| 1 | Barndok H ,  Hermosilla D ,  Han C , et al.  Degradation of 1, 4-dioxane from industrial wastewater by solar photocatalysis using immobilized NF-TiO2 composite with monodisperse TiO2 nanoparticles[J]. Applied Catalysis B Environmental, 2016, 180, 44- 52. doi: 10.1016/j.apcatb.2015.06.015
 | 
																													
																						| 2 | Sobhan M D ,  Masoud S N ,  Mazhari M P , et al.  Magnetically separable Fe3O4/SiO2/TiO2 nanostructures supported by neodymium(Ⅲ):fabrication and enhanced photocatalytic activity for degradation of organic pollution[J]. Journal of Materials Science-Materials in Electronics, 2017, 28 (19): 14271- 14281. doi: 10.1007/s10854-017-7286-7
 | 
																													
																						| 3 | Khan M A ,  Nadeem M A ,  Idriss H .  Ferroelectric polarization effect on surface chemistry and photo-catalytic activity:a review[J]. Surface Science Reports, 2016, 71 (1): 1- 31. doi: 10.1016/j.surfrep.2016.01.001
 | 
																													
																						| 4 | Sohail M ,  Xue H L ,  Jiao Q Z , et al.  Synthesis of well-dispersed TiO2/CNTs@CoFe2O4 nanocomposites and their photocatalytic properties[J]. Materials Research Bulletin, 2018, 101, 83- 89. doi: 10.1016/j.materresbull.2018.01.017
 | 
																													
																						| 5 | Jia Y S ,  Shen S ,  Wang D , et al.  Composite Sr2TiO4/SrTiO3 heterojunction based photocatalyst for hydrogen production under visible light irradiation[J]. Journal of Materials Chemistry A, 2013, 1 (27): 7905- 7912. doi: 10.1039/c3ta11326d
 | 
																													
																						| 6 | Ye M M ,  Zhou H H ,  Zhang T Q , et al.  Preparation of SiO2@Au@TiO2 core-shell nanostructures and their photocatalytic activities under visible light irradiation[J]. Chemical Engineering Journal, 2013, 226, 209- 216. doi: 10.1016/j.cej.2013.04.064
 | 
																													
																						| 7 | Rao Y F ,  Chu W ,  Wang Y R .  Photocatalytic oxidation of carbamazepine in triclinic-WO3 suspension:role of alcohol and sulfate radicals in the degradation pathway[J]. Applied Catalysis A:General, 2013, 468, 240- 249. doi: 10.1016/j.apcata.2013.08.050
 | 
																													
																						| 8 | Ocampo-Pérez R ,  Sanchez-Polo M ,  Rivera-Utrilla J , et al.  Enhancement of the catalytic activity of TiO2 by using activated carbon in the photocatalytic degradation of cytarabine[J]. Applied Catalysis B Environmental, 2011, 104 (1): 177- 184. URL
 | 
																													
																						| 9 | Chi Y ,  Qing Y ,  Li Y J , et al.  Magnetically separable Fe3O4/SiO2/TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity[J]. Journal of Hazardous Materials, 2013, 262, 404- 411. doi: 10.1016/j.jhazmat.2013.08.077
 | 
																													
																						| 10 | Cui B ,  Peng H X ,  Xia H Q , et al.  Magnetically recoverable core-shell nanocomposites γ-Fe2O3@SiO2@TiO2-Ag with enhanced photocatalytic activity and antibacterial activity[J]. Separation & Purification Technology, 2013, 103, 251- 257. URL
 | 
																													
																						| 11 | Li C Y ,  Younesi R ,  Cai Y L , et al.  Photocatalytic and antibacterial properties of Au-decorated Fe3O4@mTiO2 core-shell microspheres[J]. Applied Catalysis B:Environmental, 2014, 156-157, 314- 322. doi: 10.1016/j.apcatb.2014.03.031
 | 
																													
																						| 12 | Colmenares J C ,  Ouyang W ,  Ojeda M , et al.  Mild ultrasound-assisted synthesis of TiO2 supported on magnetic nanocomposites for selective photo-oxidation of benzyl alcohol[J]. Applied Catalysis B:Environmental, 2018, 183, 107- 112. URL
 | 
																													
																						| 13 | Ye M M ,  Zhang Q ,  Hu Y X , et al.  Magnetically recoverable coreshell nanocomposites with enhanced photocatalytic activity[J]. Chemistry, 2010, 16 (21): 6243- 6250. doi: 10.1002/chem.200903516
 | 
																													
																						| 14 | Adel F ,  Rahmi S ,  Sari H D , et al.  Preparation and characterization of Fe3O4/TiO2 composites by heteroagglomeration[J]. Advanced Materials Research, 2013, 626, 131- 137. URL
 | 
																													
																						| 15 | Yu X X ,  Liu S W ,  Yu J G .  Superparamagnetic γ-Fe2O3@SiO2@TiO2 composite microspheres with superior photocatalytic properties[J]. Applied Catalysis B Environmental, 2011, 104 (1/2): 12- 20. URL
 | 
																													
																						| 16 | Liu H F ,  Jia Z G ,  Ji S F , et al.  Synthesis of TiO2/SiO2@Fe3O4 magnetic microspheres and their properties of photocatalytic degradation dyestuff[J]. Catalysis Today, 2011, 175 (1): 293- 298. doi: 10.1016/j.cattod.2011.04.042
 | 
																													
																						| 17 | Liu Y ,  Wan J F ,  Liu C T , et al.  Fabrication of magnetic Fe3O4/C/TiO2 composites with nanotube structure and enhanced photocatalytic activity[J]. Materials Science & Technology, 2015, 32 (8): 786- 793. URL
 | 
																													
																						| 18 | Hu W T ,  Liu B C ,  Wang Q , et al.  A magnetic double-shell microsphere as a highly efficient reusable catalyst for catalytic applications[J]. Chemical Communications, 2013, 49 (69): 7596- 7598. doi: 10.1039/c3cc42687d
 | 
																													
																						| 19 | Feng J T ,  Chen H F ,  Li L C .  Adsorption-photocatalytic degradation activity of ZnTi0.6Fe1.4O4/expanded graphite composites on contaminants[J]. Scientia Sinica, 2015, 45 (10): 1075- 1088. doi: 10.1360/N032015-00055
 | 
																													
																						| 20 | 黄智淼, 林君, 张洋, 等.  钛铁矿制四氧化三铁/二氧化钛及其光催化性能[J]. 无机盐工业, 2018, 50 (3): 69- 73. URL
 | 
																													
																						| 21 | 辛铁军, 张和鹏, 马明亮, 等.  Fe3O4/TiO2核壳磁性纳米材料的制备及表征[J]. 功能材料, 2014, (1): 72- 77. URL
 | 
																													
																						| 22 | 王俊磊, 朱宁芳, 张娇静, 等.  磁性核壳Fe3O4/TiO2纳米材料的制备及光催化性能表征[J]. 黑龙江大学自然科学学报, 2018, 35 (2): 180- 187. URL
 | 
																													
																						| 23 | Chung W J ,  Nguyen D D ,  Bui X T .  A magnetically separable and recyclable Ag-supported magnetic TiO2 composite catalyst:fabrication, characterization, and photocatalytic activity[J]. Journal of Environmental Management, 2018, 213, 541- 548. doi: 10.1016/j.jenvman.2018.02.064
 | 
																													
																						| 24 | Cui J ,  He T ,  Zhang X .  Synthesis of Fe3O4@SiO2@Ption-TiO2, hybrid composites with high efficient UV-visible light photoactivity[J]. Catalysis Communications, 2013, 40, 66- 70. doi: 10.1016/j.catcom.2013.06.009
 | 
																													
																						| 25 | 刘福明.锶掺杂磁性二氧化钛光催化剂的制备及其对BPA的降解[D].南昌:南昌航空大学, 2014. URL
 | 
																													
																						| 26 | Li J ,  Tan L ,  Wang G , et al.  Synthesis of double-shelled sea urchinlike yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications[J]. Nanotechnology, 2015, 26 (9): 601- 608. | 
																													
																						| 27 | Teixeira S ,  Mora H ,  Blasse L M , et al.  Photocatalytic degradation of recalcitrant micropollutants by reusable Fe3O4/SiO2/TiO2 particles[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 345, 27- 35. doi: 10.1016/j.jphotochem.2017.05.024
 | 
																													
																						| 28 | Kang K L ,  Jang M ,  Cui M C , et al.  Preparation and characterization of magnetic-core titanium dioxide:Implications for photocatalytic removal of ibuprofen[J]. Journal of Molecular Catalysis A:Chemical, 2014, 390, 178- 186. doi: 10.1016/j.molcata.2014.03.023
 | 
																													
																						| 29 | Hreniak A ,  Gryzlo K ,  Boharewicz B , et al.  Preparation and optical properties of iron-modified titanium dioxide obtained by sol-gel method[J]. Optical Materials, 2015, 46, 45- 51. doi: 10.1016/j.optmat.2015.03.053
 | 
																													
																						| 30 | 任学昌, 杜翠珍, 王雪姣, 等.  TiO2/Al2O3/Fe3O4的低温水热法制备及其光催化和磁回收性能[J]. 工业水处理, 2015, 35 (2): 45- 49. URL
 | 
																													
																						| 31 | Wysocka I ,  Kowalska E ,  Trzcinski K , et al.  UV-Vis-induced degradation of phenol over magnetic photocatalysts modified with Pt, Pd, Cu and Au nanoparticles[J]. Nanomaterials, 2018, 8 (1): 28. doi: 10.3390/nano8010028
 | 
																													
																						| 32 | 张胜男. Au/Pt掺杂TiO2空心微球的制备及光电性能研究[D].大连:大连理工大学, 2016. URL
 | 
																													
																						| 33 | Solís R R ,  Rivas F J ,  Gimeno O , et al.  Photocatalytic ozonation of pyridine-based herbicides by N-doped titania[J]. Journal of Chemical Technology & Biotechnology, 2016, 91 (7): 1998- 2008. URL
 | 
																													
																						| 34 | Zhao Q E ,  Wen W ,  Xia Y , et al.  Titania nanowires growing from P25 nuclei:facile synthesis and the improved photocatalytic activity[J]. Journal of Physics and Chemistry of Solids, 2019, 124, 192- 198. doi: 10.1016/j.jpcs.2018.09.016
 | 
																													
																						| 35 | Vasilyeva M S ,  Rudnev V S ,  Zvereva A A , et al.  FeOx, SiO2, TiO2/Ti composites prepared using plasma electrolytic oxidation as photoFenton-like catalysts for phenol degradation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 356, 38- 45. URL
 |