1 |
LIU Xianjing, LIANG Cunzhen, LIU Xiaohui,et al. Intensified pharmaceutical and personal care products removal in an electrolysis⁃integrated tidal flow constructed wetland[J]. Chemical Engineering Journal, 2020, 394:124860. doi: 10.1016/j.cej.2020.124860
|
2 |
RIAZI B, ZHANG Jianwei, YEE W,et al. Life cycle environmental and cost implications of isostearic acid production for pharmaceutical and personal care products[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18):15247-15258. doi: 10.1021/acssuschemeng.9b02238
|
3 |
WEYESA A, MULUGETA E. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues:A review[J]. RSC Advances, 2020, 10(35):20784-20793. doi: 10.1039/D0RA03763J
|
4 |
KIM J H, KIM B H, BROOKS S,et al. Structural and mechanistic insights into caffeine degradation by the bacterial N-demethylase complex[J]. Journal of Molecular Biology, 2019, 431(19):3647-3661. doi: 10.1016/j.jmb.2019.08.004
|
5 |
MUTHUKUMAR H, SHANMUGAM M K, GUMMADI S N. Caffeine degradation in synthetic coffee wastewater using silverferrite nanoparticles fabricated via green route using amaranthus blitum leaf aqueous extract[J]. Journal of Water Process Engineering, 2020, 36:101382. doi: 10.1016/j.jwpe.2020.101382
|
6 |
STEFANELLO N, SPANEVELLO R M, PASSAMONTI S,et al. Coffee,caffeine,chlorogenic acid,and the purinergic system[J]. Food and Chemical Toxicology, 2019, 123:298-313. doi: 10.1016/j.fct.2018.10.005
|
7 |
SUN Di, YANG Xueying, ZENG Chao,et al. Novel caffeine degradation gene cluster is mega⁃plasmid encoded in Paraburkholderia caffeinilytica CF 1 [J]. Applied Microbiology and Biotechnology, 2020, 104(7):3025-3036. doi: 10.1007/s00253-020-10384-7
|
8 |
LI Shulan, WEN Jing, HE Bingshu,et al. Occurrence of caffeine in the freshwater environment:Implications for ecopharmacovigilance[J]. Environmental Pollution, 2020, 263:114371. doi: 10.1016/j.envpol.2020.114371
|
9 |
XIAO Ruiyang, LUO Zonghao, WEI Zongsu,et al. Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical⁃based advanced oxidation technologies[J]. Current Opinion in Chemical Engineering, 2018, 19:51-58. doi: 10.1016/j.coche.2017.12.005
|
10 |
HU Peidong, LONG Mingce. Cobalt⁃catalyzed sulfate radical⁃based advanced oxidation:A review on heterogeneous catalysts and applications[J]. Applied Catalysis B:Environmental, 2016, 181:103-117. doi: 10.1016/j.apcatb.2015.07.024
|
11 |
LIAN Lushi, YAO Bo, HOU Shaodong,et al. Kinetic study of hydroxyl and sulfate radical⁃mediated oxidation of pharmaceuticals in wastewater effluents[J]. Environmental Science & Technology, 2017, 51(5):2954-2962. doi: 10.1021/acs.est.6b05536
|
12 |
WANG Songlin, WU Junfeng, LU Xiuqing,et al. Removal of acetaminophen in the Fe 2+/persulfate system:Kinetic model and degradation pathways[J]. Chemical Engineering Journal, 2019, 358:1091-1100. doi: 10.1016/j.cej.2018.09.145
|
13 |
NIE Minghua, YAN Caixia, XIONG Xiaoying,et al. Degradation of chloramphenicol using a combination system of simulated solar light,Fe 2+ and persulfate[J]. Chemical Engineering Journal, 2018, 348:455-463. doi: 10.1016/j.cej.2018.04.124
|
14 |
WANG Jiaqi, YANG Min, LIU Ruiping,et al. Anaerobically⁃digested sludge conditioning by activated peroxymonosulfate:Significance of EDTA chelated-Fe 2+ [J]. Water Research, 2019, 160:454-465. doi: 10.1016/j.watres.2019.05.067
|
15 |
DONG Haoran, HE Qi, Zeng Guangming,et al. Degradation of trichloroethene by nanoscale zero⁃valent iron(nZVI)and nZVI activated persulfate in the absence and presence of EDTA[J]. Chemical Engineering Journal, 2017, 316:410-418. doi: 10.1016/j.cej.2017.01.118
|
16 |
HAYAT W, ZHANG Yongqing, HUSSAIN I,et al. Efficient degradation of imidacloprid in water through iron activated sodium persulfate[J]. Chemical Engineering Journal, 2019, 370:1169-1180. doi: 10.1016/j.cej.2019.03.261
|
17 |
杨珂. 络合剂增强Vis/Fe(Ⅱ)/PMS体系降解氯霉素的效能与机理[D]. 西安:陕西师范大学,2019.
|
|
YANG Ke. Enhanced efficiency via complexing agent and mechanism of degradation of chloramphenicol in Vis/Fe(Ⅱ)/PMS system[D]. Xi’an:Shaanxi Normal University,2019.
|
18 |
TIAN Huifang, LIANG Ying, ZHU Tianle,et al. Surfactant⁃enhanced PEG-4000-NZVI for remediating trichloroethylene⁃contaminated soil[J]. Chemosphere, 2018, 195:585-593. doi: 10.1016/j.chemosphere.2017.12.070
|
19 |
PANG Hongwei, DIAO Zhuofan, WANG Xiangxue,et al. Adsorptive and reductive removal of U(Ⅵ) by Dictyophora indusiate⁃derived biochar supported sulfide NZVI from wastewater[J]. Chemical Engineering Journal, 2019, 366:368-377. doi: 10.1016/j.cej.2019.02.098
|
20 |
HUSSAIN I, LI Mingyu, ZHANG Yongqing,et al. Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol[J]. Chemical Engineering Journal, 2017, 311:163-172. doi: 10.1016/j.cej.2016.11.085
|
21 |
莫慧敏,秦兴姿,毛珺,等. 海藻酸钠改性纳米零价铁还原土壤中Cr(Ⅵ)[J]. 环境科学学报,2020,40(5):1821-1827.
|
|
MO Huimin, Qin Xingzi, Mao Jun,et al. Reduction of Cr(Ⅵ) in soil using sodium alginate⁃modifiled nanoscale zerovalent iron[J]. Acta Scientiae Circumstantiae,2020,40(5):1821-1827.
|
22 |
|
|
ZHOU Chundi, YANG Ting, MIN Xize,et al. The influence of zerovalent iron and copper modified biochar on Cr(Ⅵ) adsorption[J]. Chemical Industry and Engineering Progress, 2020, 39(10):4275-4282. doi: 10.1016/j.chemosphere.2020.127871
|
23 |
FAN Zixi, ZHANG Qian, GAO Bin,et al. Removal of hexavalent chromium by biochar supported nZVI composite:Batch and fixed⁃bed column evaluations,mechanisms,and secondary contamination prevention[J]. Chemosphere, 2019, 217:85-94. doi: 10.1016/j.chemosphere.2018.11.009
|
24 |
LU Jian, ZHANG Cui, WU Jun. One⁃pot synthesis of magnetic algal carbon/sulfidated nanoscale zero valent iron composites for removal of bromated disinfection by⁃product[J]. Chemosphere, 2020, 250:126257. doi: 10.1016/j.chemosphere.2020.126257
|
25 |
LUO Haoyu, LIN Qintie, ZHANG Xiaofeng,et al. New insights into the formation and transformation of active species in nZVI/BC activated persulfate in alkaline solutions[J]. Chemical Engineering Journal, 2019, 359:1215-1223. doi: 10.1016/j.cej.2018.11.056
|
26 |
XIAO Sa, CHENG Min, ZHONG Hua,et al. Iron⁃mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways:A review[J]. Chemical Engineering Journal, 2020, 384:123265. doi: 10.1016/j.cej.2019.123265
|
27 |
WANG Jianlong, WANG Shizong. Activation of persulfate(PS)and peroxymonosulfate(PMS)and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334:1502-1517. doi: 10.1016/j.cej.2017.11.059
|
28 |
KIM C,AHN J Y, KIM T Y,et al. Activation of persulfate by nanosized zero⁃valent iron(NZVI):Mechanisms and transformation products of NZVI[J]. Environmental Science & Technology, 2018, 52(6):3625-3633. doi: 10.1021/acs.est.7b05847
|
29 |
DU Li, XU Weihua, LIU Yunguo,et al. Removal of sulfamethoxazole in aqueous solutions by iron⁃based advanced oxidation processes:Performances and mechanisms[J]. Water,Air,& Soil Pollution, 2020, 231(4):1-13. doi: 10.1007/s11270-020-04534-w
|
30 |
YU Xiaoying, BAO Zhenchuan, BARKER J R. Free radical reactions involving Cl •,Cl 2 •-,and SO 4 •- in the 248 nm photolysis of aqueous solutions containing S 2O 8 2- and Cl - [J]. The Journal of Physical Chemistry A, 2004, 108(2):295-308. doi: 10.1021/jp036211i
|
31 |
GAO Yuqiong, GAO Naiyun, WANG Wei,et al. Ultrasound⁃assisted heterogeneous activation of persulfate by nano zero⁃valent iron(nZVI) for the propranolol degradation in water[J]. Ultrasonics Sonochemistry, 2018, 49:33-40. doi: 10.1016/j.ultsonch.2018.07.001
|
32 |
ZHU Fang, WU Yuanyuan, LIANG Yukun,et al. Degradation mechanism of norfloxacin in water using persulfate activated by BC@nZVI/Ni[J]. Chemical Engineering Journal, 2020, 389:124276. doi: 10.1016/j.cej.2020.124276
|
33 |
LI Xiaodong, WU Bin, ZHANG Qian,et al. Mechanisms on the impacts of humic acids on persulfate/Fe 2+⁃based groundwater remediation[J]. Chemical Engineering Journal, 2019, 378:122142. doi: 10.1016/j.cej.2019.122142
|
34 |
LU Haojie, DONG Jun, ZHANG Mengyue,et al. SiO 2⁃coated zero⁃valent iron nanocomposites for aqueous nitrobenzene reduction in groundwater:Performance,reduction mechanism and the effects of hydrogeochemical constituents[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 558:271-279. doi: 10.1016/j.colsurfa.2018.08.081
|
35 |
JI Yuefei, SHI Yuanyuan, WANG Lu,et al. Denitration and renitration processes in sulfate radical⁃mediated degradation of nitrobenzene[J]. Chemical Engineering Journal, 2017, 315:591-597. doi: 10.1016/j.cej.2017.01.071
|
36 |
XU Jiang, LIU Xue, CAO Zhen,et al. Fast degradation,large capacity,and high electron efficiency of chloramphenicol removal by different carbon⁃supported nanoscale zerovalent iron[J]. Journal of Hazardous Materials, 2020, 384:121253. doi: 10.1016/j.jhazmat.2019.121253
|