1 |
|
2 |
朱毅麟. 航天器微型化的新突破:微电子机械系统[J]. 中国航天,1996(10):22-25.
|
|
ZHU Yilin. A new breakthrough in spacecraft miniaturization:Microelectromechanical system[J]. Aerospace China,1996(10):22-25.
|
3 |
|
|
|
4 |
PATRA J K,DAS G, FRACETO L F,et al. Nano based drug delivery systems:Recent developments and future prospects[J]. Journal of Nanobiotechnology, 2018, 16(1):71. doi: 10.1186/s12951-018-0392-8
|
5 |
HOLZINGER M, LE GOFF A, COSNIER S. Nanomaterials for biosensing applications:A review[J]. Frontiers in Chemistry, 2014, 2:63. doi: 10.3389/fchem.2014.00063
|
6 |
JUNG W, HAN J, CHOI J W,et al. Point-of-care testing(POCT) diagnostic systems using microfluidic lab-on-a-chip technologies[J]. Microelectronic Engineering, 2015, 132(C):46-57. doi: 10.1016/j.mee.2014.09.024
|
7 |
MARK D, HAEBERLE S, ROTH G,et al. Microfluidic lab-on-a-chip platforms:Requirements,characteristics and applications[J]. Chemical Society Reviews, 2010, 39(3):1153-1182. doi: 10.1039/b820557b
|
8 |
骆广生,吕阳成,王凯,等. 微化工技术[M]. 北京:化学工业出版社,2020:1-13.
|
9 |
HESSEL V, HOFMANN C, LÖWE H,et al. Selectivity gains and energy savings for the industrial phenyl boronic acid process using micromixer/tubular reactors[J]. Organic Process Research & Development, 2004, 8(3):511-523. doi: 10.1021/op0341768
|
10 |
KAWAGUCHI T, MIYATA H, ATAKA K,et al. Room-temperature Swern oxidations by using a microscale flow system[J]. Angewandte Chemie(International Ed. in English), 2005, 44(16):2413-2416. doi: 10.1002/anie.200462466
|
11 |
LEROU J J, HAROLD M P, RYLEY J,et al. Microfabricated minichemical systems:Technical feasibility[J]. Workshop,Microsystem Technology,1995,132:50-70.
|
12 |
|
|
LUO Guangsheng, CHEN Guiguang, XU Jianhong,et al. Research progress of micromixers and their performance[J]. Modern Chemical Industry, 2003, 23(8):10-13. doi: 10.3321/j.issn:0253-4320.2003.08.003
|
13 |
孙永. 液-液体系膜分散及传质性能研究[D]. 北京:清华大学,2003.
|
|
SUN Yong. Study on dispersion and mass transfer performance of liquid-liquid system membranes[D]. Beijing:Tsinghua University,2003.
|
14 |
骆广生,陈祥芝,王玉军,等. 一种纳米碳酸钙颗粒的制备方法:CN1769180A[P]. 2006-05-10.
|
15 |
骆广生,任纪文,吕阳成,等. 一种溴化丁基橡胶合成工艺:CN102775541A[P]. 2012-11-14.
|
16 |
王凯,骆广生. 一种合成芳香基烷基醚的方法:CN107686441B[P]. 2021-03-02.
|
17 |
|
|
|
18 |
|
|
SONG Xinqi. Femtosecond chemistry:Introduction to the 1999 Nobel prize in chemistry[J]. Scientific & Technical Trends Abroad, 2000(2):12-13. doi: 10.1021/ed077p14
|
19 |
刘兆利,张鹏飞. 微反应器在化学化工领域中的应用[J]. 化工进展,2016,35(1):10-17.
|
|
LIU Zhaoli, ZHANG Pengfei. Applications of microreactor in chemistry and chemical engineering[J]. Chemical Industry and Engineering Progress,2016,35(1):10-17.
|
20 |
|
|
CHEN Min. Research progress in application of microchannel reactors in the field of polymerization[J]. Zhejiang Chemical Industry, 2021, 52(9):31-36. doi: 10.3969/j.issn.1006-4184.2021.09.007
|
21 |
BOURNE J R. Mixing and the selectivity of chemical reactions[J]. Organic Process Research & Development, 2003, 7(4):471-508. doi: 10.1021/op020074q
|
22 |
|
|
ZHU Mei, QI Yayun, GAN Yiyuan,et al. Research progress on application of microchannel reactor in improvement of synthetic process[J]. Chinese Journal of Synthetic Chemistry, 2019, 27(11):923-929. doi: 10.15952/j.cnki.cjsc.1005-1511.19184
|
23 |
HORIE T, SUMINO M, TANAKA T,et al. Photodimerization of maleic anhydride in a microreactor without clogging[J]. Organic Process Research & Development, 2010, 14(2):405-410. doi: 10.1021/op900306z
|
24 |
王凯,仇禄,骆广生,等. 一种聚丙烯酸合成的反应装置及聚丙烯酸合成方法:CN105273113A[P]. 2016-01-27.
|
25 |
QIU Lu, WANG Kai, ZHU Shan,et al. Kinetics study of acrylic acid polymerization with a microreactor platform[J]. Chemical Engineering Journal, 2016, 284:233-239. doi: 10.1016/j.cej.2015.08.055
|
26 |
BROCKEN L, PRICE P D, WHITTAKER J,et al. Continuous flow synthesis of poly(acrylic acid) via free radical polymerisation[J]. Reaction Chemistry & Engineering, 2017, 2(5):662-668. doi: 10.1039/c7re00063d
|
27 |
周琦,高宏宇,刘明贺. 聚羧酸减水剂在微通道反应器内的合成及应用[J]. 精细与专用化学品,2021,29(8):28-31.
|
|
ZHOU Qi, GAO Hongyu, LIU Minghe. Study on the synthesis of polycarboxylic acid superplasticizer in microchannel reactor[J]. Fine and Specialty Chemicals,2021,29(8):28-31.
|
28 |
LIU Weiwei, LI Qian, ZHANG Yin,et al. Continuous-flow RAFT copolymerization of styrene and maleic anhydride:Acceleration of reaction and effect of polymerization conditions on reaction kinetics[J]. Journal of Flow Chemistry, 2021, 11(4):867-875. doi: 10.1007/s41981-021-00167-0
|
29 |
IWASAKI T, KAWANO N, YOSHIDA J I. Radical polymerization using microflow system: Numbering-up of microreactors and continuous operation[J]. Organic Process Research & Development, 2006, 10(6):1126-1131. doi: 10.1021/op060127u
|
30 |
BALLY F, SERRA C A, HESSEL V,et al. Micromixer-assisted polymerization processes[J]. Chemical Engineering Science, 2011, 66(7):1449-1462. doi: 10.1016/j.ces.2010.07.026
|
31 |
|
|
WU Haixia, HUANG Yongsheng, HUANG Huizhen,et al. The continuous synthesis process of triethyl phosphite[J]. Anhui Chemical Industry, 2018, 44(1):95-97. doi: 10.3969/j.issn.1008-553X.2018.01.035
|
32 |
MAO Mengmei, ZHANG Le, YAO Hanlin,et al. Development and scale-up of the rapid synthesis of triphenyl phosphites in continuous flow[J]. ACS Omega, 2020, 5(16):9503-9509. doi: 10.1021/acsomega.0c00716
|
33 |
CHEN D M, BUCHWALD P S L. Continuous-flow synthesis of 1-substituted benzotriazoles from chloronitrobenzenes and amines in a C-N bond formation/hydrogenation/diazotization/cyclization sequence[J]. Angewandte Chemie International Edition, 2013, 52(15):4247-4250. doi: 10.1002/anie.201300615
|
34 |
JÄHNISCH K, BAERNS M, HESSEL V,et al. Direct fluorination of toluene using elemental fluorine in gas/liquid microreactors[J]. Journal of Fluorine Chemistry, 2000, 105(1):117-128. doi: 10.1016/s0022-1139(00)00300-6
|
35 |
CHAMBERS R D, SPINK R C H. Microreactors for elemental fluorine[J]. Chemical Communications, 1999(10):883-884. doi: 10.1039/a901473j
|
36 |
CHAMBERS R D, HOLLING D,RC S,et al. Elemental fluorine. Part 13. Gas-liquid thin film microreactors for selective direct fluorination[J]. Lab on a Chip,2002,1(2):132-137.
|
37 |
EHRICH H, LINKE D, MORGENSCHWEIS K,et al. Application of microstructured reactor technology for the photochemical chlorination of alkylaromatics[J]. CHIMIA, 2002, 56(11):647. doi: 10.2533/000942902777680063
|
38 |
|
|
ZHANG Yue, GUO Xintong, YAN Shenghu,et al. Research on bromination of tert-butyl alcohol in micro-channel reactor[J]. Speciality Petrochemicals, 2013, 30(1):58-62. doi: 10.3969/j.issn.1003-9384.2013.01.015
|
39 |
黄伟. 微通道反应器中二丁基二硫代氨基甲酸酯反应的研究[J]. 现代化工,2017,37(6):137-140.
|
|
HUANG Wei. Research on dibutyl dithiocarbamate reaction in a micro-channel reactor[J]. Modern Chemical Industry,2017,37(6):137-140.
|
40 |
HU Jiayu, TIAN Jiaxin, WANG Kai,et al. Continuous synthesis of tetraethyl thiuram disulfide with CO 2 as acid agent in a gas-liquid microdispersion system[J]. Journal of Flow Chemistry, 2019, 9(4):211-220. doi: 10.1007/s41981-019-00046-9
|
41 |
XU Haoxing, ZHAO Zerun, PATEHEBIEKE Y,et al. Continuous-flow step-economical synthesis of thiuram disulfides via visible-light photocatalytic aerobic oxidation[J]. Green Chemistry, 2021, 23(3):1280-1285. doi: 10.1039/d0gc04270f
|
42 |
JOLHE P D, BHANVASE B A, PATIL V S,et al. Sonochemical synthesis of peracetic acid in a continuous flow micro-structured reactor[J]. Chemical Engineering Journal, 2015, 276:91-96. doi: 10.1016/j.cej.2015.04.054
|
43 |
王聪,杨克俭,吴昊,等. 一种连续流快速制备过氧乙酸的方法:CN111333559A[P]. 2020-06-26.
|
44 |
MARALLA Y, SONAWANE S. Comparative study for production of unstable peracetic acid using microstructured reactors and its kinetic study[J]. Journal of Flow Chemistry, 2019, 9(2):145-154. doi: 10.1007/s41981-019-00035-y
|
45 |
祁彦涛,屠常刚,刘春艺,等. 一种用微通道反应器制备无水过氧乙酸溶液的方法:CN111825589A[P]. 2020-10-27.
|
46 |
INOUE T, OHTAKI K, ADACHI J,et al. Direct synthesis of hydrogen peroxide using glass fabricated microreactor:Multichannel operation and catalyst comparison[J]. Catalysis Today, 2015, 248:169-176. doi: 10.1016/j.cattod.2014.03.065
|
47 |
INOUE T, OHTAKI K, MURAKAMI S,et al. Direct synthesis of hydrogen peroxide based on microreactor technology[J]. Fuel Processing Technology, 2013, 108:8-11. doi: 10.1016/j.fuproc.2012.04.009
|
48 |
YANG Zaiyong, WEI Zengxi, ZHOU Shunxin,et al. Direct thermal catalytic synthesis of hydrogen peroxide by using microchip reactor[J]. Chemical Engineering Journal, 2023, 456:140915. doi: 10.1016/j.cej.2022.140915
|
49 |
CAMELI F, DIMITRAKELLIS P, CHEN Taiying,et al. Modular plasma microreactor for intensified hydrogen peroxide production[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(5):1829-1838. doi: 10.1021/acssuschemeng.1c06973
|
50 |
FARINAZZO BERGAMO DIAS MARTINS P, PLAZL I, STRMCNIK D,et al. Prospect of microfluidic devices for on-site electrochemical production of hydrogen peroxide[J]. Current Opinion in Electrochemistry, 2023, 38:101223. doi: 10.1016/j.coelec.2023.101223
|
51 |
ZHAO Jing, LI Bogeng, BU Zhiyang,et al. Ring-opening polymerization of propylene oxide by double metal complex in micro-reactor[J]. Macromolecular Reaction Engineering, 2020, 14(1):1900048. doi: 10.1002/mren.201900048
|
52 |
WILMS D, NIEBERLE J, KLOS J,et al. Synthesis of hyperbranched polyglycerol in a continuous flow microreactor[J]. Chemical Engineering & Technology, 2007, 30(11):1519-1524. doi: 10.1002/ceat.200700277
|
53 |
FURUTA A, OKADA K, FUKUYAMA T. Efficient anionic ring opening polymerization of ethylene oxide under microfluidic conditions[J]. Bulletin of the Chemical Society of Japan, 2017, 90(7):838-842. doi: 10.1246/bcsj.20170073
|
54 |
|
|
ZHAO Baoqin, ZHANG Heng, LIU Fang,et al. Tributyl phosphate with high purity is synthesized by green and low-carbon microreaction technology industrialization research of products[J]. Shandong Chemical Industry, 2022, 51(17):166-168. doi: 10.3969/j.issn.1008-021X.2022.17.049
|
55 |
盖炳凯,郭子林,张杰清,等. 一种利用微通道技术生产高纯度磷酸三丁酯的制备方法:CN111574558A[P]. 2020-08-25.
|
56 |
宋扬. 微反应器内液相聚合反应过程特征及调控的研究[D]. 上海:上海交通大学,2020.
|
|
SONG Yang. Study on the liquid phase polymerization characteristics and regulation in microreactors[D]. Shanghai:Shanghai Jiao Tong University,2020.
|
57 |
SONG Jin, ZHANG Shenglong, WANG Kai,et al. Synthesis of million molecular weight polyacrylamide with droplet flow microreactors[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 98:78-84. doi: 10.1016/j.jtice.2018.05.008
|
58 |
|
|
XIONG Xingying, PU Shengyan, MA Hui,et al. Review on removal of heavy metal ions from aqueous solution by hydrogel adsorption[J]. Industrial Water Treatment, 2016, 36(5):1-4. doi: 10.11894/1005-829x.2016.36(5).001
|
59 |
ZHOU Guiyin, LIU Chengbin, CHU Lin,et al. Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process[J]. Bioresource Technology, 2016, 219:451-457. doi: 10.1016/j.biortech.2016.07.038
|
60 |
SEN N, SHAIKH T, SINGH K K,et al. Synthesis of polyacrylamide(PAM) beads in microreactors[J]. Chemical Engineering and Processing(Process Intensification), 2020, 157:108105. doi: 10.1016/j.cep.2020.108105
|