1 |
Jia Xiaoyu , Gong Dirong , Wang Jianni , et al. Arsenic speciation in environmental waters by a new specific phosphine modified polymer microsphere preconcentration and HPLC-ICP-MS determination[J]. Talanta, 2016, 160, 437- 443.
doi: 10.1016/j.talanta.2016.07.050
|
2 |
潘茂华, 朱志良. 自然环境中砷的迁移转化研究进展[J]. 化学通报, 2013, 76 (5): 399- 404.
URL
|
3 |
Santra S C , Samal A C . Arsenic scenario in Gangetic delta of west Bengal: risk and management[J]. National Seminar on Ecology, Environment & Development, 2013, 3, 41- 55.
URL
|
4 |
Balladares E , Jerez O , Parada F , et al. Neutralization and co-precipitation of heavy metals by lime addition to effluent from acid plant in a copper smelter[J]. Minerals Engineering, 2018, 122, 122- 129.
doi: 10.1016/j.mineng.2018.03.028
|
5 |
王德峰, 彭先佳, 张卫民, 等. 硫化氢净化强酸性高砷废液[J]. 环境化学, 2015, 34 (12): 2233- 2238.
doi: 10.7524/j.issn.0254-6108.2015.12.2015091502
|
6 |
Wang Yongliang , Lv Cuicui , Li Xiao , et al. Arsenic removal from alkaline leaching solution using Fe(Ⅲ) precipitation[J]. Environmental Technology, 2019, 40 (13): 1714- 1720.
doi: 10.1080/09593330.2018.1429495
|
7 |
Ortega A , Oliva I , Contreras K E , et al. Arsenic removal from water by hybrid electro-regenerated anion exchange resin/electrodialysis process[J]. Separation & Purification Technology, 2017, 184, 319- 326.
URL
|
8 |
王放, 赵洪兴, 肖燕飞, 等. CO32-型TOMAC自碱性溶液中萃取硫代亚砷酸[J]. 有色金属科学与工程, 2016, 7 (2): 14- 18.
URL
|
9 |
Sanchez J , Butter B , Chavez S , et al. Quaternized hydroxyethyl cellulose ethoxylate and membrane separation techniques for arsenic removal[J]. Desalination & Water Treatment, 2016, 57 (52): 1- 9.
|
10 |
Zhu Ningyuan , Qiao Jun , Ye Yanfang , et al. Synthesis of mesoporous bismuth-impregnated aluminum oxide for arsenic removal: adsorption mechanism study and application to a lab-scale column[J]. Journal of Environmental Management, 2018, 211, 73- 82.
|
11 |
Li Xiaoqin , Zhang Weixian . Sequestration of metal cations with zerovalent iron nanoparticles-a study with high resolution X-ray photoelectron spectroscopy(HR-XPS)[J]. Journal of Physical Chemistry C, 2007, 111 (19): 6939- 6946.
doi: 10.1021/jp0702189
|
12 |
Liu Hubing , Chen Tuihan , Chang Daying , et al. Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite[J]. Materials Chemistry & Physics, 2012, 133 (1): 205- 211.
URL
|
13 |
Yu Zhigang , Huang Junyi , Hu Liming , et al. Effects of geochemical conditions, surface modification, and arsenic(As) loadings on As release from As-loaded nano zero-valent iron in simulated groundwater[J]. Environmental Science: Water Research & Technology, 2019, 5 (1): 28- 38.
URL
|
14 |
Xia Xuefen , Ling Lan , Zhang Weixian . Solution and surface chemistry of the Se(Ⅳ)-Fe(0) reactions: effect of initial solution pH[J]. Chemosphere, 2017, 168, 1597- 1603.
doi: 10.1016/j.chemosphere.2016.11.150
|
15 |
Ramos M A V , Yan Weile , Li Xiaoqin , et al. Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure[J]. The Journal of Physical Chemistry C, 2009, 113 (33): 14591- 14594.
doi: 10.1021/jp9051837
|
16 |
Yan Weile , Ramos M A V , Koel B E , et al. Multi-tiered distributions of arsenic in iron nanoparticles: observation of dual redox functionality enabled by a core-shell structure[J]. Chemical Communications, 2010, 46 (37): 6995- 6997.
doi: 10.1039/c0cc02311f
|