1 |
Guo X , Zhan Y , Chen C , et al. The influence of microbial synergistic and antagonistic effects on the performance of refinery wastewater microbial fuel cells[J]. Journal of Power Sources, 2014, 251, 229- 236.
doi: 10.1016/j.jpowsour.2013.11.066
|
2 |
Chen C , Yu J , Yoza B A , et al. A novel "wastes-treat-wastes" technology:role and potential of spent fluid catalytic cracking catalyst assisted ozonation of petrochemical wastewater[J]. Journal of Environmental Management, 2015, 152, 58- 65.
URL
|
3 |
Chen C , Yoza B A , Chen H , et al. Manganese sand ore is an economical and effective catalyst for ozonation of organic contaminants in petrochemical wastewater[J]. Water, Air, & Soil Pollution, 2015, 226 (6): 182.
URL
|
4 |
Nawaz F , Xie Y , Xiao J , et al. The influence of the substituent on the phenol oxidation rate and reactive species in cubic MnO2 catalytic ozonation[J]. Catalysis Science & Technology, 2016, 6 (21): 7875- 7884.
URL
|
5 |
Tong S , Liu W , Leng W , et al. Characteristics of MnO2 catalytic ozonation of sulfosalicylic acid and propionic acid in water[J]. Chemosphere, 2003, 50 (10): 1359- 1364.
doi: 10.1016/S0045-6535(02)00761-0
|
6 |
Dong Y , Yang H , He K , et al. β-MnO2 nanowires:a novel ozonation catalyst for water treatment[J]. Applied Catalysis B:Environmental, 2009, 85 (3/4): 155- 161.
URL
|
7 |
张静, 马军, 杨忆新, 等. 金红石型TiO2催化臭氧氧化硝基苯的研究[J]. 中国给水排水, 2010, 26 (7): 103- 104.
URL
|
8 |
刘智武, 蒙媛, 刘建锋. 臭氧/TiO2纳米管工艺处理水中2, 4-二氯酚的效能研究[J]. 环境工程, 2015, (9): 36- 39.
URL
|
9 |
Zhang T , Li C , Ma J , et al. Surface hydroxyl groups of synthetic α-FeOOH in promoting OH generation from aqueous ozone:property and activity relationship[J]. Applied Catalysis B:Environmental, 2008, 82 (1/2): 131- 137.
URL
|
10 |
Psaltou S , Stylianou S , Mitrakas M , et al. Heterogeneous catalytic ozonation of p-chlorobenzoic acid in aqueous solution by FeMnOOH and PET[J]. Separations, 2018, 5 (3): 42.
doi: 10.3390/separations5030042
|
11 |
董玉明, 蒋平平, 张爱民. 介孔结构的α-FeOOH对苯酚的催化臭氧化降解[J]. 无机化学学报, 2009, 25 (9): 1595- 1600.
doi: 10.3321/j.issn:1001-4861.2009.09.014
|
12 |
Kasprzyk-Hordern B , Nawrocki J . The feasibility of using a perfluorinated bonded alumina phase in the ozonation process[J]. Ozone Science & Engineering, 2003, 25 (3): 185- 197.
URL
|
13 |
Vittenet J , Aboussaoud W , Mendret J , et al. Catalytic ozonation with γ-Al2O3 to enhance the degradation of refractory organics in water[J]. Applied Catalysis A:General, 2015, 504, 519- 532.
doi: 10.1016/j.apcata.2014.10.037
|
14 |
Song S , Jiang Z , Jiang L Y , et al. Effects of crystal phases and morphology of aluminum oxide on the heterogeneous catalytic ozonation process using pyruvic acid as an indicator[J]. Asian Journal of Chemistry, 2013, 25 (11): 5897- 5903.
doi: 10.14233/ajchem.2013.13183
|
15 |
He K , Dong Y M , Li Z , et al. Catalytic ozonation of phenol in water with natural brucite and magnesia[J]. Journal of Hazardous Materials, 2008, 159 (2/3): 587- 592.
URL
|
16 |
Moussavi G , Alizadeh R . The integration of ozonation catalyzed with MgO nanocrystals and the biodegradation for the removal of phenol from saline wastewater[J]. Applied Catalysis B:Environmental, 2010, 97 (1/2): 160- 167.
URL
|
17 |
Pocostales P , Álvarez P , Beltrán F J . Catalytic ozonation promoted by alumina-based catalysts for the removal of some pharmaceutical compounds from water[J]. Chemical Engineering Journal, 2011, 168 (3): 1289- 1295.
doi: 10.1016/j.cej.2011.02.042
|
18 |
Huang W , Fang G , Chen Y , et al. Degradation of cyanotoxin-nodularin in drinking water by catalytic ozonation using a Ag-TiO2 hybrid catalyst[J]. Environmental Engineering Science, 2018, 35 (10): 1087- 1095.
doi: 10.1089/ees.2017.0445
|
19 |
Chen Y H , Hsieh D C , Shang N C . Efficient mineralization of dimethyl phthalate by catalytic ozonation using TiO2/Al2O3 catalyst[J]. Journal of Hazardous Materials, 2011, 192 (3): 1017- 1025.
doi: 10.1016/j.jhazmat.2011.06.005
|
20 |
Ren Y , Li J , Peng J , et al. Strengthening the catalytic activity for ozonation of Cu/Al2O3 by an electroless plating-calcination process[J]. Industrial & Engineering Chemistry Research, 2018, 57 (6): 1815- 1825.
URL
|
21 |
Lu F , Yu C , Meng X , et al. Degradation of highly concentrated organic compounds over a supported Ru-Cu bimetallic catalyst[J]. New Journal of Chemistry, 2017, 41 (9): 3280- 3289.
doi: 10.1039/C6NJ04103E
|
22 |
Chen C , Yoza B A , Wang Y , et al. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O3 catalyst[J]. Environmental Science and Pollution Research, 2015, 22 (7): 5552- 5562.
doi: 10.1007/s11356-015-4136-0
|
23 |
Chen C , Li Y , Ma W , et al. Mn-Fe-Mg-Ce loaded Al2O3 catalyzed ozonation for mineralization of refractory organic chemicals in petroleum refinery wastewater[J]. Separation and Purification Technology, 2017, 183, 1- 10.
doi: 10.1016/j.seppur.2017.03.054
|
24 |
Huang Y , Sun Y , Xu Z , et al. Removal of aqueous oxalic acid by heterogeneous catalytic ozonation with MnOx/sewage sludge-derived activated carbon as catalysts[J]. Science of the Total Environment, 2017, 575, 50- 57.
doi: 10.1016/j.scitotenv.2016.10.026
|
25 |
Wilde M L , Montipó S , Martins A F . Degradation of β-blockers in hospital wastewater by means of ozonation and Fe2+/ozonation[J]. Water Research, 2014, 48, 280- 295.
doi: 10.1016/j.watres.2013.09.039
|
26 |
Li L , Ye W , Zhang Q , et al. Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon[J]. Journal of Hazardous Materials, 2009, 170 (1): 411- 416.
doi: 10.1016/j.jhazmat.2009.04.081
|
27 |
Moussavi G , Aghapour A A , Yaghmaeian K . The degradation and mineralization of catechol using ozonation catalyzed with MgO/GAC composite in a fluidized bed reactor[J]. Chemical Engineering Journal, 2014, 249, 302- 310.
doi: 10.1016/j.cej.2014.03.059
|
28 |
Chen C , Wei L , Guo X , et al. Investigation of heavy oil refinery wastewater treatment by integrated ozone and activated carbon-supported manganese oxides[J]. Fuel Processing Technology, 2014, 124, 165- 173.
doi: 10.1016/j.fuproc.2014.02.024
|
29 |
Chen C , Yan X , Xu Y Y , et al. Activated petroleum waste sludge biochar for efficient catalytic ozonation of refinery wastewater[J]. Science of The Total Environment, 2019, 651, 2631- 2640.
doi: 10.1016/j.scitotenv.2018.10.131
|
30 |
Liu L , Li Y , Yoza B A , et al. A char-clay composite catalyst derived from spent bleaching earth for efficient ozonation of recalcitrants in water[J]. Science of the Total Environment, 2020, 699, 134395.
doi: 10.1016/j.scitotenv.2019.134395
|
31 |
Liu Z Q , Ma J , Cui Y H , et al. Influence of different heat treatments on the surface properties and catalytic performance of carbon nanotube in ozonation[J]. Applied Catalysis B:Environmental, 2010, 101 (1/2): 74- 80.
URL
|
32 |
Qu R , Xu B , Meng L , et al. Ozonation of indigo enhanced by carboxylated carbon nanotubes:performance optimization, degradation products, reaction mechanism and toxicity evaluation[J]. Water Research, 2015, 68, 316- 327.
doi: 10.1016/j.watres.2014.10.017
|
33 |
Nidheesh P V . Graphene-based materials supported advanced oxidation processes for water and wastewater treatment:a review[J]. Environmental Science and Pollution Research, 2017, 24 (35): 27047- 27069.
doi: 10.1007/s11356-017-0481-5
|
34 |
Yuan X , Duan S , Wu G , et al. Enhanced catalytic ozonation performance of highly stabilized mesoporous ZnO doped g-C3N4 composite for efficient water decontamination[J]. Applied Catalysis A:General, 2018, 551, 129- 138.
doi: 10.1016/j.apcata.2017.12.011
|
35 |
Yu D , Wu M , Hu Q , et al. Iron-based metal-organic frameworks as novel platforms for catalytic ozonation of organic pollutant:efficiency and mechanism[J]. Journal of Hazardous Materials, 2019, 367, 456- 464.
doi: 10.1016/j.jhazmat.2018.12.108
|
36 |
Alejandro S , Valdés H , Zaror C A . Natural zeolite reactivity towards ozone:the role of acid surface sites[J]. Journal of Advanced Oxidation Technologies, 2011, 14 (2): 182- 189.
URL
|
37 |
Huang R , Lan B , Chen Z , et al. Catalytic ozonation of p-chlorobenzoic acid over MCM-41 and Fe loaded MCM-41[J]. Chemical Engineering Journal, 2012, 180, 19- 24.
doi: 10.1016/j.cej.2011.10.086
|
38 |
孙文静, 王亚旻, 卫皇曌, 等. Fe-MCM-41催化臭氧氧化间甲酚废水[J]. 环境科学, 2015, 36 (4): 1345- 1351.
URL
|
39 |
Sui M , Liu J , Sheng L . Mesoporous material supported manganese oxides(MnOx/MCM-41) catalytic ozonation of nitrobenzene in water[J]. Applied Catalysis B:Environmental, 2011, 106 (1/2): 195- 203.
URL
|
40 |
邴吉帅, 曾俊喻, 廖高祖, 等. Ce-MCM-41分子筛用于臭氧氧化对氯苯甲酸的活性评价[J]. 环境化学, 2012, 31 (5): 653- 657.
URL
|
41 |
Dong Y , Yang H , He K , et al. Catalytic activity and stability of Y zeolite for phenol degradation in the presence of ozone[J]. Applied Catalysis B:Environmental, 2008, 82 (3/4): 163- 168.
URL
|
42 |
Dong Y , He K , Zhao B , et al. Catalytic ozonation of azo dye active brilliant red X-3B in water with natural mineral brucite[J]. Catalysis Communications, 2007, 8 (11): 1599- 1603.
doi: 10.1016/j.catcom.2007.01.016
|
43 |
Zhao L , Sun Z , Ma J , et al. Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution[J]. Environmental Science & Technology, 2009, 43 (6): 2047- 2053.
URL
|
44 |
Chen C , Chen H , Yu J , et al. p-Nitrophenol removal by bauxite ore assisted ozonation and its catalytic potential[J]. Clean-Soil, Air, Water, 2015, 43 (7): 1010- 1017.
doi: 10.1002/clen.201400330
|
45 |
Qi F , Xu B , Zhao L , et al. Comparison of the efficiency and mechanism of catalytic ozonation of 2, 4, 6-trichloroanisole by iron and manganese modified bauxite[J]. Applied Catalysis B:Environmental, 2012, 121, 171- 181.
URL
|
46 |
Ma W , Hu J , Yoza B A , et al. Kaolinite based catalysts for efficient ozonation of recalcitrant organic chemicals in water[J]. Applied Clay Science, 2019, 175, 159- 168.
doi: 10.1016/j.clay.2019.04.011
|