1 |
Barndok H , Hermosilla D , Han C , et al. Degradation of 1, 4-dioxane from industrial wastewater by solar photocatalysis using immobilized NF-TiO2 composite with monodisperse TiO2 nanoparticles[J]. Applied Catalysis B Environmental, 2016, 180, 44- 52.
doi: 10.1016/j.apcatb.2015.06.015
|
2 |
Sobhan M D , Masoud S N , Mazhari M P , et al. Magnetically separable Fe3O4/SiO2/TiO2 nanostructures supported by neodymium(Ⅲ):fabrication and enhanced photocatalytic activity for degradation of organic pollution[J]. Journal of Materials Science-Materials in Electronics, 2017, 28 (19): 14271- 14281.
doi: 10.1007/s10854-017-7286-7
|
3 |
Khan M A , Nadeem M A , Idriss H . Ferroelectric polarization effect on surface chemistry and photo-catalytic activity:a review[J]. Surface Science Reports, 2016, 71 (1): 1- 31.
doi: 10.1016/j.surfrep.2016.01.001
|
4 |
Sohail M , Xue H L , Jiao Q Z , et al. Synthesis of well-dispersed TiO2/CNTs@CoFe2O4 nanocomposites and their photocatalytic properties[J]. Materials Research Bulletin, 2018, 101, 83- 89.
doi: 10.1016/j.materresbull.2018.01.017
|
5 |
Jia Y S , Shen S , Wang D , et al. Composite Sr2TiO4/SrTiO3 heterojunction based photocatalyst for hydrogen production under visible light irradiation[J]. Journal of Materials Chemistry A, 2013, 1 (27): 7905- 7912.
doi: 10.1039/c3ta11326d
|
6 |
Ye M M , Zhou H H , Zhang T Q , et al. Preparation of SiO2@Au@TiO2 core-shell nanostructures and their photocatalytic activities under visible light irradiation[J]. Chemical Engineering Journal, 2013, 226, 209- 216.
doi: 10.1016/j.cej.2013.04.064
|
7 |
Rao Y F , Chu W , Wang Y R . Photocatalytic oxidation of carbamazepine in triclinic-WO3 suspension:role of alcohol and sulfate radicals in the degradation pathway[J]. Applied Catalysis A:General, 2013, 468, 240- 249.
doi: 10.1016/j.apcata.2013.08.050
|
8 |
Ocampo-Pérez R , Sanchez-Polo M , Rivera-Utrilla J , et al. Enhancement of the catalytic activity of TiO2 by using activated carbon in the photocatalytic degradation of cytarabine[J]. Applied Catalysis B Environmental, 2011, 104 (1): 177- 184.
URL
|
9 |
Chi Y , Qing Y , Li Y J , et al. Magnetically separable Fe3O4/SiO2/TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity[J]. Journal of Hazardous Materials, 2013, 262, 404- 411.
doi: 10.1016/j.jhazmat.2013.08.077
|
10 |
Cui B , Peng H X , Xia H Q , et al. Magnetically recoverable core-shell nanocomposites γ-Fe2O3@SiO2@TiO2-Ag with enhanced photocatalytic activity and antibacterial activity[J]. Separation & Purification Technology, 2013, 103, 251- 257.
URL
|
11 |
Li C Y , Younesi R , Cai Y L , et al. Photocatalytic and antibacterial properties of Au-decorated Fe3O4@mTiO2 core-shell microspheres[J]. Applied Catalysis B:Environmental, 2014, 156-157, 314- 322.
doi: 10.1016/j.apcatb.2014.03.031
|
12 |
Colmenares J C , Ouyang W , Ojeda M , et al. Mild ultrasound-assisted synthesis of TiO2 supported on magnetic nanocomposites for selective photo-oxidation of benzyl alcohol[J]. Applied Catalysis B:Environmental, 2018, 183, 107- 112.
URL
|
13 |
Ye M M , Zhang Q , Hu Y X , et al. Magnetically recoverable coreshell nanocomposites with enhanced photocatalytic activity[J]. Chemistry, 2010, 16 (21): 6243- 6250.
doi: 10.1002/chem.200903516
|
14 |
Adel F , Rahmi S , Sari H D , et al. Preparation and characterization of Fe3O4/TiO2 composites by heteroagglomeration[J]. Advanced Materials Research, 2013, 626, 131- 137.
URL
|
15 |
Yu X X , Liu S W , Yu J G . Superparamagnetic γ-Fe2O3@SiO2@TiO2 composite microspheres with superior photocatalytic properties[J]. Applied Catalysis B Environmental, 2011, 104 (1/2): 12- 20.
URL
|
16 |
Liu H F , Jia Z G , Ji S F , et al. Synthesis of TiO2/SiO2@Fe3O4 magnetic microspheres and their properties of photocatalytic degradation dyestuff[J]. Catalysis Today, 2011, 175 (1): 293- 298.
doi: 10.1016/j.cattod.2011.04.042
|
17 |
Liu Y , Wan J F , Liu C T , et al. Fabrication of magnetic Fe3O4/C/TiO2 composites with nanotube structure and enhanced photocatalytic activity[J]. Materials Science & Technology, 2015, 32 (8): 786- 793.
URL
|
18 |
Hu W T , Liu B C , Wang Q , et al. A magnetic double-shell microsphere as a highly efficient reusable catalyst for catalytic applications[J]. Chemical Communications, 2013, 49 (69): 7596- 7598.
doi: 10.1039/c3cc42687d
|
19 |
Feng J T , Chen H F , Li L C . Adsorption-photocatalytic degradation activity of ZnTi0.6Fe1.4O4/expanded graphite composites on contaminants[J]. Scientia Sinica, 2015, 45 (10): 1075- 1088.
doi: 10.1360/N032015-00055
|
20 |
黄智淼, 林君, 张洋, 等. 钛铁矿制四氧化三铁/二氧化钛及其光催化性能[J]. 无机盐工业, 2018, 50 (3): 69- 73.
URL
|
21 |
辛铁军, 张和鹏, 马明亮, 等. Fe3O4/TiO2核壳磁性纳米材料的制备及表征[J]. 功能材料, 2014, (1): 72- 77.
URL
|
22 |
王俊磊, 朱宁芳, 张娇静, 等. 磁性核壳Fe3O4/TiO2纳米材料的制备及光催化性能表征[J]. 黑龙江大学自然科学学报, 2018, 35 (2): 180- 187.
URL
|
23 |
Chung W J , Nguyen D D , Bui X T . A magnetically separable and recyclable Ag-supported magnetic TiO2 composite catalyst:fabrication, characterization, and photocatalytic activity[J]. Journal of Environmental Management, 2018, 213, 541- 548.
doi: 10.1016/j.jenvman.2018.02.064
|
24 |
Cui J , He T , Zhang X . Synthesis of Fe3O4@SiO2@Ption-TiO2, hybrid composites with high efficient UV-visible light photoactivity[J]. Catalysis Communications, 2013, 40, 66- 70.
doi: 10.1016/j.catcom.2013.06.009
|
25 |
刘福明.锶掺杂磁性二氧化钛光催化剂的制备及其对BPA的降解[D].南昌:南昌航空大学, 2014.
URL
|
26 |
Li J , Tan L , Wang G , et al. Synthesis of double-shelled sea urchinlike yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications[J]. Nanotechnology, 2015, 26 (9): 601- 608.
|
27 |
Teixeira S , Mora H , Blasse L M , et al. Photocatalytic degradation of recalcitrant micropollutants by reusable Fe3O4/SiO2/TiO2 particles[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 345, 27- 35.
doi: 10.1016/j.jphotochem.2017.05.024
|
28 |
Kang K L , Jang M , Cui M C , et al. Preparation and characterization of magnetic-core titanium dioxide:Implications for photocatalytic removal of ibuprofen[J]. Journal of Molecular Catalysis A:Chemical, 2014, 390, 178- 186.
doi: 10.1016/j.molcata.2014.03.023
|
29 |
Hreniak A , Gryzlo K , Boharewicz B , et al. Preparation and optical properties of iron-modified titanium dioxide obtained by sol-gel method[J]. Optical Materials, 2015, 46, 45- 51.
doi: 10.1016/j.optmat.2015.03.053
|
30 |
任学昌, 杜翠珍, 王雪姣, 等. TiO2/Al2O3/Fe3O4的低温水热法制备及其光催化和磁回收性能[J]. 工业水处理, 2015, 35 (2): 45- 49.
URL
|
31 |
Wysocka I , Kowalska E , Trzcinski K , et al. UV-Vis-induced degradation of phenol over magnetic photocatalysts modified with Pt, Pd, Cu and Au nanoparticles[J]. Nanomaterials, 2018, 8 (1): 28.
doi: 10.3390/nano8010028
|
32 |
张胜男. Au/Pt掺杂TiO2空心微球的制备及光电性能研究[D].大连:大连理工大学, 2016.
URL
|
33 |
Solís R R , Rivas F J , Gimeno O , et al. Photocatalytic ozonation of pyridine-based herbicides by N-doped titania[J]. Journal of Chemical Technology & Biotechnology, 2016, 91 (7): 1998- 2008.
URL
|
34 |
Zhao Q E , Wen W , Xia Y , et al. Titania nanowires growing from P25 nuclei:facile synthesis and the improved photocatalytic activity[J]. Journal of Physics and Chemistry of Solids, 2019, 124, 192- 198.
doi: 10.1016/j.jpcs.2018.09.016
|
35 |
Vasilyeva M S , Rudnev V S , Zvereva A A , et al. FeOx, SiO2, TiO2/Ti composites prepared using plasma electrolytic oxidation as photoFenton-like catalysts for phenol degradation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 356, 38- 45.
URL
|