1 |
YUAN Shushan, LI Xin, ZHU Junyong,et al. Covalent organic frameworks for membrane separation[J]. Chemical Society Reviews, 2019, 48(10):2665-2681. doi: 10.1039/c8cs00919h
|
2 |
SHEN Shusu, SHEN Yang, WU Yi,et al. Surface modification of PVDF membrane via deposition-grafting of UiO-66-NH 2 and their application in oily water separations[J]. Chemical Engineering Science, 2022, 260:117934. doi: 10.1016/j.ces.2022.117934
|
3 |
靳巧如,沈舒苏,张干伟,等. 聚偏氟乙烯膜的抗污染研究进展[J]. 膜科学与技术,2022,42(3):172-179.
|
|
JIN Qiaoru, SHEN Shusu, ZHANG Ganwei,et al. Research progress on antifouling performance improvement of polyvinylidene fluoride membrane[J]. Membrane Science and Technology,2022,42(3):172-179.
|
4 |
DENG Yang, ZHANG Ganwei, BAI Renbi,et al. Fabrication of superhydrophilic and underwater superoleophobic membranes via an in situ crosslinking blend strategy for highly efficient oil/water emulsion separation[J]. Journal of Membrane Science, 2019, 569:60-70. doi: 10.1016/j.memsci.2018.09.069
|
5 |
SHEN Shusu, ZHANG Linbin, ZHANG Yiyuan,et al. Fabrication of antifouling membranes by blending poly(vinylidene fluoride) with cationic polyionic liquid[J]. Journal of Applied Polymer Science,DOI: 10. 1002/app. 48878 .
|
6 |
张林彬,吴逸,沈舒苏,等. 聚偏氟乙烯/聚离子液体共混膜的优化制备[J]. 工业水处理,2021,41(3):31-34.
|
|
ZHANG Linbin, WU Yi, SHEN Shusu,et al. Optimized preparation of polyvinylidene fluoride/polyionic liquid blend membrane[J].Industrial Water Treatment,2021,41(3):31-34.
|
7 |
WANG Zhifang, ZHANG Sainan, CHEN Yao,et al. Covalent organic frameworks for separation applications[J]. Chemical Society Reviews, 2020, 49(3):708-735. doi: 10.1039/c9cs00827f
|
8 |
WANG Jianlong, ZHUANG Shuting. Covalent organic frameworks(COFs) for environmental applications[J]. Coordination Chemistry Reviews, 2019, 400:213046. doi: 10.1016/j.ccr.2019.213046
|
9 |
COTE A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. doi: 10.1126/science.1120411
|
10 |
张成江,袁晓艳,袁泽利,等. 基于席夫碱反应的共价有机骨架材料[J]. 化学进展,2018,30(4):365-382.
|
|
ZHANG Chengjiang, YUAN Xiaoyan, YUAN Zeli,et al. Covalent organic framework materials based on schiff-base reaction[J]. Progress in Chemistry,2018,30(4):365-382.
|
11 |
DING Sanyuan, WANG Wei. Covalent organic frameworks(COFs):From design to applications[J]. Chemical Society Reviews, 2013, 42(2):548-568. doi: 10.1039/c2cs35072f
|
12 |
KUHN P, ANTONIETTI M, THOMAS A. Porous,covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angewandte Chemie(International Ed. in English), 2008, 47(18):3450-3453. doi: 10.1002/anie.200705710
|
13 |
URIBE-ROMO F J, HUNT J R, FURUKAWA H,et al. A crystalline imine-linked 3-D porous covalent organic framework[J]. Journal of the American Chemical Society, 2009, 131(13):4570-4571. doi: 10.1021/ja8096256
|
14 |
|
|
SUN Shumin, WANG Peiyuan, WU Qiong. Progress on the covalent organic frameworks and the application[J]. Journal of Light Industry, 2016, 31(3):21-32. doi: 10.3969/j.issn.2095-476X.2016.03.004
|
15 |
FAN Hongwei, MUNDSTOCK A, FELDHOFF A,et al. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation[J]. Journal of the American Chemical Society, 2018, 140(32):10094-10098. doi: 10.1021/jacs.8b05136
|
16 |
WANG Hongbing, LIU Yanyan, LIU Yang,et al. Two-dimensional imine covalent organic frameworks for methane and ethane separation:A GCMC simulation study[J]. Microporous and Mesoporous Materials, 2021, 326:111386. doi: 10.1016/j.micromeso.2021.111386
|
17 |
MONTORO C, RODRÍGUEZ-SAN-MIGUEL D, POLO E,et al. Ionic conductivity and potential application for fuel cell of a modified imine-based covalent organic framework[J]. Journal of the American Chemical Society, 2017, 139(29):10079-10086. doi: 10.1021/jacs.7b05182
|
18 |
YIN Yongheng, LI Zhen, YANG Xin,et al. Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework[J]. Journal of Power Sources, 2016, 332:265-273. doi: 10.1016/j.jpowsour.2016.09.135
|
19 |
YANG Hao, WU Hong, YAO Zhaoquan,et al. Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation[J]. Journal of Materials Chemistry A, 2018, 6(2):583-591. doi: 10.1039/c7ta09596a
|
20 |
KANDAMBETH S, BISWAL B P, CHAUDHARI H D,et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes[J]. Advanced Materials, 2017, 29(2):1603945. doi: 10.1002/adma.201603945
|
21 |
|
|
FU Xiaorui. Research progress of separation membranes by covalent organic framework materials[J]. Biological Chemical Engineering, 2020, 6(5):135-138. doi: 10.3969/j.issn.2096-0387.2020.05.039
|
22 |
URIBE-ROMO F J, DOONAN C J, FURUKAWA H,et al. Crystalline covalent organic frameworks with hydrazone linkages[J]. Journal of the American Chemical Society, 2011, 133(30):11478-11481. doi: 10.1021/ja204728y
|
23 |
STEGBAUER L, SCHWINGHAMMER K, LOTSCH B V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production[J]. Chemical Science, 2014, 5(7):2789-2793. doi: 10.1039/c4sc00016a
|
24 |
LIU Wanting, SU Qing, JU Pengyao,et al. A hydrazone-based covalent organic framework as an efficient and reusable photocatalyst for the cross-dehydrogenative coupling reaction of N-aryl tetrahydroisoquinolines[J]. ChemSusChem, 2017, 10(4):664-669. doi: 10.1002/cssc.201601702
|
25 |
BAGHERIAN N, KARIMI A R, AMINI A. Chemically stable porous crystalline macromolecule hydrazone-linked covalent organic framework for CO 2 capture[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 613:126078. doi: 10.1016/j.colsurfa.2020.126078
|
26 |
DING Sanyuan, GAO Jia, WANG Qiong,et al. Construction of covalent organic framework for catalysis:Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction[J]. Journal of the American Chemical Society, 2011, 133(49):19816-19822. doi: 10.1021/ja206846p
|
27 |
KANDAMBETH S, MALLICK A, LUKOSE B,et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical(acid/base) stability via a combined reversible and irreversible route[J]. Journal of the American Chemical Society, 2012, 134(48):19524-19527. doi: 10.1021/ja308278w
|
28 |
LI Yusen, CHEN Qing, XU Tiantian,et al. De novo design and facile synthesis of 2D covalent organic frameworks:A two-in-one strategy[J]. Journal of the American Chemical Society, 2019, 141(35):13822-13828. doi: 10.1021/jacs.9b03463
|
29 |
ABUZEID H R, EL-MAHDY A F M, KUO S W. Hydrogen bonding induces dual porous types with microporous and mesoporous covalent organic frameworks based on bicarbazole units[J]. Microporous and Mesoporous Materials, 2020, 300:110151. doi: 10.1016/j.micromeso.2020.110151
|
30 |
FAN Hongwei, GU Jiahui, MENG Hong,et al. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration[J]. Angewandte Chemie International Edition, 2018, 57(15):4083-4087. doi: 10.1002/anie.201712816
|
31 |
HAO Shuang, WEN Jianping, LI Suoding,et al. Preparation of COF-LZU1/PAN membranes by an evaporation/casting method for separation of dyes[J]. Journal of Materials Science, 2020, 55(30):14817-14828. doi: 10.1007/s10853-020-05090-8
|
32 |
WANG Ting, WU Hongyu, ZHAO Song,et al. Interfacial polymerized and pore-variable covalent organic framework composite membrane for dye separation[J]. Chemical Engineering Journal, 2020, 384:123347. doi: 10.1016/j.cej.2019.123347
|
33 |
KONG Guodong, PANG Jia, TANG Yucheng,et al. Efficient dye nanofiltration of a graphene oxide membrane via combination with a covalent organic framework by hot pressing[J]. Journal of Materials Chemistry A, 2019, 7(42):24301-24310. doi: 10.1039/c9ta07684k
|
34 |
ZHANG Tao, FU Xiaorui, WU Chao,et al. Facile fabrication of covalent organic framework composite membranes via interfacial polymerization for enhanced separation and anti-fouling performance[J]. Journal of Environmental Chemical Engineering, 2021, 9(6):106807. doi: 10.1016/j.jece.2021.106807
|
35 |
GONG Xinwen, ZHANG Guomeng, DONG Huifeng,et al. Self-assembled hierarchical heterogeneous MXene/COF membranes for efficient dye separations[J]. Journal of Membrane Science, 2022, 657:120667. doi: 10.1016/j.memsci.2022.120667
|
36 |
XUE Hongbo, XIONG Sen, MI Kai,et al. Visible-light degradation of azo dyes by imine-linked covalent organic frameworks[J]. Green Energy & Environment, 2023, 8(1):194-199. doi: 10.1016/j.gee.2020.09.010
|
37 |
WANG Chongbin, LI Zhiyuan, CHEN Jianxin,et al. Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination[J]. Journal of Membrane Science, 2017, 523:273-281. doi: 10.1016/j.memsci.2016.09.055
|
38 |
LI Can, LI Shuxuan, ZHANG Jinmiao,et al. Emerging sandwich-like reverse osmosis membrane with interfacial assembled covalent organic frameworks interlayer for highly-efficient desalination[J]. Journal of Membrane Science, 2020, 604:118065. doi: 10.1016/j.memsci.2020.118065
|
39 |
YUAN Jinqiu, WU Mengyuan, WU Hong,et al. Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes[J]. Journal of Materials Chemistry A, 2019, 7(44):25641-25649. doi: 10.1039/c9ta08163a
|
40 |
WANG Zhanbin, LIU Jiahao, SHAN Houchao,et al. A polyvinyl alcohol‐based mixed matrix membrane with uniformly distributed Schiff base network-1 for ethanol dehydration[J]. Journal of Applied Polymer Science, 2020, 137(42):49308. doi: 10.1002/app.49308
|
41 |
LIU Guanhua, JIANG Zhongyi, YANG Hao,et al. High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework(COF) layer[J]. Journal of Membrane Science, 2019, 572:557-566. doi: 10.1016/j.memsci.2018.11.040
|
42 |
LI Shufeng, LI Pei, CAI Di,et al. Boosting pervaporation performance by promoting organic permeability and simultaneously inhibiting water transport via blending PDMS with COF-300[J]. Journal of Membrane Science, 2019, 579:141-150. doi: 10.1016/j.memsci.2019.02.041
|
43 |
ZHANG Luwei, LI Ya, WANG Yan,et al. Integration of covalent organic frameworks into hydrophilic membrane with hierarchical porous structure for fast adsorption of metal ions[J]. Journal of Hazardous Materials, 2021, 407:124390. doi: 10.1016/j.jhazmat.2020.124390
|
44 |
XU Wentao, SUN Xuejiao, HUANG Mianli,et al. Novel covalent organic framework/PVDF ultrafiltration membranes with antifouling and lead removal performance[J]. Journal of Environmental Management, 2020, 269:110758. doi: 10.1016/j.jenvman.2020.110758
|
45 |
KANDAMBETH S, BISWAL B P, CHAUDHARI H D,et al. Selective molecular sieving in self‐standing porous covalent‐organic‐framework membranes[J]. Advanced materials, 2017, 29(2):1603945. doi: 10.1002/adma.201603945
|
46 |
MANORANJAN N, ZHANG F, WANG Z,et al. A single-walled carbon nanotube/covalent organic framework nanocomposite ultrathin membrane with high organic solvent resistance for molecule separation[J]. ACS Applied Materials & Interfaces, 2020, 12(47):53096-53103. doi: 10.1021/acsami.0c14825
|
47 |
WEI Wan, LIU Jie, JIANG Jianwen. Computational design of 2D covalent-organic framework membranes for organic solvent nanofiltration[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1):1734-1744. doi: 10.1021/acssuschemeng.8b05599
|
48 |
LI Can, LI Shuxuan, TIAN Long,et al. Covalent organic frameworks(COFs)-incorporated thin film nanocomposite(TFN) membranes for high-flux organic solvent nanofiltration(OSN)[J]. Journal of Membrane Science, 2019, 572:520-531. doi: 10.1016/j.memsci.2018.11.005
|