1 |
由晓刚,周雪飞,杨黎彬,等. 废水处理耦合高效固碳的微藻光生物反应器研究进展[J]. 给水排水,2022,58(S2):600-606.
|
|
YOU Xiaogang, ZHOU Xuefei, YANG Libin,et al. Research progress of microalgae photobioreactor with wastewater treatment coupled with high-efficiency carbon sequestration[J]. Water & Wastewater Engineering,2022,48(S2):600-606.
|
2 |
陈智超,陈坤,杨承峰,等. 磁混凝工艺在山东某污水处理厂提标改造中的应用[J]. 工业水处理,2023,43(3):181-185.
|
|
CHEN Zhichao, CHEN Kun, YANG Chengfeng,et al. Application of magnetic coagulation process in upgrading and renovation of a sewage treatment plant in Shandong[J]. Industrial Water Treatment,2023,43(3):181-185.
|
3 |
赵青云,韩飞,石向星,等. 微藻生物柴油固碳减排和经济效益研究[J]. 工业水处理,2023,43(11):145-153.
|
|
ZHAO Qingyun, HAN Fei, SHI Xiangxing,et al. Research on carbon sequestration,emission reduction and economic benefit of microalgae biodiesel[J]. Industrial Water Treatment,2023,43(11):145-153.
|
4 |
HUANG Guanhua, CHEN Feng, KUANG Yali,et al. Current techniques of growing algae using flue gas from exhaust gas industry:A review[J]. Applied Biochemistry and Biotechnology, 2016, 178(6):1220-1238. doi: 10.1007/s12010-015-1940-4
|
5 |
DANESHVAR E, WICKER R J, SHOW P L,et al. Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO 2 biofixation and biomass valorization:A review[J]. Chemical Engineering Journal, 2022, 427:130884. doi: 10.1016/j.cej.2021.130884
|
6 |
王倩,吴雪松,李伟,等. 北排清河二厂污泥脱水工艺节能降耗优化运行策略[J]. 中国给水排水,2024,40(2):94-98.
|
|
WANG Qian, WU Xuesong, LI Wei,et al. Optimized operation strategy for energy saving and consumption reduction of sludge dewatering process in Qinghe Ⅱ reclaimed water plant of Beijing drainage group[J]. China Water & Wastewater,2024,40(2):94-98.
|
7 |
CUARESMA M, GARBAYO I, VEGA J M,et al. Growth and photosynthetic utilization of inorganic carbon of the microalga Chlamydomonas acidophila isolated from Tinto River[J]. Enzyme and Microbial Technology, 2006, 40(1):158-162. doi: 10.1016/j.enzmictec.2005.10.049
|
8 |
MOLAZADEH M, AHMADZADEH H, POURIANFAR H R,et al. The use of microalgae for coupling wastewater treatment with CO 2 biofixation[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7:42. doi: 10.3389/fbioe.2019.00042
|
9 |
KONG Wenwen, SHEN Boxiong, Honghong LÜ,et al. Review on carbon dioxide fixation coupled with nutrients removal from wastewater by microalgae[J]. Journal of Cleaner Production, 2021, 292:125975. doi: 10.1016/j.jclepro.2021.125975
|
10 |
HARIZ H B, TAKRIFF M S. Palm oil mill effluent treatment and CO 2 sequestration by using microalgae:Sustainable strategies for environmental protection[J]. Environmental Science and Pollution Research, 2017, 24(25):20209-20240. doi: 10.1007/s11356-017-9742-6
|
11 |
KUO C M, JIAN J F, LIN T H,et al. Simultaneous microalgal biomass production and CO 2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas[J]. Bioresource Technology, 2016, 221:241-250. doi: 10.1016/j.biortech.2016.09.014
|
12 |
CHAUDHARY R, DIKSHIT A K, TONG Y W. Carbon-dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus [J]. Environmental Science and Pollution Research, 2018, 25(21):20399-20406. doi: 10.1007/s11356-017-9575-3
|
13 |
NAYAK M, KAREMORE A,SEN R. Performance evaluation of microalgae for concomitant wastewater bioremediation,CO 2 biofixation and lipid biosynthesis for biodiesel application[J]. Algal Research, 2016, 16:216-223. doi: 10.1016/j.algal.2016.03.020
|
14 |
ALMOMANI F, JUDD S, BHOSALE R R,et al. Intergraded wastewater treatment and carbon bio-fixation from flue gases using Spirulina platensis and mixed algal culture[J]. Process Safety and Environmental Protection, 2019, 124:240-250. doi: 10.1016/j.psep.2019.02.009
|
15 |
SHEN Qiaohui, JIANG Jiawei, CHEN Liping,et al. Effect of carbon source on biomass growth and nutrients removal of Scenedesmus obliquus for wastewater advanced treatment and lipid production[J]. Bioresource Technology, 2015, 190:257-263. doi: 10.1016/j.biortech.2015.04.053
|
16 |
YADAV G, DASH S K,SEN R. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation,carbon-dioxide sequestration and algal biomass production[J]. Science of the Total Environment, 2019, 688:129-135. doi: 10.1016/j.scitotenv.2019.06.024
|
17 |
MOUSAVI S, NAJAFPOUR G D, MOHAMMADI M,et al. Cultivation of newly isolated microalgae Coelastrum sp. in wastewater for simultaneous CO 2 fixation,lipid production and wastewater treatment[J]. Bioprocess and Biosystems Engineering, 2018, 41(4):519-530. doi: 10.1007/s00449-017-1887-7
|
18 |
TANG Dahai, HAN Wei, LI Penglin,et al. CO 2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO 2 levels[J]. Bioresource Technology, 2011, 102(3):3071-3076. doi: 10.1016/j.biortech.2010.10.047
|
19 |
GONÇALVES A L, SIMÕES M, PIRES J C M. The effect of light supply on microalgal growth,CO 2 uptake and nutrient removal from wastewater[J]. Energy Conversion and Management, 2014, 85:530-536. doi: 10.1016/j.enconman.2014.05.085
|
20 |
RAZZAK S A, ALI S A M, HOSSAIN M M,et al. Biological CO 2 fixation using Chlorella vulgaris and its thermal characteristics through thermogravimetric analysis[J]. Bioprocess and Biosystems Engineering, 2016, 39(11):1651-1658. doi: 10.1007/s00449-016-1640-7
|
21 |
ZHAO Bingtao, SU Yaxin, ZHANG Yixin,et al. Carbon dioxide fixation and biomass production from combustion flue gas using energy microalgae[J]. Energy, 2015, 89:347-357. doi: 10.1016/j.energy.2015.05.123
|
22 |
DE BHOWMICK G, SARMAH A K,SEN R. Zero-waste algal biorefinery for bioenergy and biochar:A green leap towards achieving energy and environmental sustainability[J]. Science of the Total Environment, 2019, 650(Pt 2):2467-2482. doi: 10.1016/j.scitotenv.2018.10.002
|
23 |
JAIN D, GHONSE S S, TRIVEDI T,et al. CO 2 fixation and production of biodiesel by Chlorella vulgaris NIOCCV under mixotrophic cultivation[J]. Bioresource Technology, 2019, 273:672-676. doi: 10.1016/j.biortech.2018.09.148
|
24 |
HONDA R, BOONNORAT J, CHIEMCHAISRI C,et al. Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor[J]. Bioresource Technology, 2012, 125:59-64. doi: 10.1016/j.biortech.2012.08.138
|
25 |
MOHSENPOUR S F, HENNIGE S, WILLOUGHBY N,et al. Integrating micro-algae into wastewater treatment:A review[J]. Science of the Total Environment, 2021, 752:142168. doi: 10.1016/j.scitotenv.2020.142168
|
26 |
DINESHBABU G, UMA V S, MATHIMANI T,et al. On-site concurrent carbon dioxide sequestration from flue gas and calcite formation in ossein effluent by a marine cyanobacterium Phormidium valderianum BDU 20041[J]. Energy Conversion and Management, 2017, 141:315-324. doi: 10.1016/j.enconman.2016.09.040
|
27 |
YUN J H, CHO D H, LEE Sujin,et al. Hybrid operation of photobioreactor and wastewater-fed open raceway ponds enhances the dominance of target algal species and algal biomass production[J]. Algal Research, 2018, 29:319-329. doi: 10.1016/j.algal.2017.11.037
|
28 |
HARIZ H B, TAKRIFF M S, BA-ABBAD M M,et al. CO 2 fixation capability of Chlorella sp. and its use in treating agricultural wastewater[J]. Journal of Applied Phycology, 2018, 30(6):3017-3027. doi: 10.1007/s10811-018-1488-0
|
29 |
ABID A, SAIDANE F, HAMDI M. Feasibility of carbon dioxide sequestration by Spongiochloris sp microalgae during petroleum wastewater treatment in airlift bioreactor[J]. Bioresource Technology, 2017, 234:297-302. doi: 10.1016/j.biortech.2017.03.041
|
30 |
MORENO-GARCIA L, GARIÉPY Y, BARNABÉ S,et al. Effect of environmental factors on the biomass and lipid production of microalgae grown in wastewaters[J]. Algal Research, 2019, 41:101521. doi: 10.1016/j.algal.2019.101521
|
31 |
SINGH CHAUHAN D, SAHOO L, MOHANTY K. Maximize microalgal carbon dioxide utilization and lipid productivity by using toxic flue gas compounds as nutrient source[J]. Bioresource Technology, 2022, 348:126784. doi: 10.1016/j.biortech.2022.126784
|
32 |
KHAKIMOVA N, MARAVIĆ N, DAVIDOVIĆ P,et al. Sugar beet processing wastewater treatment by microalgae through biosorption[J]. Water, 2022, 14(6):860. doi: 10.3390/w14060860
|
33 |
VIEGAS C, GOUVEIA L, GONÇALVES M. Aquaculture wastewater treatment through microalgal:Biomass potential applications on animal feed,agriculture,and energy[J]. Journal of Environmental Management, 2021, 286:112187. doi: 10.1016/j.jenvman.2021.112187
|
34 |
TRAN D T, VAN DO T C, NGUYEN Q T,et al. Simultaneous removal of pollutants and high value biomaterials production by Chlorella variabilis TH03 from domestic wastewater[J]. Clean Technologies and Environmental Policy, 2021, 23(1):3-17. doi: 10.1007/s10098-020-01810-5
|
35 |
李先科,卢贝,许兵,等. CO2浓度对微藻-真菌共生体生物净化沼液沼气的影响[J]. 环境工程,2022,40(10):88-97.
|
|
LI Xianke, LU Bei, XU Bing,et al. Effect of CO2 concentration on simultaneous purification of biogas slurry and biogas by microalgae-fungi co-culture technology[J]. Environmental Engineering,2022,40(10):88-97.
|
36 |
ZHANG Chaofan, LI Shengnan, HO S H. Converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia:A critical review[J]. Bioresource Technology, 2021, 342:126056. doi: 10.1016/j.biortech.2021.126056
|
37 |
CHOIX F J, OCHOA-BECERRA M A, HSIEH-LO M,et al. High biomass production and CO 2 fixation from biogas by Chlorella and Scenedesmus microalgae using tequila vinasses as culture medium[J]. Journal of Applied Phycology, 2018, 30(4):2247-2258. doi: 10.1007/s10811-018-1433-2
|
38 |
POOJA K, PRIYANKA V, RAO B C S,et al. Cost-effective treatment of sewage wastewater using microalgae Chlorella vulgaris and its application as bio-fertilizer[J]. Energy Nexus, 2022, 7:100122. doi: 10.1016/j.nexus.2022.100122
|
39 |
YOO C, JUN S Y, LEE J Y,et al. Selection of microalgae for lipid production under high levels carbon dioxide[J]. Bioresource Technology, 2010, 101():S71-S74. doi: 10.1016/j.biortech.2009.03.030
|
40 |
YAO Lili, SHI Jianye, MIAO Xiaoling. Mixed wastewater coupled with CO 2 for microalgae culturing and nutrient removal[J]. PLoS One, 2015, 10(9):e0139117. doi: 10.1371/journal.pone.0139117
|
41 |
QI Fan, XU Yan, YU Yi,et al. Enhancing growth of Chlamydomonas reinhardtii and nutrient removal in diluted primary piggery wastewater by elevated CO 2 supply[J]. Water Science and Technology, 2017, 75(10):2281-2290. doi: 10.2166/wst.2017.111
|
42 |
BASU S, SARMA ROY A, GHOSHAL A K,et al. Operational strategies for maximizing CO 2 utilization efficiency by the novel microalga Scenedesmus obliquus SA1 cultivated in lab scale photobioreactor[J]. Algal Research, 2015, 12:249-257. doi: 10.1016/j.algal.2015.09.010
|
43 |
DE GODOS I, MENDOZA J L, ACIÉN F G,et al. Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases[J]. Bioresource Technology, 2014, 153:307-314. doi: 10.1016/j.biortech.2013.11.087
|
44 |
EZE V C, VELASQUEZ-ORTA S B, HERNÁNDEZ-GARCÍA A,et al. Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration[J]. Algal Research, 2018, 32:131-141. doi: 10.1016/j.algal.2018.03.015
|
45 |
BRANCO-VIEIRA M, LOPES M P C, CAETANO N. Algae-based bioenergy production aligns with the Paris agreement goals as a carbon mitigation technology[J]. Energy Reports, 2022, 8:482-488. doi: 10.1016/j.egyr.2022.01.081
|
46 |
YAQOUBNEJAD P, RAD H A, TAGHAVIJELOUDAR M. Development a novel hexagonal airlift flat plate photobioreactor for the improvement of microalgae growth that simultaneously enhance CO 2 bio-fixation and wastewater treatment[J]. Journal of Environmental Management, 2021, 298:113482. doi: 10.1016/j.jenvman.2021.113482
|
47 |
RAZZAK S A, HOSSAIN M M, LUCKY R A,et al. Integrated CO 2 capture,wastewater treatment and biofuel production by microalgae culturing:A review[J]. Renewable and Sustainable Energy Reviews, 2013, 27:622-653. doi: 10.1016/j.rser.2013.05.063
|
48 |
穆浩男. 基于微藻培养的有机废水处理和烟道气中CO2固定的影响研究[D]. 天津:天津大学,2018.
|
|
MU Haonan. Study on the treatment of organic wastewater based on microalgae culture and the influence of CO2 fixation in flue gas[D]. Tianjin:Tianjin University,2018.
|
49 |
|
|
HU Xiaofu, WANG Kailiang, SHEN Jianyong,et al. Research progress of CO 2 resource utilization based on biological carbon sequestration technology[J]. Huadian Technology, 2021, 43(6):79-85. doi: 10.3969/j.issn.1674-1951.2021.06.010
|
50 |
JACOB-LOPES E, SCOPARO C H G, LACERDA L M C F,et al. Effect of light cycles(night/day) on CO 2 fixation and biomass production by microalgae in photobioreactors[J]. Chemical Engineering and Processing:Process Intensification, 2009, 48(1):306-310. doi: 10.1016/j.cep.2008.04.007
|
51 |
CARVALHO V C F, KESSLER M, FRADINHO J C,et al. Achieving nitrogen and phosphorus removal at low C/N ratios without aeration through a novel phototrophic process[J]. Science of the Total Environment, 2021, 793:148501. doi: 10.1016/j.scitotenv.2021.148501
|
52 |
JIA Huijun, YUAN Q. Nitrogen removal in photo sequence batch reactor using algae-bacteria consortium[J]. Journal of Water Process Engineering, 2018, 26:108-115. doi: 10.1016/j.jwpe.2018.10.003
|
53 |
ZENG Jing, WANG Zhenjun, CHEN Guobin. Biological characteristics of energy conversion in carbon fixation by microalgae[J]. Renewable and Sustainable Energy Reviews, 2021, 152:111661. doi: 10.1016/j.rser.2021.111661
|
54 |
王桂泉. 碳中和背景下微藻资源化技术处理废水的应用进展与展望[J]. 皮革制作与环保科技,2021,2(24):161-163.
|
|
WANG Guiquan. Progress and prospect of the application of micro algae resource technology in wastewater treatment under the background of carbon neutrality[J]. Leather Manufacture and Environmental Technology,2021,2(24):161-163.
|
55 |
|
|
ZHAO Quanyu. Research progress in carbon neutrality oriented adaptive laboratory evolution of microalgae[J]. Synthetic Biology Journal, 2022(5):901-914. doi: 10.1007/s43979-023-00050-y
|
56 |
CHENG Dujia, LI Xuyang, YUAN Yizhong,et al. Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas[J]. Science of the Total Environment, 2019, 650(Pt 2):2931-2938. doi: 10.1016/j.scitotenv.2018.10.070
|
57 |
YUE Lihong, CHEN Weigong. Isolation and determination of cultural characteristics of a new highly CO 2 tolerant fresh water microalgae[J]. Energy Conversion and Management, 2005, 46(11/12):1868-1876. doi: 10.1016/j.enconman.2004.10.010
|
58 |
孙浩源,邓晓东,翟晓旭,等. 微藻基因工程研究进展[J]. 农业与技术,2024,44(1):1-4.
|
|
SUN Haoyuan, DENG Xiaodong, ZHAI Xiaoxu,et al. Research progress in genetic engineering of microalgae[J]. Agriculture and Technology,2024,44(1):1-4.
|
59 |
|
|
ZHOU Wenguang, RUAN Rongsheng. Biological mitigation of carbon dioxide via microalgae:Recent development and future direction[J]. Scientia Sinica Chimica, 2014, 44(1):63-78. doi: 10.1360/032013-256
|
60 |
BARATI B, ZENG Kuo, BAEYENS J,et al. Recent progress in genetically modified microalgae for enhanced carbon dioxide sequestration[J]. Biomass and Bioenergy, 2021, 145:105927. doi: 10.1016/j.biombioe.2020.105927
|
61 |
SONG Chunfeng, LIU Qingling, QI Yun,et al. Absorption-microalgae hybrid CO 2 capture and biotransformation strategy:A review[J]. International Journal of Greenhouse Gas Control, 2019, 88:109-117. doi: 10.1016/j.ijggc.2019.06.002
|
62 |
徐彤彤,刘伟,葛庆燕,等. 微藻在污水处理中的二氧化碳减排作用与机制[J]. 环境科学与技术,2022,45(12):133-144.
|
|
XU Tongtong, LIU Wei, GE Qingyan,et al. Effect and mechanism of microalgae on carbon dioxide emission reduction in wastewater treatment[J]. Environmental Science & Technology,2022,45(12):133-144.
|
63 |
QV M, DAI Dian, LIU Dongyang,et al. Towards advanced nutrient removal by microalgae-bacteria symbiosis system for wastewater treatment[J]. Bioresource Technology, 2023, 370:128574. doi: 10.1016/j.biortech.2022.128574
|
64 |
ALAM M A, WAN Chun, TRAN D T,et al. Microalgae binary culture for higher biomass production,nutrients recycling,and efficient harvesting:A review[J]. Environmental Chemistry Letters, 2022, 20(2):1153-1168. doi: 10.1007/s10311-021-01363-z
|
65 |
DAS P K, RANI J, RAWAT S,et al. Microalgal co-cultivation for biofuel production and bioremediation:Current status and benefits[J]. Bioenergy Research, 2022, 15(1):1-26. doi: 10.1007/s12155-021-10254-8
|
66 |
DEY S, ANAND U, KUMAR V,et al. Microbial strategies for degradation of microplastics generated from COVID-19 healthcare waste[J]. Environmental Research, 2023, 216(Pt 1):114438. doi: 10.1016/j.envres.2022.114438
|
67 |
XIE Peng, CHEN Chuan, ZHANG Chaofan,et al. Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae[J]. Water Research, 2020, 172:115475. doi: 10.1016/j.watres.2020.115475
|
68 |
RAMANAN R, KIM B H, CHO D H,et al. Algae-bacteria interactions:Evolution,ecology and emerging applications[J]. Biotechnology Advances, 2016, 34(1):14-29. doi: 10.1016/j.biotechadv.2015.12.003
|
69 |
LU Xin, WANG Yue, CHEN Congli,et al. C12-HSL is an across-boundary signal molecule that could alleviate fungi Galactomyces’s filamentation:A new mechanism on activated sludge bulking[J]. Environmental Research, 2022, 204(Pt A):111823. doi: 10.1016/j.envres.2021.111823
|
70 |
ZHANG Bing, LI Wei, GUO Yuan,et al. Microalgal-bacterial consortia:From interspecies interactions to biotechnological applications[J]. Renewable and Sustainable Energy Reviews, 2020, 118:109563. doi: 10.1016/j.rser.2019.109563
|
71 |
ZHANG Chaofan, HO S H, LI Anran,et al. Co-culture of Chlorella and Scenedesmus could enhance total lipid production under bacteria quorum sensing molecule stress[J]. Journal of Water Process Engineering, 2021, 39:101739. doi: 10.1016/j.jwpe.2020.101739
|
72 |
VARGAS G, DONOSO-BRAVO A, VERGARA C,et al. Assessment of microalgae and nitrifiers activity in a consortium in a continuous operation and the effect of oxygen depletion[J]. Electronic Journal of Biotechnology, 2016, 23:63-68. doi: 10.1016/j.ejbt.2016.08.002
|
73 |
CHIA S R, NOMANBHAY S B H M, CHEW K W,et al. Algae as potential feedstock for various bioenergy production[J]. Chemosphere, 2022, 287(Pt 1):131944. doi: 10.1016/j.chemosphere.2021.131944
|