,115 (12):5140-5146. doi:10.1021/jp109371m | 
																													
																						| 90 |  LASEMI N, BOMATÍ MIGUEL O , LAHOZ R ,et al. Laser-assisted synthesis of colloidal FeW x  O y  and Fe/Fe x  O y  nanoparticles in water and ethanol[J]. ChemPhysChem ,2018 ,19 (11):1414-1419. doi:10.1002/cphc.201701214 | 
																													
																						| 91 |  LIN Qiyuan, NADARAJAH R , HOGLUND E ,et al. Towards synthetic L10-FeNi:Detecting the absence of cubic symmetry in Laser-Ablated Fe-Ni nanoparticles[J]. Applied Surface Science ,2021 ,567 :150664. doi:10.1016/j.apsusc.2021.150664 | 
																													
																						| 92 |  LIU Airong, LIU Jing , PAN Bingcai ,et al. Formation of lepidocrocite(γ -FeOOH) from oxidation of nanoscale zero-valent iron(nZVI) in oxygenated water[J]. RSC Adv. ,2014 ,4 (101):57377-57382. doi:10.1039/c4ra08988j | 
																													
																						| 93 |  HAN Ruoyu, WU Jiawei , QIU Aici . Optical emission behaviors of C,Al,Ti,Fe,Cu,Mo,Ag,Ta,and W wire explosions in gaseous media[J]. Physics Letters A ,2019 ,383 (16):1946-1954. doi:10.1016/j.physleta.2019.03.029 | 
																													
																						| 94 |  HAN Ruoyu, WU Jiawei , QIU Aici ,et al. Electrical explosions of Al,Ti,Fe,Ni,Cu,Nb,Mo,Ag,Ta,W,W-Re,Pt,and Au wires in water:A comparison study[J]. Journal of Applied Physics ,2018 ,124 (4):043302. doi:10.1063/1.5030760 | 
																													
																						| 95 |  GAO Xin, YOKOTA N ,ODA H,et al. One step preparation of Fe-FeO-graphene nanocomposite through pulsed wire discharge[J]. Crystals ,2018 ,8 (2):104. doi:10.3390/cryst8020104 | 
																													
																						| 96 |  LÁZÁR K, VARGA L , KOVÁCS K V . Electric explosion of steel wires for production of nanoparticles:Reactions with the liquid media[J]. Journal of Alloys and Compounds ,2018 ,763 :759-770. doi:10.1016/j.jallcom.2018.05.326 | 
																													
																						| 97 |  LERNER M I, BAKINA O V , PERVIKOV A V ,et al. Structural-phase states of Fe-Cu and Fe-Ag bimetallic particles produced by electric explosion of two wires[J]. Russian Physics Journal ,2018 ,61 (1):14-18. doi:10.1007/s11182-018-1359-9 | 
																													
																						| 98 |  YUN J Y, REDDY A S , YANG Sangsun ,et al. Large-scale synthesis and CO oxidation study of FeCr alloy supported Pt nanocatalyst by electrical wire explosion process[J]. Catalysis Letters ,2012 ,142 (3):326-331. doi:10.1007/s10562-012-0766-8 | 
																													
																						| 99 |  | 
																													
																						|  |  DING Songyi, SUN Bo , ZHUO Changfei . Experimental research on combustion of micro/nano iron powder based on particle swarm algorithm[J]. Science Technology and Engineering ,2022 ,22 (7):2709-2716. doi:10.3969/j.issn.1671-1815.2022.07.021 | 
																													
																						| 100 |  DONG Haoran, LI Long , WANG Yaoyao ,et al. Aging of zero-valent iron-based nanoparticles in aqueous environment and the consequent effects on their reactivity and toxicity[J]. Water Environment Research:A Research Publication of the Water Environment Federation ,2020 ,92 (5):646-661. doi:10.1002/wer.1265 | 
																													
																						| 101 |  GILBERTSON L M, WENDER B A , ZIMMERMAN J B ,et al. Coordinating modeling and experimental research of engineered nanomaterials to improve life cycle assessment studies[J]. Environmental Science:Nano ,2015 ,2 (6):669-682. doi:10.1039/c5en00097a | 
																													
																						| 102 |  VISENTIN C, TRENTIN A , BRAUN A ,et al. Life cycle sustainability assessment:A systematic literature review through the application perspective,indicators,and methodologies[J]. Journal of Cleaner Production ,2020 ,270 :122509. doi:10.1016/j.jclepro.2020.122509 | 
																													
																						| 103 |  VALDIVIA S, BACKES J G , TRAVERSO M ,et al. Principles for the application of life cycle sustainability assessment[J]. The International Journal of Life Cycle Assessment ,2021 ,26 (9):1900-1905. doi:10.1007/s11367-021-01958-2 | 
																													
																						| 104 | 董璟琦,张红振,雷秋霜,等. 污染场地修复生命周期评估程序与模型的研究进展[J]. 环境污染与防治,2016,38(12):89-95. | 
																													
																						|  |  DONG Jingqi,  ZHANG Hongzhen,  LEI Qiushuang,et al. Review of LCA procedure and models for contaminated site remediation[J]. Environmental Pollution & Control,2016,38(12):89-95. | 
																													
																						| 105 |  VISENTIN C, BRAUN A B , SILVA TRENTIN A W DA ,et al. Sustainability assessment of nanoscale zerovalent iron production methods[J]. Environmental Engineering Science ,2022 ,39 (10):847-860. doi:10.1089/ees.2021.0341 | 
																													
																						| 106 |  VISENTIN C, TRENTIN A , BRAUN A ,et al. Life cycle sustainability assessment of the nanoscale zero-valent iron synthesis process for application in contaminated site remediation[J]. Environmental Pollution ,2021 ,268 :115915. doi:10.1016/j.envpol.2020.115915 | 
																													
																						| 107 |  MARTINS F, MACHADO S , ALBERGARIA T ,et al. LCA applied to nano scale zero valent iron synthesis[J]. The International Journal of Life Cycle Assessment ,2017 ,22 (5):707-714. doi:10.1007/s11367-016-1258-7 | 
																													
																						| 108 |  | 
																													
																						| 109 |  RIDSDALE D R, NOBLE B F . Assessing sustainable remediation frameworks using sustainability principles[J]. Journal of Environmental Management ,2016 ,184 :36-44. doi:10.1016/j.jenvman.2016.09.015 | 
																													
																						| 110 |  FAUZI R T, LAVOIE P , SORELLI L ,et al. Exploring the current challenges and opportunities of life cycle sustainability assessment[J]. Sustainability ,2019 ,11 (3):636. doi:10.3390/su11030636 | 
																													
																						| 111 |  JOSHI N, FILIP J , COKER V S ,et al. Microbial reduction of natural Fe(Ⅲ) minerals;toward the sustainable production of functional magnetic nanoparticles[J]. Frontiers in Environmental Science ,2018 ,6 :127. doi:10.3389/fenvs.2018.00127 | 
																													
																						| 112 |  PATIÑO-RUIZ D A, MERAMO-HURTADO S I , GONZÁLEZ-DELGADO Á D ,et al. Environmental sustainability evaluation of iron oxide nanoparticles synthesized via green synthesis and the coprecipitation method:A comparative life cycle assessment study[J]. ACS Omega ,2021 ,6 (19):12410-12423. doi:10.1021/acsomega.0c05246 | 
																													
																						| 113 |  KAMBANOU M L. Life cycle costing:Understanding how it is practised and its relationship to life cycle management:A case study[J]. Sustainability ,2020 ,12 (8):3252. doi:10.3390/su12083252 | 
																													
																						| 114 |  ZHANG Xiang, ZHANG Lei , FUNG K ,et al. Sustainable product design:A life-cycle approach[J]. Chemical Engineering Science ,2020 ,217 :115508. doi:10.1016/j.ces.2020.115508 | 
																													
																						| 115 |  JENDRZEJ S, GÖKCE B , EPPLE M ,et al. How size determines the value of gold:Economic aspects of wet chemical and laser-based metal colloid synthesis[J]. ChemPhysChem ,2017 ,18 (9):1012-1019. doi:10.1002/cphc.201601139 | 
																													
																						| 116 |  HAASTER B, CIROTH A , FONTES J ,et al. Development of a methodological framework for social life-cycle assessment of novel technologies[J]. The International Journal of Life Cycle Assessment ,2017 ,22 (3):423-440. doi:10.1007/s11367-016-1162-1 | 
																													
																						| 117 |  GRUBERT E,  ZAMAGNI A,  MACOMBE C,et al. Rigor in social life cycle assessment:improving the scientific grounding of SLCA[J]. The International Journal of Life Cycle Assessment,2016,23(3):481-491. | 
																													
																						| 118 |  VISENTIN C, SILVA TRENTIN A W DA , BRAUN A B ,et al. Social life cycle assessment of the nanoscale zero-valent iron synthesis process for application in contaminated site remediation[J]. Environmental Science and Pollution Research International ,2022 ,29 (15):21603-21620. doi:10.1007/s11356-021-17319-3 | 
																													
																						| 119 | 李彬,郭汉杰,郭靖,等. 基于最小Gibbs自由能原理的铁氧化物气固还原热力学研究[J]. 工程科学学报,2017,39(11):1653-1660. | 
																													
																						|  |  LI Bin,  GUO Hanjie,  GUO Jing,et al. Thermodynamics of iron oxide gas-solid reduction based on the minimized Gibbs free energy principle[J]. Chinese Journal of Engineering,2017,39(11):1653-1660. | 
																													
																						| 120 |  CHAI Xicui, YUE Qiang , ZHANG Yujie ,et al. Analysis of energy consumption and its influencing factors in hydrogen metallurgy process[J]. Steel Research International ,2022 ,93 (7):2100730. doi:10.1002/srin.202100730 | 
																													
																						| 121 |  LI Bingbing, ZHANG Hongchao , YUAN C . Thermodynamic analysis of titanium dioxide nanotube synthesis process for sustainability improvement[C]//Proceedings of ASME 2015 International Manufacturing Science and Engineering Conference. Charlotte,North Carolina,USA,2015 . doi:10.1115/msec2015-9229 | 
																													
																						| 122 |  CHOI H, WANG Lin . A quantitative study of grinding characteristics on particle size and grinding consumption energy by stirred ball mill[J]. Korean Journal of Metals and Materials ,2007 ,17 (10):532-537. doi:10.3740/mrsk.2007.17.10.532 | 
																													
																						| 123 |  BIAN Xiaolei. Effect of lifters and mill speed on particle behaviour,torque,and power consumption of a tumbling ball mill:Experimental study and DEM simulation[J]. Minerals Engineering ,2017 ,105 :22-35. doi:10.1016/j.mineng.2016.12.014 | 
																													
																						| 124 |  ZHAO Xuzhe, SHAW L . Modeling and analysis of high-energy ball milling through attritors[J]. Metallurgical and Materials Transactions A ,2017 ,48 (9):4324-4333. doi:10.1007/s11661-017-4195-6 | 
																													
																						| 125 | 吕利平,李航,李伟,等. 碳中和在污水处理厂的实践途径与应用进展[J]. 工业水处理,2022,42(11):1-6. | 
																													
																						|  |  Liping LÜ,  LI Hang,  LI Wei,et al. Practice approach and application progress of carbon neutrality in wastewater treatment plant[J]. Industrial Water Treatment,2022,42(11):1-6. |