1 |
姜丹丹.超临界水技术处理难降解有机废水的反应机理研究[D].天津:天津大学, 2017.
|
2 |
Huang Liping , Cheng Shaoan , Chen Guohua . Bioelectrochemical systems for efficient recalcitrant wastes treatment[J]. Journal of Chemical Technology & Biotechnology, 2011, 86 (4): 481- 491.
URL
|
3 |
Rabaey K , Angenent L , Schroder U , et al. Bioelectrochemical systems:From extracellular electron transfer to biotechnological application[M]. London: IWA Publishing, 2011: 1- 488.
|
4 |
刘鼎.微生物电化学系统生物阴极的构建及其在难降解有机废水处理中的应用[D].杭州:浙江大学, 2014.
|
5 |
Rabaey K , Rodriguez J , Blackall L L , et al. Microbial ecology meets electrochemistry:Electricity-driven and driving communities[J]. The ISME Journal, 2007, 1 (1): 9- 18.
doi: 10.1038/ismej.2007.4
|
6 |
Pant D , Singh A , Van Bogaert G , et al. An introduction to the life cycle assessment(LCA) of bioelectrochemical systems(BES) for sustainable energy and product generation:Relevance and key aspects[J]. Renewable and Sustainable Energy Reviews, 2011, 15 (2): 1305- 1313.
doi: 10.1016/j.rser.2010.10.005
|
7 |
杜敬敬.生物电化学系统去除2, 4-二氯苯酚的研究[D].无锡:江南大学, 2014.
|
8 |
Ragab M , Elawwad A , Abdel-Halim H . Simultaneous power generation and pollutant removals using microbial desalination cell at variable operation modes[J]. Renewable Energy, 2019, 143, 939- 949.
doi: 10.1016/j.renene.2019.05.068
|
9 |
Aulenta F , Reale P , Canosa A , et al. Characterization of an electroactive biocathode capable of dechlorinating trichloroethene and cisdichloroethene to ethene[J]. Biosensors & Bioelectronics, 2010, 25 (7): 1796- 1802.
URL
|
10 |
Zhang Jinwei , Zhang Enren , Scott K , et al. Enhanced electricity production by use of reconstituted artificial consortia of estuarine bacteria grown as biofilms[J]. Environmental Science & Technology, 2012, 46 (5): 2984- 2992.
URL
|
11 |
Chae K J , Choi M J , Kim K Y , et al. A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen[J]. Environmental Science & Technology, 2009, 43 (24): 9525- 9530.
URL
|
12 |
Ahn Y T , Logan B E . A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design[J]. Applied Microbiology and Biotechnology, 2012, 93 (5): 2241- 2248.
doi: 10.1007/s00253-012-3916-4
|
13 |
华琮歆.硝基酚生物电化学还原性能与其结构的关系探究[D].南京:南京理工大学, 2015.
|
14 |
Omar M H , Obaid M , Poo K M , et al. Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell[J]. Chemical Engineering Journal, 2018, 349, 800- 807.
doi: 10.1016/j.cej.2018.05.138
|
15 |
Wang Hongcheng , Cui Dan , Yang Lihui , et al. Increasing the bioelectrochemical system performance in azo dye wastewater treatment:Reduced electrode spacing for improved hydrodynamic[J]. Bioresource Technology, 2017, 245, 962- 969.
doi: 10.1016/j.biortech.2017.09.036
|
16 |
方斌.不锈钢微生物阳极的表面修饰及其耐腐蚀性能研究[D].南昌:江西师范大学, 2019.
|
17 |
庄汇川.阴极材料对微生物燃料电池性能与微生物群落结构的影响[D].哈尔滨:哈尔滨工业大学, 2015.
|
18 |
宋振辉, 李鹏, 王爱杰, 等. 升流式生物催化电解反应器(UBER)处理硝基苯废水试验研究[J]. 安全与环境学报, 2019, 19 (1): 270- 275.
URL
|
19 |
熊伟, 黄冬根, 余倩丽, 等. 上流式生物电化学系统深化处理2-氯硝基苯废水[J]. 环境科学学报, 2019, 39 (2): 301- 307.
URL
|
20 |
Ding Aqiang , Yang Yu , Sun Guodong , et al. Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell(MEC)[J]. Chemical Engineering Journal, 2016, 283, 260- 265.
doi: 10.1016/j.cej.2015.07.054
|
21 |
Feng Huajun , Zhang Xueqin , Guo Kun , et al. Electrical stimulation improves microbial salinity resistance and organofluorine removal in bioelectrochemical systems[J]. Applied and Environmental Microbiology, 2015, 81 (11): 3737- 3744.
doi: 10.1128/AEM.04066-14
|
22 |
Guo Ning , Wang Yunkun , Tong Tiezheng . The fate of antibiotic resistance genes and their potential hosts during bio-electrochemical treatment of high-salinity pharmaceutical wastewater[J]. Water Research, 2018, 133, 79- 86.
doi: 10.1016/j.watres.2018.01.020
|
23 |
Jiang Xinbai , Shen Jinyou , Han Yan , et al. Efficient nitro reduction and dechlorination of 2, 4-dinitrochlorobenzene through the integration of bioelectrochemical system into upflow anaerobic sludge blanket:A comprehensive study[J]. Water Research, 2016, 88, 257- 268.
URL
|
24 |
Okamoto A , Hashimoto K , Nakamura R . Long-range electron conduction of Shewanella biofilms mediated by outer membrane C-type cytochromes[J]. Bioelectrochemistry, 2012, 85, 61- 65.
doi: 10.1016/j.bioelechem.2011.12.003
|
25 |
Feng Yujie , Lee H , Wang Xin , et al. Continuous electricity generation by a graphite granule baffled air-cathode microbial fuel cell[J]. Bioresource Technology, 2010, 101 (2): 632- 638.
doi: 10.1016/j.biortech.2009.08.046
|
26 |
Oh S E , Logen B E . Voltage reversal during microbial fuel cell stack operation[J]. Journal of Power Sources, 2007, 167 (1): 11- 17.
doi: 10.1016/j.jpowsour.2007.02.016
|
27 |
Wang Aijie , Sun Dan , Ren Nanqi , et al. A rapid selection strategy for an anodophilic consortium for microbial fuel cells[J]. Bioresource Technology, 2010, 101 (14): 5733- 5735.
doi: 10.1016/j.biortech.2010.02.056
|
28 |
Pant D , Van Bogaert G , Diels L , et al. A review of the substrates used in microbial fuel cells(MFCs) for sustainable energy production[J]. Bioresource Technology, 2010, 101 (6): 1533- 1543.
doi: 10.1016/j.biortech.2009.10.017
|
29 |
李道波.细菌跨膜电子传递过程的环境功能和电化学调控[D].合肥:中国科学技术大学, 2014.
|
30 |
Logan B E . Exoelectrogenic bacteria that power microbial fuel cells[J]. Nature Reviews Microbiology, 2009, 7 (5): 375- 381.
doi: 10.1038/nrmicro2113
|
31 |
崔敏华.生物电化学复合厌氧反应器构建及其处理染料废水效能研究[D].哈尔滨:哈尔滨工业大学, 2017.
|
32 |
Mu Yang , Rabaey K , Rozendal R A , et al. Decolorization of azo dyes in bioelectrochemical systems[J]. Environmental Science & Technology, 2009, 43 (13): 5137- 5143.
URL
|
33 |
姚楠.生物电化学系统处理偶氮染料废水的实验研究[D].哈尔滨:哈尔滨工业大学, 2012.
|
34 |
Yuan Y , Zhang J , Xing L . Effective electrochemical decolorization of azo dye on titanium suboxide cathode in bioelectrochemical system[J]. International Journal of Environmental Science and Technology, 2019, 16 (12): 1735- 1472.
URL
|
35 |
Kong Fanying , Ren Hongyu , Wang Aijie , et al. Enhanced azo dye decolorization and microbial community analysis in a stacked bioelectrochemical system[J]. Chemical Engineering Journal, 2018, 354, 351- 362.
doi: 10.1016/j.cej.2018.08.027
|
36 |
Wang Aijie , Cui Dan , Cheng Haoyi , et al. A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction[J]. Journal of Hazardous Materials, 2012, 199/200, 401- 409.
doi: 10.1016/j.jhazmat.2011.11.034
|
37 |
Guo Wanqian , Guo Shuang , Yin Renli , et al. Reduction of 4-chloronitrobenzene in a bioelectrochemical reactor with biocathode at ambient temperature for a long-term operation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 46, 119- 124.
doi: 10.1016/j.jtice.2014.09.009
|
38 |
温青, 孙茜, 赵立新, 等. 微生物燃料电池对废水中对硝基苯酚的去除[J]. 现代化工, 2009, 29 (4): 40- 42.
URL
|
39 |
Xu Yingfeng , Ge Zhipeng , Zhang Xueqin , et al. Validation of effective roles of non-electroactive microbes on recalcitrant contaminant degradation in bioelectrochemical systems[J]. Environmental Pollution, 2019, 249, 794- 800.
doi: 10.1016/j.envpol.2019.03.036
|
40 |
曹占平, 张景丽, 张宏伟. 五氯酚的生物电化学催化厌氧转化过程与机制[J]. 应用基础与工程科学学报, 2013, 21 (1): 54- 62.
URL
|
41 |
Huzairy H , Bo Ji , Erica D , et al. Microbial community and bioelectrochemical activities in MFC for degrading phenol and producing electricity:Microbial consortia could make differences[J]. Chemical Engineering Journal, 2018, 332, 647- 657.
doi: 10.1016/j.cej.2017.09.114
|
42 |
Wen Qin , Yang Ting , Wang Shaoyun , et al. Dechlorination of 4-chlorophenol to phenol in bioelectrochemical systems[J]. Journal of Hazardous Materials, 2013, 244 (2): 743- 749.
URL
|
43 |
席尚东, 高磊, 王爱杰, 等. 利用生活污水提升厌氧-生物电化学耦合系统处理染料废水的效能及关键功能微生物研究[J]. 环境科学学报, 2019, 39 (2): 290- 300.
URL
|
44 |
陈辉.生物电化学系统-厌氧污泥耦合工艺强化处理含氯代硝基苯有机废水研究[D].杭州:浙江大学, 2019.
|
45 |
Cui Dan , Guo Yuqi , Lee H S , et al. Enhanced decolorization of azo dye in a small pilot-scale anaerobic baffled reactor coupled with biocatalyzed electrolysis system(ABR-BES):A design suitable for scaling-up[J]. Bioresource Technology, 2014, 163, 254- 261.
doi: 10.1016/j.biortech.2014.03.165
|
46 |
Zhang Shuai , Yang Xiaoli , Li Hua , et al. Degradation of sulfamethoxazole in bioelectrochemical system with power supplied by constructed wetland-coupled microbial fuel cells[J]. Bioresource Technology, 2017, 244 (1): 345- 352.
URL
|
47 |
Cui Minghua , Cui Dan , Gao Lei , et al. Efficient azo dye decolorization in a continuous stirred tank reactor(CSTR) with built-in bioelectrochemical system[J]. Bioresource Technology, 2016, 218, 1307- 1311.
doi: 10.1016/j.biortech.2016.07.135
|
48 |
Wang Youzhao , Pan Yuan , Wang Aijie , et al. Enhanced performance and microbial community analysis of bioelectrochemical system integrated with bio-contact oxidation reactor for treatment of wastewater containing azo dye[J]. Science of the Total Environment, 2018, 634, 616- 627.
doi: 10.1016/j.scitotenv.2018.03.346
|