1 |
BILAL M, ASGHER M, PARRA-SALDIVAR R,et al. Immobilized ligninolytic enzymes:An innovative and environmental responsive technology to tackle dye-based industrial pollutants:A review[J]. Science of the Total Environment, 2017, 576:646-659. doi: 10.1016/j.scitotenv.2016.10.137
|
2 |
|
|
CHEN Rongqi. Review of reactive dyes discovery for 60 years commemoration(to be continued)[J]. Textile Dyeing and Finishing Journal, 2015, 37(2):36-45. doi: 10.3969/j.issn.1005-9350.2015.02.015
|
3 |
MISHRA S, MOHANTY P, MAITI A. Bacterial mediated bio-decolourization of wastewater containing mixed reactive dyes using jack-fruit seed as co-substrate:Process optimization[J]. Journal of Cleaner Production, 2019, 235:21-33. doi: 10.1016/j.jclepro.2019.06.328
|
4 |
SOLÍS M, SOLÍS A, PÉREZ H I,et al. Microbial decolouration of azo dyes:A review[J]. Process Biochemistry, 2012, 47(12):1723-1748. doi: 10.1016/j.procbio.2012.08.014
|
5 |
KHATRI A, PEERZADA M H, MOHSIN M,et al. A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution[J]. Journal of Cleaner Production, 2015, 87:50-57. doi: 10.1016/j.jclepro.2014.09.017
|
6 |
ZHANG Yi, WANG Panlei, HUSSAIN Z,et al. Modification and characterization of hydrogel beads and its used as environmentally friendly adsorbent for the removal of reactive dyes[J]. Journal of Cleaner Production, 2022, 342:130789. doi: 10.1016/j.jclepro.2022.130789
|
7 |
HUSSEIN T K, JASIM N A. A comparison study between chemical coagulation and electro-coagulation processes for the treatment of wastewater containing reactive blue dye[J]. Materials Today:Proceedings, 2021, 42:1946-1950. doi: 10.1016/j.matpr.2020.12.240
|
8 |
KRISHNAMOORTHY S, AJALA F, MOHAMMED S M,et al. High adsorption and high catalyst regeneration kinetics observed for Flyash-Fe 3O 4-Ag magnetic composite for efficient removal of industrial azo reactive dyes from aqueous solution via persulfate activation[J]. Applied Surface Science, 2021, 548:149265. doi: 10.1016/j.apsusc.2021.149265
|
9 |
AYED L, LADHARI N, MZOUGHI R EL,et al. Decolorization and phytotoxicity reduction of reactive blue 40 dye in real textile wastewater by active consortium:Anaerobic/aerobic algal-bacterial-probiotic bioreactor[J]. Journal of Microbiological Methods, 2021, 181:106129. doi: 10.1016/j.mimet.2020.106129
|
10 |
LAHIRI S K, ZHANG C, SILLANPÄÄ M,et al. Nanoporous NiO@SiO 2 photo-catalyst prepared by ion-exchange method for fast elimination of reactive dyes from wastewater[J]. Materials Today Chemistry, 2022, 23:100677. doi: 10.1016/j.mtchem.2021.100677
|
11 |
SHARMA S, BUDDHDEV J, PATEL M,et al. Studies on degradation of reactive red 135 dye in wastewater using ozone[J]. Procedia Engineering, 2013, 51:451-455. doi: 10.1016/j.proeng.2013.01.063
|
12 |
SUKHDEV A, MANJUNATHA A S. Decolorization of reactive orange 16 azo dye in wastewater using CAT/IrCl 3/HClO 4 redox system:Delineation of kinetic modeling and mechanistic approaches[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70:150-160. doi: 10.1016/j.jtice.2016.10.033
|
13 |
FENG Li, LIU Jiajun, GUO Zhicong,et al. Reactive black 5 dyeing wastewater treatment by electrolysis-Ce(Ⅳ) electrochemical oxidation technology:Influencing factors,synergy and enhancement mechanisms[J]. Separation and Purification Technology, 2022, 285:120314. doi: 10.1016/j.seppur.2021.120314
|
14 |
ZHANG Xing, YAO Jilun, ZHAO Zhiwei,et al. Degradation of haloacetonitriles with UV/peroxymonosulfate process:Degradation pathway and the role of hydroxyl radicals[J]. Chemical Engineering Journal, 2019, 364:1-10. doi: 10.1016/j.cej.2019.01.029
|
15 |
CHEN W S, HUANG Chipin. Mineralization of aniline in aqueous solution by electro-activated persulfate oxidation enhanced with ultrasound[J]. Chemical Engineering Journal, 2015, 266:279-288. doi: 10.1016/j.cej.2014.12.100
|
16 |
|
|
ZHANG Wei, LI Mei, XU Wen,et al. Research progress on degradation of bisphenol A by transition metal activated persulfate[J]. Applied Chemical Industry, 2023, 52(3):939-944. doi: 10.3969/j.issn.1671-3206.2023.03.055
|
17 |
范莎莎,金春姬,温淳,等. 电活化硫酸盐处理四环素类废水的研究[J]. 中国海洋大学学报(自然科学版),2022,52(1):88-96.
|
|
FAN Shasha, JIN Chunji, WEN Chun,et al. Study on the treatment of tetracycline wastewater by electro-activated sulfate[J]. Periodical of Ocean University of China,2022,52(1):88-96.
|
18 |
LIU Ning, LU Na, YU Hongtao,et al. Enhanced degradation of organic water pollutants by photocatalytic in situ activation of sulfate based on Z-scheme g-C 3N 4/BiPO 4 [J]. Chemical Engineering Journal, 2022, 428:132116. doi: 10.1016/j.cej.2021.132116
|
19 |
EPOLITO W J, LEE Y H, BOTTOMLEY L A,et al. Characterization of the textile anthraquinone dye Reactive Blue 4[J]. Dyes and Pigments, 2005, 67(1):35-46. doi: 10.1016/j.dyepig.2004.10.006
|
20 |
HAIDER M R, JIANG Wenli, HAN Jinglong,et al. In-situ electrode fabrication from polyaniline derived N-doped carbon nanofibers for metal-free electro-fenton degradation of organic contaminants[J]. Applied Catalysis B:Environmental, 2019, 256:117774. doi: 10.1016/j.apcatb.2019.117774
|
21 |
KUANG Chaozhi, XU Yanbin, XIE Guangyan,et al. Preparation of CeO 2-doped carbon nanotubes cathode and its mechanism for advanced treatment of pig farm wastewater[J]. Chemosphere, 2021, 262:128215. doi: 10.1016/j.chemosphere.2020.128215
|
22 |
刘广立,徐俊添,卢耀斌,等. 气体扩散阴极电合成反应器中电解液导流型式对产生过氧化氢的影响[J]. 安全与环境学报,2020,20(2):662-668.
|
|
LIU Guangli, XU Juntian, LU Yaobin,et al. Electrolyte diversion effect on hydrogen peroxide production in electrosynthesis reactor with gas diffusion cathode[J]. Journal of Safety and Environment,2020,20(2):662-668.
|
23 |
KUANG Chaozhi, ZENG Guoshen, ZHOU Yangjian,et al. Integrating anodic sulfate activation with cathodic H 2O 2 production/activation to generate the sulfate and hydroxyl radicals for the degradation of emerging organic contaminants[J]. Water Research, 2023, 229:119464. doi: 10.1016/j.watres.2022.119464
|
24 |
LI Lejing, XU Liangpang, CHAN A W M,et al. Direct hydrogen peroxide synthesis on a Sn-doped CuWO 4/Sn anode and an air-breathing cathode[J]. Chemistry of Materials, 2022, 34(1):63-71. doi: 10.1021/acs.chemmater.1c02787
|
25 |
NIU Tiezheng, CAI Junzhuo, SHI Penghui,et al. Unique electrochemical system for in situ SO 4 •- generation and pollutants degradation[J]. Chemical Engineering Journal, 2020, 386:123971. doi: 10.1016/j.cej.2019.123971
|
26 |
YAHAYA A, OKOH O O, AGUNBIADE F O,et al. Occurrence of phenolic derivatives in Buffalo River of Eastern Cape South Africa:Exposure risk evaluation[J]. Ecotoxicology and Environmental Safety, 2019, 171:887-893. doi: 10.1016/j.ecoenv.2019.01.037
|
27 |
LI Xiaobao, FAN Shasha, JIN Chunji,et al. Electrochemical degradation of tetracycline hydrochloride in sulfate solutions on boron-doped diamond electrode:The accumulation and transformation of persulfate[J]. Chemosphere, 2022, 305:135448. doi: 10.1016/j.chemosphere.2022.135448
|
28 |
LIU Zhen, ZHAO Chun, WANG Pu,et al. Removal of carbamazepine in water by electro-activated carbon fiber-peroxydisulfate:Comparison,optimization,recycle,and mechanism study[J]. Chemical Engineering Journal, 2018, 343:28-36. doi: 10.1016/j.cej.2018.02.114
|
29 |
RAO Yandi, LI Aoqi, ZHANG Yuxin,et al. Efficient degradation of metronidazole with dual-cathode of acetylene black-PTFE/CoFe 2O 4-PTFE coupling persulfate[J]. Separation and Purification Technology, 2022, 283:120193. doi: 10.1016/j.seppur.2021.120193
|
30 |
YU Menglin, DONG Heng, LIU Kai,et al. Porous carbon monoliths for electrochemical removal of aqueous herbicides by “one-stop” catalysis of oxygen reduction and H 2O 2 activation[J]. Journal of Hazardous Materials, 2021, 414:125592. doi: 10.1016/j.jhazmat.2021.125592
|
31 |
石清清,蒲生彦,杨犀. 纳米Cu0@Fe3O4活化PMS降解对-硝基苯酚的协同反应机制[J]. 环境科学,2020,41(10):4615-4625.
|
|
SHI Qingqing, PU Shengyan, YANG Xi. Synergistic reaction mechanism of Cu0@Fe3O4 activated PMS for degradation of p-nitrophenol[J]. Environmental Science,2020,41(10):4615-4625.
|
32 |
LUTZE H V, KERLIN N, SCHMIDT T C. Sulfate radical-based water treatment in presence of chloride:Formation of chlorate,inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate[J]. Water Research, 2015, 72:349-360. doi: 10.1016/j.watres.2014.10.006
|
33 |
CHUNG I C, CHUNG C K, SU Y K. Effect of current density and concentration on microstructure and corrosion behavior of 6061 Al alloy in sulfuric acid[J]. Surface and Coatings Technology, 2017, 313:299-306. doi: 10.1016/j.surfcoat.2017.01.114
|
34 |
ZHENG Yang, XU Xinxin, CHEN Jin,et al. Surface O 2- regulation on POM electrocatalyst to achieve accurate 2e/4e-ORR control for H 2O 2 production and Zn-air battery assemble[J]. Applied Catalysis B:Environmental, 2021, 285:119788. doi: 10.1016/j.apcatb.2020.119788
|
35 |
罗海健. 双电极同步产生·OH/SO4 ·-降解苯酚体系的构建及机制研究[D]. 哈尔滨:哈尔滨工业大学,2018.
|
|
LUO Haijian. Oxidation system of simultaneous generation of ·OH/SO4 ·- on a paired electrode for phenol degradation and its mechanism study[D]. Harbin:Harbin Institute of Technology,2018.
|
36 |
LIU Liping, LI Biao, HE Zhenzhu,et al. Degradation of bromoamine acid by BDD technology:Use of Doehlert design for optimizing the reaction conditions[J]. Separation and Purification Technology, 2015, 146:15-23. doi: 10.1016/j.seppur.2015.03.019
|